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ABSTRACT: Hyperspectral stimulated Raman scattering (SRS) Hyperspectral SRS
by spectral focusing can generate label-free chemical fHEges: T orediction
through temporal scanning of chirped femtosecond pulses 4 .

pulse chirping decreases the pulse peak power and te
scanning increases the acquisition time, resulting in a much JEEeE
imaging speed compared to single-frame SRS using femtoJsicla
pulses. In this paper, we present a deep learning algorithm to selwe
the inverse problem of getting a chemically labeled image frggas
single-frame femtosecond SRS image. Our DenseNet-
learning method, termed as DeepChem, achieves high-
chemical imaging with a large signal level. Speed is improve
orders of magnitude with four subcellular components (lipl
droplet, endoplasmic reticulum, nuclei, cytoplasm) edagsi
MIA PaCa-2 cells and other cell types which were not used for training. Lipid droplet dynamics and cellular response
dithiothreitol in live MIA PaCa-2 cells are demonstrated using this computationally multiplex method.
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Vibrational spectroscopic imaging of cellular and tissuerther improvement of its imaging speed. Multiplex SRS
structures is opening a new window for cell biologynabled single spectrum recording within several microseconds
research and clinical diagnbsi§timulated Raman scattering by wavelength division or modulation divisiod. These

(SRS) microscopy is a vibrational imaging technique withhultiplex designs, however, either came with deterioration in
label-free chemical speity> SRS microscopy has been SNR or loss of spectral selectivity. Collectively, limitations of
implemented with both picosecond and femtosecond pulsegich modality highlight a need tahe gap between the low
respectively, allowing the single color and hyperspectigectral resolution in femtosecond pulse excitation and the low
imaging capabilitiés.Despite these advances, the trade-o speed in hyperspectral measurement, aiming at a high-speed,
between speed, signal-to-noise ratio (SNR), and spectroscaigh-SNR, hyperspectral SRS imaging method.

bandwidth prevents its broader application in biology and |n parallel with instrumentation development, computa-
biomedicine. Using picosecond pulse trains, video-rate Sfsnal approaches have been applied to boost the speed and/or
imaging was realized via a fast lock-in &mip8NR was 10-  SNR in SRS microscopy. With prior knowledge of the low-
fold increased using femtosecond pulse excitation becausgs@kness of SRS images, sparse sampling methods improved
the integration over a spectral window compared to picqpe SRS imaging speed with linear mttiéfksThanks to the
second pulse excit_at?omlth(_)ugh single-shot femtosecond recent resurgence of deep neural networks (DNNs), image
SRS imaging permits real-time gk!n imaging in live mice afiferpretation and translation problems can be resolved via
cellular metabolism quansition,” it lacks spectroscopic girect learning of the underlying image mapping réfafion.
information and thus cannot discriminate chemical compQacenty reported U-Net DNNs based algorithm for SRS image
nents with overlapping Raman signatures. Spectral focuzglgwoising shows applicability to reduce potential photodamage

provides an ecient method for femtosecond pulse base nd enable deep ti . o
. A5t p tissue imagfi@ther applications of DNNs
hyperspectral SRS (hSRS) measurements by linear chirpin og . . . : it o

pump and Stokes pul$&s:However, the speed of time-delay ¥bptical microscopy include image transfatiérdenois

scanning for parallel detection of several Raman bands is ofieri—

limited by the motorized translational stage due to the Waitirﬁece'ved: May 23, 2020

time for communication and stabilizatforimproved ccepted: September 11, 2020
frequency tuning via a galvanometer mirror has reachedgPlished: September 11, 2020
speed of seconds per stackNevertheless, just as illustrated

in Figure A&, tens to hundreds of times more measurements are

needed for an SRS stack than a single-frame image and limits
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nuclei, cytoplasm) is preserved. Thus, the traetaeen
high SNR, chemical selectivity, and speed qualities is broken,
without additional need foruorescent labels, parameter
estimation, or hardware design.
To test this idea, SRS images were acquired using a lab-built

