
High-Speed Chemical Imaging by Dense-Net Learning of
Femtosecond Stimulated Raman Scattering
Jing Zhang,# Jian Zhao,# Haonan Lin,# Yuying Tan, and Ji-Xin Cheng*

Cite This:J. Phys. Chem. Lett.2020, 11, 8573� 8578 Read Online

ACCESS Metrics & More Article Recommendations *sõ Supporting Information

ABSTRACT:Hyperspectral stimulated Raman scattering (SRS)
by spectral focusing can generate label-free chemical images
through temporal scanning of chirped femtosecond pulses. Yet,
pulse chirping decreases the pulse peak power and temporal
scanning increases the acquisition time, resulting in a much slower
imaging speed compared to single-frame SRS using femtosecond
pulses. In this paper, we present a deep learning algorithm to solve
the inverse problem of getting a chemically labeled image from a
single-frame femtosecond SRS image. Our DenseNet-based
learning method, termed as DeepChem, achieves high-speed
chemical imaging with a large signal level. Speed is improved by 2
orders of magnitude with four subcellular components (lipid
droplet, endoplasmic reticulum, nuclei, cytoplasm) classi� ed in
MIA PaCa-2 cells and other cell types which were not used for training. Lipid droplet dynamics and cellular response to
dithiothreitol in live MIA PaCa-2 cells are demonstrated using this computationally multiplex method.

Vibrational spectroscopic imaging of cellular and tissue
structures is opening a new window for cell biology

research and clinical diagnosis.1� 3 Stimulated Raman scattering
(SRS) microscopy is a vibrational imaging technique with
label-free chemical speci� city.4,5 SRS microscopy has been
implemented with both picosecond and femtosecond pulses,
respectively, allowing the single color and hyperspectral
imaging capabilities.6,7 Despite these advances, the trade-o�
between speed, signal-to-noise ratio (SNR), and spectroscopic
bandwidth prevents its broader application in biology and
biomedicine. Using picosecond pulse trains, video-rate SRS
imaging was realized via a fast lock-in ampli� er.8 SNR was 10-
fold increased using femtosecond pulse excitation because of
the integration over a spectral window compared to pico-
second pulse excitation.9 Although single-shot femtosecond
SRS imaging permits real-time skin imaging in live mice and
cellular metabolism quanti� cation,10 it lacks spectroscopic
information and thus cannot discriminate chemical compo-
nents with overlapping Raman signatures. Spectral focusing
provides an e� cient method for femtosecond pulse based
hyperspectral SRS (hSRS) measurements by linear chirping of
pump and Stokes pulses.11,12 However, the speed of time-delay
scanning for parallel detection of several Raman bands is often
limited by the motorized translational stage due to the waiting
time for communication and stabilization.13 Improved
frequency tuning via a galvanometer mirror has reached a
speed of seconds per stack.13,14 Nevertheless, just as illustrated
in Figure 1a, tens to hundreds of times more measurements are
needed for an SRS stack than a single-frame image and limits

further improvement of its imaging speed. Multiplex SRS
enabled single spectrum recording within several microseconds
by wavelength division or modulation division.15� 17 These
multiplex designs, however, either came with deterioration in
SNR or loss of spectral selectivity. Collectively, limitations of
each modality highlight a need to� ll the gap between the low
spectral resolution in femtosecond pulse excitation and the low
speed in hyperspectral measurement, aiming at a high-speed,
high-SNR, hyperspectral SRS imaging method.

In parallel with instrumentation development, computa-
tional approaches have been applied to boost the speed and/or
SNR in SRS microscopy. With prior knowledge of the low-
rankness of SRS images, sparse sampling methods improved
the SRS imaging speed with linear models.18� 20 Thanks to the
recent resurgence of deep neural networks (DNNs), image
interpretation and translation problems can be resolved via
direct learning of the underlying image mapping relation.21 A
recently reported U-Net DNNs based algorithm for SRS image
denoising shows applicability to reduce potential photodamage
and enable deep tissue imaging.22 Other applications of DNNs
to optical microscopy include image translation,23,24 denois-
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ing,22,25 super-resolution,26 cross-modality image fusion,27

focus correction,28 and transmission correction,29 largely in
the � uorescence microscopy� eld.

In this work, we tackle the trade-o� among spectral
speci� city, speed, and SNR by learning the correlation between
spectral and spatial features to derive chemical maps from a
high-speed femtosecond SRS image. Speci� cally, we deploy a
customized DNN model, namely, a DenseNet-based neural
network architecture.30,31 DenseNet has signi� cant advantages
over conventional DNNs such as U-Net in computer vision
problems, including semantic segmentation.32 By introducing
connections between each layer, DenseNet has achieved
advanced performance, such as the alleviation of gradient
vanishing and reduction of the number of parameters,
encouraging feature reuse.30 We term our DenseNet-based
DNN as DeepChem. The pairs of spectrally summed hSRS
images of MIA PaCa-2 cells and the spatially segmented
subcellular organelle maps are used for training DeepChem.
Then the well-trained network is capable of generating
subcellular organelle maps using femtosecond SRS images
(Figure 1b). On the basis of this method, the needed frame
number is reduced to one while the chemical selectivity of four
subcellular components (lipid droplet, endoplasmic reticulum,

nuclei, cytoplasm) is preserved. Thus, the trade-o� between
high SNR, chemical selectivity, and speed qualities is broken,
without additional need for� uorescent labels, parameter
estimation, or hardware design.

