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ABSTRACT

This paper introduces GCNSplit, a streaming graph partitioning
framework capable of handling unbounded streams with bounded
state requirements. We frame partitioning as a classification prob-
lem and we employ an unsupervised model whose loss function
minimizes edge-cuts. GCNSplit leverages an inductive graph con-
volutional network (GCN) to embed graph characteristics into a
low-dimensional space and assign edges to partitions in an online
manner. We evaluate GCNSplit with real-world graph datasets of
various sizes and domains. Our results demonstrate that GCNSplit
provides high-throughput, top-quality partitioning, and success-
fully leverages data parallelism. It achieves a throughput of 430K
edges/s on a real-world graph of 1.6B edges using a bounded 147KB-
sized model, contrary to the state-of-the-art HDRF algorithm that
requires >116GB in-memory state. With a well-balanced normal-
ized load of 1.01, GCNSplit achieves a replication factor on par with
HDREF, showcasing high partitioning quality while storing three
orders of magnitude smaller partitioning state. Owing to the power
of GCNs, we show that GCNSplit can generalize to entirely unseen
graphs while outperforming the state-of-the-art stream partitioners
in some cases.
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Figure 1: Objectives of graph partitioning and corresponding meth-
ods. GCNSplit uses a cut-minimization loss function to reduce I/0
alongside a load balance constraint. At the same time, it uses a
bounded model, not proportional to the ingested stream size.

1 INTRODUCTION

Graph streaming analytics is an emerging application area that
aims to extract knowledge from evolving networks in a timely and
efficient manner [7, 28]. Graph streams are (possibly unbounded)
sequences of timestamped events that represent relationships be-
tween entities: user interactions in social networks, online financial
transactions, driver and user locations in ride-sharing services.
Graph streams are continuously ingested from external, often dis-
tributed, sources and are modeled either as streams of edges or as
vertex streams with associated adjacency lists.

Graph partitioning has always been crucial for data management,
especially since it enables parallel computation on high volumes
of complex data. In the context of graph streaming, online graph
partitioning methods [3, 24, 31, 34, 40] process graph streams and
assign edges or vertices to partitions on-the-fly. To make high-
quality partitioning decisions on streaming graphs, state-of-the-art
algorithms either accumulate growing state or optimize for load
balancing, sacrificing data locality. Existing solutions for online
partitioning fall in one of two extremes, as depicted in Figure 1. On
one end, stateless approaches such as the hash-based partitioners,
achieve almost perfect load balance at the expense of degraded
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Figure 2: GCNSplit overview. The framework consists of (i) an offline unsupervised training module on a graph snapshot or sample and (ii) an
online serving pipeline that ingests a possibly unbounded graph stream and assigns edges to partitions.

partitioning quality. At the other end, stateful methods, such as
HDREF [24], yield low IO cost and good balance but have O(|V|) state
complexity or higher, where |V| is the number of unique vertices.

While maintaining mutable partitioning state incurs a negli-
gible performance overhead for static and slow graph streams,
it poses a major bottleneck in modern applications dealing with
high-throughput and possibly unbounded graph streams. In such a
setting, the size of accumulated state can quickly exceed available
memory causing lookups to hit secondary storage and slowing
down updates. The reliance on mutable state further hinders the
ability to parallelize the partitioning logic, as that would require
expensive synchronization and locking.

This paper addresses the challenge of providing high-quality par-
titioning for high-rate, possibly unbounded graph streams, without
the need to maintain growing mutable state. We propose GCNSplit,
a streaming graph partitioning framework, that replaces the par-
titioning state with an immutable, fixed-size model, encoding the
graph stream’s characteristics. GCNSplit targets attributed graphs
encountered in several domains, including social networks, IoT
applications, natural and medical sciences, citation networks, and
online transaction systems [6, 12, 23, 25, 39]. Figure 2 summarizes
its design and application setting. To achieve low cuts and load bal-
ance, GCNSplit leverages inductive Graph Convolutional Networks
(GCNis) to learn vertex embeddings during an offline training phase.
It then augments this embedding model with load constraints and
assignment heuristics to support online partitioning decisions on
continuous streams of edges. GCNSplit achieves high throughput by
employing multiple parallel partitioners capable of independently
assigning edges to partitions without synchronization. Further, by
adopting inductive graph representation learning, GCNSplit’s mod-
els can be used to partition entirely unseen graph streams without
retraining.