SRS microscope previously reported 8 (®fction S1 and
Figure S1Supporting InformatipnFor hyperspectral SRS
imaging under a spectral focusing scheme, both the pump and
Stokes beams were chirped with high-dispersion glass, and the
hSRS images were collected via spectral scanning controlled by
a motorized translational stage. For single-frame femtosecond
SRS imaging, no chirping material was used. The schematic of
these two imaging schemes in the time, Ramam shift, and
intensity domain is illustratedHigure &. For the collected
hSRS images, we implemented a hyperspectral image
segmentation method based on Phasor analysis and Markov
Random Field (Phasor-MRF, seetion SandFigure SZor
details) to incorporate both spectral and spatial features in
segmenting the subcellular organelle maps. Two-photon
excitation uorescence images then comd the results
from Phasor-MRF F{gure S#4 Supporting Information).
Section S3and Figure S5in the Supporting Information
compared the single-frame femtosecond SRS images and the
spectrally summed SRS images under the skhw view,
showing that images collected using these two modalities have
morphological features with high similarity. The data validate
our scheme in which spectrally summed hSRS images were
used for training. After training, DeepChem is capable of

Figure 1.Schematic of SRS imaging and wewvkof DeepChem  predicting subcellular organelle maps from single-frame

training and prediction. (a) Schematic of two SRS imaging schemegémtosecond SRS images. The warkof DeepChem

the 3D domain of time, Raman shift, and intensity. Left: hyperspectighining and prediction is showrFigure b.

SRS imaging with linearly chirped pulses. Right: single-frame SRS generate the training set, we applied normalization for

imaging with nonchirped femtosecond pulses. (b) Workf — oo0h image to accommodatentint experimental conditions.
DeepChem training and prediction. The training set consists of pa

of spectrally summed hyperspectral SRS images and their correspé%&l-owm.g the normgllzatlon, we applied image augmente_ltlon,
ing subcellular organelle maps from Phasor-MRF. After trainingtCh @S image rotation and transpose, to generate a training set

DeepChem is capable of predicting subcellular organelle maps badéidh 4000 images, each with ¥2828 pixels. DeepChem is

on a single-frame femtosecond SRS image. MRF: Markov Randégnstructed with repeated dense blocks consisting of several
Field. densely connected convolution blocks. Each convolution block
consists of one convolutional layer followed by a batch
normalization layer and a ReLU activation layer. DeepChem

H 2225 H H H . . . .

Ing, supe(-resolutm’f‘?, cross-modality image fUS?'_Z’”, employs an exponentially decaying learning rate with an Adam
focus correctioff, and transmission correctidriargely in  gptimizer and a batch size of 2. eBént learning rate

the uorescence microscopsid. initialization is applied for each segmentation class. The neural

In this work, we tackle the trade-among spectral npetwork is implemented in Keras framework on a single GPU
specicity, speed, and SNR by learning the correlation betwe@ EFORCE 2080Ti). The detailed architecture can be found
spectral and spatial features to derive chemical maps fronh&igyre SpTest-time augmentation is then applied toward a
high-speed femtosecond SRS image. Giiigciwe deploy a  petter segmentation accuracy as ifefor each image in
customized DNN model, namely, a DenseNet-based neutgh testing set, the prediction ensemble of multiple trans-
network architecturé>* DenseNet has signant advantages formed versions of this image iist calculated using the

over conventional DNNs such as U-Net in computer VisioQetrained network. Accordingly, we get tiz prediction
problems, including semantic segment&t®y.introducing N .
connections between each layer, DenseNet has achieV@gUItY = ECMA = ¥ Ny denotes the probability
advanced performance, such as the alleviation of gradigmp of each instance in the prediction ensembleX and
vanishing and reduction of the number of parameterglenotes the input image for inference.

