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Introduction

Individual-specific RL parameters fit to simple choice
tasks have been shown to associate with cognitive
and biological processes.

Can Temporal RL parameters capture phenotypes
of time-dependent stay-or-go choices?

Does inter-individual variation in task-derived RL
parameters show trait-like test-retest reliability?

Experiment

Task: decide how long to continue waiting for a token
Goal: maximize total earnings in a fixed period
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t: elapsed time in a trial
T: when a trial terminates
R: trial-wise payoff
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Results

1. Behavioral findings: participants in the high-persistence
environment waited longer on average, yet individuals differed.

2. Temporal RL fits reproduced variation in learning dynamics
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3. Temporal RL fits
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captured multidimensional individual differences
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Each point represents
descriptive statistics for one
participant.

‘Adaptation” was calculated
as final-minus-initial
persistence level.
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4. Test-retest reliability of model parameters

Source: an independent
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Additional results

1. An R-learning variant behaved similarly to the
Q-learning variant shown here.

2. Similar results were observed in two additional
within-participant data sets.

Future steps & points for discussion

1. To augment the model with a resetting process
at the break between contiguous task blocks.

Source: the independent test-retest online study
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2. To investigate associations between task-derived

model parameters and self-report measures.
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