We summarize our contributions as follows:

e We propose the first application of inductive GCNs to the
streaming graph partitioning problem.

e We provide a solution to online graph partitioning with
bounded state that offers truly scalable execution and good
quality, which is on par with state-of-the-art algorithms.

e We implement GCNSplit, an extensible framework that uni-
fies the offline unsupervised training pipeline with the con-
tinuous partitioning serving one.

e We demonstrate that GCN-based partitioning can often gen-
eralize to unseen graphs. GCNSplit’s models can be used to
partition not just unseen edges of the input graph but also
entirely unseen graphs of similar structure and matching
feature set dimensions.

We extensively evaluate the performance and partitioning qual-
ity of GCNSplit on various real-world and synthetic graphs, in-
cluding the largest publicly available graph stream with features
(cf. Section 6). Our results show that GCNSplit exhibits good parti-
tioning quality on a par with state-of-the-art streaming partition-
ing algorithms, while maintaining well-balanced partitions. Using
a real-world graph of 1.6 billion edges (Papers100M), GCNSplit
achieves a throughput of 420K edges/s and scales linearly with the
number of parallel processes. Compared with the best performing
state-of-the-art algorithm which requires at least 116GB of state
for the same task, GCNSplit has radically lower and constant state
requirements of up to 385KB. Finally, GCNSplit generalizes well
and can effectively partition unseen graphs.

We have released the code of GCNSplit as open-source and made
models and experiments publicly available [2].

2 PRELIMINARIES

In this section, we revisit the problem of streaming graph partition-
ing and highlight recent advances in leveraging graph representa-
tion learning for partitioning static graphs. Table 1 summarizes the
notation we use in the rest of the paper.
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Table 1: Notation Table

Symbol Description

m=|E| number of edges in the graph

n=|V| number of vertices in the graph
k number of partitions, k € N
L loss function
Zy an embedding vector of vertex v
Y assignment probability vector
D degree vector of vertices

N(v) set of neighbors of vertex v

Sp set of vertices in partition p

w! embedding model matrices (I layers)

2.1 Streaming Graph Partitioning

Balanced graph partitioning is an instance of the graph partitioning
problem that tries to optimize for both load balance and minimum
cuts and it is a NP-hard problem [4]. Offline graph partitioning meth-
ods have access to the entire graph and iteratively refine partitions
by re-assigning nodes and edges in each step. Techniques range
from exact and slow to approximate and fast (heuristics) [5, 13, 36].
Streaming graph partitioning methods, on the other hand, ingest a
graph as a stream of vertices or edges and partition it in an online
fashion [3, 30, 31, 33, 34]. As edges and vertices arrive continuously,
online partitioners cannot iterate over the entire graph and need to
make assignment decisions on-the-fly. Thus, they rely on heuristics
and state, so that the partitioning function can access the history
of earlier assignment decisions.

Vertex partitioning algorithms ingest streams of vertices and as-
sign them to partitions one after the other. As a result, edges might
end up connecting vertices assigned to different partitions. The set
of edges spanning multiple partitions is called the edge-cut. The goal
of vertex-centric methods is to minimize the edge-cut. Non-trivial
online vertex partitioning algorithms require a priori knowledge
of the entire graph. This requirement makes such algorithms im-
practical for graph streams which are gradually revealed to the
partitioner during ingestion [3].

Edge partitioning methods assign edges to partitions [9, 24, 40]. In
that case, it may happen that edges having a common endpoint end
up in separate partitions. As a result, vertices are copied and repli-
cated across partitions. The number of replicated vertices is called
the vertex-cut. The higher the vertex-cut the larger the communica-
tion overhead of computations performed on the partitioned graph.
Thus, edge partitioning algorithms aim to minimize the number of
replicated vertices.