encouraging feature retfs&Ve term our DenseNet-based Predicted subcellular organelle maps using spectrally
DNN as DeepChem. The pairs of spectrally summed hSR8mMmed hSRS show clear biological details and high structural
images of MIA PaCa-2 cells and the spatially segmentgiinilarity to ground truth imageésdure a). The confusion
subcellular organelle maps are used for training DeepChematrix inFigure B shows good prediction accuracy (high
Then the well-trained network is capable of generatingitensities cluster in the diagonals). Sgedti, DeepChem
subcellular organelle maps using femtosecond SRS imalg&s a 0.787 ;Fscore (denition in section S4Supporting
(Figure b). On the basis of this method, the needed framénformatio) for nuclei segmentation, better than other
number is reduced to one while the chemical selectivity of foaubcellular organelle segmentation methods usiegcence
subcellular components (lipid droplet, endoplasmic reticulurimages (0.7)>* For the other three classes (lipid droplets,
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cellular lipid metabolis.However, the previous method
using single-frame femtosecond SRS was unable to detect
other subcellular organelles simultaneously. A traditional
frame-by-frame SRS imaging system can provide multiple
subcellular organelles simultaneously, but the speed is around
100 times slower than our method. In our experiment, we
imaged live MIA PaCa-2 cells with a temporal resolution of 1.5
s per frame for about 2 min. Then, DeepChem predicted lipid
droplet maps from the collected femtosecond SRS images.
These maps were then analyzed by the particle-tracking plugin
in Image3°® Two sample images are showRiiure a. To

Figure 2. Predicted subcellular organelle maps from spectrally
summed hSRS images and single-frame femtosecond SRS images.
(a) Predicted subcellular organelle maps from spectrally summed
hSRS images. Scale bar: m0 (b) Confusion matrix of subcellular
component classes (d#ion in section S&upporting Informatin

top, normalized by column; bottom, normalized by row. LD, Bkg, ER,
and Cyto are abbreviations for lipid droplet, background, endoplasmic
reticulum, and cytoplasm. (c) Predicted subcellular organelle maps
from single-frame femtosecond SRS images. Scale bar: 10

ER, cytoplasm), our method Fascores of 0.645, 0.805, and

0.789. In addition, our method is greatly siegpland easier

to use compared with networks deploying multiscale branches

with di erent z-depth inputd®* Moreover, compared with

the U-Net DNNs trained on the same data set, DenseNeF—'l ure 3. Lipid droplet tracking in live MIA PaCa-2 cells by

based DeepChem achieves higher segmen_tatlzcm_performa@ osecond SRS and DeepChem. (a) Trajectories of lipid droplets
(section S5 and Figure Stipporting Informatipri® Figure  (solid lines) and contours of the ER regions (dashed green lines).
2c andFigure S&how predicted subcellular organelle mapScale bar: 5m. (b) Quantication of lipid droplet dynamics. The
from femtosecond SRS images including those cell typesets in the right column show corresponding plots in the range 75
(OVCAR-5 and HPDE-6) that never appeared in the training 25 s.
set. It means the neural netwbhlas learnédto provide
reliable results from new input ofedént modalities and quantify the lipid droplets dynamics, we ndetwo
di erent cell types. This result demonstrates the generalizatiparameters: traveled distance (the cumulative position
ability of our method and heralds potential in functional cellisplacement between consecutive frames) and distance to
imaging with high speed and chemical selectivity. In terms thfe origin (the displacement of the current position to the
the speed performance, a hSRS stack(256x 100, FOV origin of the movement). Using the two parameterede
64x 64 nv)takes 110 s, while a single shot femtosecond SRove, less active lipid droplet movement is observed in cells
image with the same size take® 4. This dramatic speed treated with 0.5 mM dithiothreitol (DTT) for 1 Rigure B).
improvement allows real-time imaging of living cells. DTT is a strong reducing agent that can break dowrdeisul

To demonstrate the advantage of our DenseNet-basémnd formation and thus lead to ER stress in mitiutéipid
method over single-frame femtosecond SRS imaging, we shivaplet has been shown as a functional organelle connected as
lipid droplet tracking with paralleled ER label in live MIAto the ER lumen. Thus, our observation implies that the
PaCa-2 cells using high-speed high-sensitivity femtosecamiarged ER lumen is more likely to trap the lipid droplets and
pulses excitation. Previous research has shown the correlalimit their movement. Besides lipid metabolism, DeepChem
between the spatial-temporal dynamics of lipid droplets amdsed femtosecond SRS has the hyperspectral competence to
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Figure 4. Quanti cation of cellular response to DTT in live MIA PaCa-2 cells. (a, b) Large-area femtosecond SRS images from the control and t
DTT treated group. The insets show areas framed with white boxes. Scalmb@&relh lines denote the contour of the ER region predicted.