To test this idea, SRS images were acquired using a lab-built
SRS microscope previously reported in ref9 (section S1 and
Figure S1,Supporting Information). For hyperspectral SRS
imaging under a spectral focusing scheme, both the pump and
Stokes beams were chirped with high-dispersion glass, and the
hSRS images were collected via spectral scanning controlled by
a motorized translational stage. For single-frame femtosecond
SRS imaging, no chirping material was used. The schematic of
these two imaging schemes in the time, Ramam shift, and
intensity domain is illustrated inFigure 1a. For the collected
hSRS images, we implemented a hyperspectral image
segmentation method based on Phasor analysis and Markov
Random Field (Phasor-MRF, seesection S2andFigure S2for
details) to incorporate both spectral and spatial features in
segmenting the subcellular organelle maps. Two-photon
excitation� uorescence images then con� rmed the results
from Phasor-MRF (Figure S4, Supporting Information).
Section S3and Figure S5in the Supporting Information
compared the single-frame femtosecond SRS images and the
spectrally summed SRS images under the same� eld of view,
showing that images collected using these two modalities have
morphological features with high similarity. The data validate
our scheme in which spectrally summed hSRS images were
used for training. After training, DeepChem is capable of
predicting subcellular organelle maps from single-frame
femtosecond SRS images. The work� ow of DeepChem
training and prediction is shown inFigure 1b.

To generate the training set, we applied normalization for
each image to accommodate di� erent experimental conditions.
Following the normalization, we applied image augmentation,
such as image rotation and transpose, to generate a training set
with 4000 images, each with 128× 128 pixels. DeepChem is
constructed with repeated dense blocks consisting of several
densely connected convolution blocks. Each convolution block
consists of one convolutional layer followed by a batch
normalization layer and a ReLU activation layer. DeepChem
employs an exponentially decaying learning rate with an Adam
optimizer and a batch size of 2. Di� erent learning rate
initialization is applied for each segmentation class. The neural
network is implemented in Keras framework on a single GPU
(GEFORCE 2080Ti). The detailed architecture can be found
in Figure S6. Test-time augmentation is then applied toward a
better segmentation accuracy as in ref33. For each image in
the testing set, the prediction ensemble of multiple trans-
formed versions of this image is� rst calculated using the
pretrained network. Accordingly, we get the� nal prediction
result Y E Y X y N( ) /N

n1
�= | = � . y

n
denotes the probability

map of each instance in the prediction ensemble, andX
denotes the input image for inference.

Predicted subcellular organelle maps using spectrally
summed hSRS show clear biological details and high structural
similarity to ground truth images (Figure 2a). The confusion
matrix in Figure 2b shows good prediction accuracy (high
intensities cluster in the diagonals). Speci� cally, DeepChem
has a 0.787 F1 score (de� nition in section S4,Supporting
Information) for nuclei segmentation, better than other
subcellular organelle segmentation methods using� uorescence
images (� 0.7).34 For the other three classes (lipid droplets,

Figure 1.Schematic of SRS imaging and work� ow of DeepChem
training and prediction. (a) Schematic of two SRS imaging schemes in
the 3D domain of time, Raman shift, and intensity. Left: hyperspectral
SRS imaging with linearly chirped pulses. Right: single-frame SRS
imaging with nonchirped femtosecond pulses. (b) Work� ow of
DeepChem training and prediction. The training set consists of pairs
of spectrally summed hyperspectral SRS images and their correspond-
ing subcellular organelle maps from Phasor-MRF. After training,
DeepChem is capable of predicting subcellular organelle maps based
on a single-frame femtosecond SRS image. MRF: Markov Random
Field.
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ER, cytoplasm), our method hasF1 scores of 0.645, 0.805, and
0.789. In addition, our method is greatly simpli� ed and easier
to use compared with networks deploying multiscale branches
with di� erent z-depth inputs.23,24 Moreover, compared with
the U-Net DNNs trained on the same data set, DenseNet-
based DeepChem achieves higher segmentation performance
(section S5 and Figure S7,Supporting Information).32 Figure
2c andFigure S8show predicted subcellular organelle maps
from femtosecond SRS images including those cell types
(OVCAR-5 and HPDE-6) that never appeared in the training
set. It means the neural network“has learned” to provide
reliable results from new input of di� erent modalities and
di� erent cell types. This result demonstrates the generalization
ability of our method and heralds potential in functional cell
imaging with high speed and chemical selectivity. In terms of
the speed performance, a hSRS stack (256× 256× 100, FOV
64× 64� m2) takes 110 s, while a single shot femtosecond SRS
image with the same size takes 1� 2 s. This dramatic speed
improvement allows real-time imaging of living cells.