The edge-centric stream representation of a massive graph is
more convenient to process than its vertex-centric counterpart and
does not require prior knowledge of graph properties. However,
non-trivial online partitioning methods suffer from growing state
size that needs to be kept in memory to make assignment decisions.
Whenever the partitioning algorithm processes a new vertex it
needs to update the current state. Such O(|V|) memory complexity
becomes a bottleneck for modern distributed stream processing
systems as it incurs a large number of I/O operations. Thus, neither
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existing edge-centric partitioning algorithms nor vertex-centric
ones can efficiently handle truly unbounded data.

2.2 Graph Representation Learning

Recent breakthroughs in graph representation learning, such as
GraphSAGE [12], have enabled effective dimensionality reduction
for large graphs and have shown promising predictive performance
capabilities. The essence of inductive Graph Convolutional Net-
works (GCN) is to exploit features associated with vertices and
edges as well as the graph structure to build convolutional neural
networks that summarize the graph. Graph representation learning
methods automatically learn to encode graph structure and proper-
ties into d—dimensional vectors. Such low-dimensional embeddings
can be then processed by downstream machine learning tasks. Em-
beddings can encode nodes, edges, subgraphs or the entire graph.
Node embedding techniques encode graph vertices so that certain
node similarities are preserved in the embedding space. As such,
their objective function aligns with that of partitioning algorithms,
which aim to assign similar nodes to the same partition.

Due to the streaming nature of our problem, we apply inductive
graph representation learning based on GCNs. This approach is
capable of successful generalization to instances unseen during
the training. Convolutional inductive methods represent nodes as
functions of their neighborhood while utilizing node features or
attributes. Given some neighborhood of the unseen node, such en-
coders can produce a meaningful embedding, making them scalable
and amenable to parallelism.

GraphSAGE. We briefly describe GraphSAGE [12], the inductive
GCN that lies at the core of GCNSplit. GraphSAGE has been suc-
cessfully applied in various real-world scenarios [41] and relies
on fixed-sized uniform neighborhood sampling. Restricting the
neighbourhood size makes it practical for large and skewed graphs.
GraphSAGE and similar GCN frameworks rely on the notion of
neighborhood aggregation. Consider the generation of an embed-
ding vector z, for an arbitrary node v. z, is initialized with the
raw input features of v and subsequently, its embedding is refined
in an iterative manner as follows: at every iteration, v gathers the
embeddings of a subset of its neighbors and aggregates them into a
single vector. The aggregated vector is then combined with the em-
bedding vector z, which is updated by going through an arbitrary
differentiable function, such as one defined by a fully connected
neural network. As iterations proceed, the embeddings capture
topological and feature information from distant neighbors [12].

3 DESIGN OF GCNSPLIT

We target the problem of balanced streaming graph partitioning.
Formally, a graph stream is defined as a sequence of edges repre-
sented as V XV tuples (us, vg), where each vertex includes its id and
feature vector F of fixed dimensions, as such i.e., v = (id, F). We
further assume a fixed number of partitions k € N. The problem
of balanced streaming graph partitioning is to define a single-pass
mapping function VXV — {1,2,...,k} over the input edge stream
that minimizes 1) the normalized load and 2) the replication factor
(Sec. 5.4), while keeping 3) space complexity independent of the size
of the input stream.
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Figure 3: GCNSplit’s online partitioning pipeline. For an edge with end vertices a and b, the embedding module produces the embeddings z, and
zp, respectively. Each vector is then passed to the Partitioning Module that outputs a Y; vector of probabilities, corresponding to the likelihood
of assigning vertex i to each target partition. The example demonstrates the two available assignment heuristics. With a HighestAvailable
policy a sorted vector is first created out of Y, and Y;. Then, each partition is tested against the load constraints and the first partition that
does not violate the constraint is selected for assignment (orange). Similarly, with the HighestOrLeastLoaded strategy only the partitions with
the top-most probabilities are first selected across Y, and Y. In this example, both of these (magenta and cyan) violate the load constraint so

the least loaded partition is chosen for assignment (green).