Red lines denote the cell contour analyzed by C#dP(o, d) Histogram showing the distribution of the normalized ER total intensity and ER
area ratio from the two groupR area ratio = ER ar€all area; normalized ER total inten&®/arex ER intensitZell areaER intensity is

de ned by the averaged SRS signal in the ER region given the linear relationship between SRS signal intensity and the concentration of res
molecules.

address the rising interest in understanding organelrauch more robust segmentation results with high accuracy

interaction and cooperation fromedent aspects, including (section S6Supporting Informatigpn

morphology and functionality. In conclusion, we demonstrated a high-speed multiplex
Another strong desire in biomedical applications is largghemical imaging method by DenseNet-based learning of

scale imaging with single-cell resolution. The strengths of demtosecond SRS images. This method is capable of revealing

method in resolving this need are motion artifacts suppressigpid cellular dynamics, including lipid droplet movement and

and quantitative evaluation of each population. To illustraellular response to DTT, an inducer of ER stress. High speed

these strengths, 400 images<64 m? each) were captured and chemical selectivity provided by this metherd various

in 10 min for both the control and DTT treated group (0.5 Possibilities, and potential applications including large-area

mM DTT, 1 h incubation)igure 4,b). We then quantify the tissue segments imaging and deciphering cell metabolism. An

cellular response by normalized ER total intensity and ER afjimized algorithm may be applied to enable massive parallel
ratio, dened in the caption dfigure 4In the DTT treated visualization of subcellular organelles in the future. On the

. g - basis of rapid developments in both SRS microscopy and deep
group, ER total intensitiziure 4) and ER area rati¢igure learning methods, we foresee a more integrated computational

4c) are both increased compared to the control groupgpg i - : :

S ) ; croscope providing advanced imaging schemes for
indicating an expansion of ER lumen induced by_ DTT. Th% mprehensive understanding of biology and materials.
hyperspectral capability of our method enables this large-scale

high-speed imaging with high SNR displaying great advantage ASSOCIATED CONTENT
over the conventional frame-by-frame SRS imaging system,.|

n . .
contrast to the ow setting where the sample cannot be Supporting Information

: : he Supporting Information is available free of charge at
retrieved, our image cytometry method can perforn:,— ] : :
continuous imaging of the samed of view. Potential https://pubs.acs.org/doi/10.1021/acs.jpclett.0cQ1598

applications for this method include SRS-enabled cell sorting.
We note that in our manuscript, the subcellular components
ER, nucleus, cytoplasm, and lipid droplets candverdiated
on the basis of the intensity of femtosecond SRS images. This
condition implies that machine learning is not magic; it pushes
the limit in one domain by leveraging information in another
domain. Nevertheless, compared to the threshold approach,
machine learning ensurbfggher accuracy through a
sophisticated networkigure S9compares the prediction
results between brightness thresholding and DeepChem,
showing that brightness thresholding based on a simple linear
scheme swers from dierent experimental conditions and cell-

SRS microscope setup, implementing phasor-MRF,
comparison between spectrally summed hyperspectral
SRS and femtosecond SRS, quation of DeepChem

prediction, comparison between subcellular organelle
maps from phasor-MRF andiorescence images,

comparison between DeepChem and U-Net, Deep-
Chem prediction of subcellular organelle maps from
spectrally summed hyperspectral SRS images and
femtosecond SRS images, DeepChem architecture,
confusion matrix of subcellular component classes

(PDH

to-cell variation. The advantage of this DenseNet-based AUTHOR INFORMATION

learning method is that it trains a nonlinear network utilizin@orresponding Author

the information on both the intensity and the morphological Ji-Xin Cheng Department of Biomedical Engineering and
features in the training process, and after training, it outputs Department of Electdc&lomputer Engineering, Boston
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