To demonstrate the advantage of our DenseNet-based
method over single-frame femtosecond SRS imaging, we show
lipid droplet tracking with paralleled ER label in live MIA
PaCa-2 cells using high-speed high-sensitivity femtosecond
pulses excitation. Previous research has shown the correlation
between the spatial-temporal dynamics of lipid droplets and

cellular lipid metabolism.35 However, the previous method
using single-frame femtosecond SRS was unable to detect
other subcellular organelles simultaneously. A traditional
frame-by-frame SRS imaging system can provide multiple
subcellular organelles simultaneously, but the speed is around
100 times slower than our method. In our experiment, we
imaged live MIA PaCa-2 cells with a temporal resolution of 1.5
s per frame for about 2 min. Then, DeepChem predicted lipid
droplet maps from the collected femtosecond SRS images.
These maps were then analyzed by the particle-tracking plugin
in ImageJ.36 Two sample images are shown inFigure 3a. To

quantify the lipid droplets dynamics, we de� ne two
parameters: traveled distance (the cumulative position
displacement between consecutive frames) and distance to
the origin (the displacement of the current position to the
origin of the movement). Using the two parameters de� ned
above, less active lipid droplet movement is observed in cells
treated with 0.5 mM dithiothreitol (DTT) for 1 h (Figure 3b).
DTT is a strong reducing agent that can break down disul� de
bond formation and thus lead to ER stress in minutes.37 A lipid
droplet has been shown as a functional organelle connected as
to the ER lumen. Thus, our observation implies that the
enlarged ER lumen is more likely to trap the lipid droplets and
limit their movement.37 Besides lipid metabolism, DeepChem
based femtosecond SRS has the hyperspectral competence to

Figure 2. Predicted subcellular organelle maps from spectrally
summed hSRS images and single-frame femtosecond SRS images.
(a) Predicted subcellular organelle maps from spectrally summed
hSRS images. Scale bar: 10� m. (b) Confusion matrix of subcellular
component classes (de� nition in section S4,Supporting Information):
top, normalized by column; bottom, normalized by row. LD, Bkg, ER,
and Cyto are abbreviations for lipid droplet, background, endoplasmic
reticulum, and cytoplasm. (c) Predicted subcellular organelle maps
from single-frame femtosecond SRS images. Scale bar: 10� m.

Figure 3. Lipid droplet tracking in live MIA PaCa-2 cells by
femtosecond SRS and DeepChem. (a) Trajectories of lipid droplets
(solid lines) and contours of the ER regions (dashed green lines).
Scale bar: 5� m. (b) Quanti� cation of lipid droplet dynamics. The
insets in the right column show corresponding plots in the range 75�
125 s.
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address the rising interest in understanding organelle
interaction and cooperation from di� erent aspects, including
morphology and functionality.

Another strong desire in biomedical applications is large-
scale imaging with single-cell resolution. The strengths of our
method in resolving this need are motion artifacts suppression
and quantitative evaluation of each population. To illustrate
these strengths, 400 images (64× 64� m2 each) were captured
in 10 min for both the control and DTT treated group (0.5
mM DTT, 1 h incubation) (Figure 4a,b). We then quantify the
cellular response by normalized ER total intensity and ER area
ratio, de� ned in the caption ofFigure 4. In the DTT treated
group, ER total intensity (Figure 4c) and ER area ratio (Figure
4c) are both increased compared to the control group,
indicating an expansion of ER lumen induced by DTT. The
hyperspectral capability of our method enables this large-scale
high-speed imaging with high SNR displaying great advantage
over the conventional frame-by-frame SRS imaging system. In
contrast to the� ow setting where the sample cannot be
retrieved, our image cytometry method can perform
continuous imaging of the same� eld of view. Potential
applications for this method include SRS-enabled cell sorting.

We note that in our manuscript, the subcellular components
ER, nucleus, cytoplasm, and lipid droplets can be di� erentiated
on the basis of the intensity of femtosecond SRS images. This
condition implies that machine learning is not magic; it pushes
the limit in one domain by leveraging information in another
domain. Nevertheless, compared to the threshold approach,
machine learning ensureshigher accuracy through a
sophisticated network.Figure S9compares the prediction
results between brightness thresholding and DeepChem,
showing that brightness thresholding based on a simple linear
scheme su� ers from di� erent experimental conditions and cell-
to-cell variation. The advantage of this DenseNet-based
learning method is that it trains a nonlinear network utilizing
the information on both the intensity and the morphological
features in the training process, and after training, it outputs

much more robust segmentation results with high accuracy
(section S6,Supporting Information).

In conclusion, we demonstrated a high-speed multiplex
chemical imaging method by DenseNet-based learning of
femtosecond SRS images. This method is capable of revealing
rapid cellular dynamics, including lipid droplet movement and
cellular response to DTT, an inducer of ER stress. High speed
and chemical selectivity provided by this method o� ers various
possibilities, and potential applications including large-area
tissue segments imaging and deciphering cell metabolism. An
optimized algorithm may be applied to enable massive parallel
visualization of subcellular organelles in the future. On the
basis of rapid developments in both SRS microscopy and deep
learning methods, we foresee a more integrated computational
SRS microscope providing advanced imaging schemes for
comprehensive understanding of biology and materials.
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