To solve this problem, we present GCNSplit, a GCN-based par-
titioning framework for unbounded graph streams with bounded
state. In the rest of this section, we explain how GCNSplit’s de-
sign makes GCNs applicable to the streaming setting. We provide
an overview of GCNSplit’s functionality and architecture in Sec-
tion 3.1. Section 3.2 describes how the offline training phase gener-
ates fixed-size models that can be used for partitioning unbounded
edge streams. Finally, we discuss GCNSplit’s online operation and
heuristics in Section 3.3.

3.1 Framework Overview

To accommodate the edge streaming setting, GCNSplit involves two
core modules in taking online partitioning decisions: a (1) graph
embedding module and (2) graph partitioning module, as shown
in Figure 3. The Graph Embedding Module is responsible for the
continuous encoding of the non-euclidean input graph stream into
vectors of defined size in latent space. Whereas, the Partitioning
Module consists of an ML-based partitioning algorithm that assigns
incoming edges to partitions. The partitioning module function
aims to achieve good partitioning quality, while taking into account
load balancing constraints via its assignment heuristics.

Both models used in the embedding and partitioning of the graph
stream are trained jointly offline on a sample of the graph stream
using the same objective function. The two models are trained on
unlabeled data and have the goal of building embedding representa-
tions and an online partitioning model which minimizes cuts while
not overloading the partitions. It is worth mentioning that in cer-
tain scenarios, the node embedding and partitioning modules could
potentially be trained separately or replaced without the need to
adjust other parts of the framework. At the final partition selection
step, GCNSplit uses a set of heuristics to incorporate load metrics
known at runtime and ensure load constraints are respected during
unbounded executions.

3.1.1 Graph Embedding Module: The graph embedding module
uses GraphSAGE to encode input edges and their corresponding

vertices into numerical, vector representations. It is therefore im-
portant that the input graph stream is annotated with features for
our scheme to work efficiently. GCNSplit uses an element-wise max
function to aggregate vertices’ vector representations and vector
concatenation as the combine function. The trainable parameters of
the node embedding generation module include the W! matrices of
all I layers of the GraphSAGE model. The dimension of the matrix
from the first layer of the network (W) is dependent on the size
of the node features. The sizes of the matrices from the following
layers are equal to the embedding size, which is controlled by a
hyperparameter. Thus, the number of the trainable parameters is
solely tied to the dimensions of the feature set and the chosen em-
bedding size, while being independent of the size and scale of the
data served. The last layer of the embedding model yields a vector
representing a particular vertex in a latent space that is passed as an
input to the partitioning module. The list of parameters, including
the number of network layers and the embedding size can be found
in the project repository [2].

3.1.2  Partitioning Module: The partitioning module converts graph
input data from its d-dimensional vector representation in the em-
bedding latent space to vectors Y € Rk where Y; j corresponds
to the probability that a corresponding vertex v; belongs to the
partition j € {1,2,---,k}; n is the number of items and k is the
number of all partitions. This module is implemented as a fully
connected neural network with a softmax function at its end that
turns the d-dimensional vector into a probability distribution over
the k partitions.

The trainable parameters of the partitioning module are the
weights of the connections between neurons of consecutive layers
in the neural network. The number of parameters depends on the
number of layers, the vector size, and the number of partitions. The
first layer of the partitioning network consumes the output of the
embedding module, hence, the number of neurons in that layer is
equal to the vector length. The number of neurons in the last layer
of the network is equal to the number of partitions k.
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Algorithm 1: Unsupervised Model Training

Data: dataset X € R™, number of partitions k, embedding
size d, batch size b

1 while Loss not converged (eq 7) do

2 b = sample(X), D « degree matrix, A « adjacency

matrix

/* Generate embedding by passing the feature
vectors through the GraphSAGE network */

3 21, .5 2p3 Zi € R GraphSAGE(vy, ..., vp; 0; € R™)

/* Obtain assignment probabilities by passing
the embeddings through the partitioning
neural network (PNN) */

4 | Y PNN(z,..2p), Y€eRK

/* Minimize the expected normalized cuts
(eq 7) x/

5 | T=YID,L « update(Y,T,A)

¢ end

3.2 Model Training

GCNSplit allows training a partitioning model offline on unlabeled
data. A loss function drives the model training towards edge-cut
minimization. GCNSplit generates both embedding and partitioning
networks in the training process (loss function re-use), while not
restricting the training and application graphs to be of the same
origin, as long as they have matching feature sets.

The main challenge for unsupervised learning is that there is no
indication of what a good partition assignment can be in any given
unlabeled graph data. The training function itself is responsible for
automatically discovering the partition assignments that provide
good cuts and balance. Our proposed model extends the edge-cut
based loss function introduced in GAP [17, 18]. While GAP’s loss
function is only applicable to static edge-cut partitioning, GCN-
Split is capable of performing vertex-cut partitioning over possibly
unbounded streams. In this section we revisit the formulation of
GAP’s loss function and further discuss the proposed additions.

A naive formulation of a cut-based loss function can easily lead
to unbalanced partitions as it favors disconnecting small sets of iso-
lated nodes. To avoid this situation, GAP introduces a normalizing
factor to reduce bias. The cut cost is defined as a fraction of the total
edge connections to all nodes, called association [29] or volume [43].
The normalized cut cost for k partitions looks as follows:

k

Ncut(S1,S2, ..., Sk) = Z
p=1

cut(Sp, Sp)

v0l(Sp, V) o

The vo0l(Sp, V) is defined as total edge connections between
nodes in S, and V, which can be represented as e.g., total degree
of nodes that belong to S, in graph G ( dy represents the degree of
node v):

vol(Sy, V) = Z dy @)
vES,

To utilize the normalized cut to train the model, several transfor-
mations have to be applied to Equation 1. The output of the model
is Ye R™_First, we would like to represent the Ncut in terms
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of Y. In the output of the partitioning network Y;, represents the
probability that a node v; belongs to a partition Sp. The probability
that the node v; does not belong to the partition S, is equal to
1 - Yp. Therefore, the expected value of a cut looks as follows:

k
D D Nig1-Y) )

v;€Sp; v; €N (1;) =1

E[cut(Sp, S},)] =

with N (v;) being the sampled neighborhood of v;. Using an adja-
cency matrix notation (A), Equation 3 can be rewritten as follows:

E[cut(Sp, Sp)] = Z Y.,(1-Y. )T 0A )

reduce
sum

Equations 3 and 4 are equivalent, as element-wise multiplication
with adjacency matrix (©A) ensures, that only the nodes from the
sampled neighborhood are considered. The result of this product is
a square matrix with side length equal to the number of nodes in
the graph. The final value is a sum over the elements of that matrix.

Even though we managed to incorporate Y into the cut equation
we still need the normalizing factor. From Equation 2 we know
that we need to utilize nodes’ degrees in order to conduct the
normalization. Thus, let us assume that D is a column vector where
each value i corresponds to node v;’s degree. Using the product of
matrices Y and D we can compute the expected value of volume
for each partition as E[vol(Sp, V)] = I, where I' = YD and Ipis
the pth element in the vector I'.

According to Equation 1 we have both parts of the normalized
cut - the minimum cut and the volume. Combining both of them
results in an equation as follows (@ is an element-wise division) :

E[Ncut(Sy, Sz, .., Sg)] = Z YoD)1-V) oA (5

reduce
sum

Minimizing the loss function of Equation 5 could lead to unbal-
anced partitions and even assign all nodes to the same partition. To
address this issue, GAP introduces a balancing term, which acts as
regularization. Given |V| nodes and k partitions, perfectly-balanced
partitions would contain exactly % nodes. The sums of columns
of Y correspond to the expected number of nodes in each partition.
The equation which considers the perfectly-balanced partition size

looks as follows:

k n
2 Yip-P= Y Y-y (©)
p=1 i=1

reduce
sum

We get the following loss function by combining the normalized
load (Equation 5) and the equally loaded partition error (Equation 6).
In order to avoid outweighing one part of the loss over the other, we
extended GAP’s loss function by introducing a set of configurable
coeflicients (a, §) that are used to regulate the importance of: 1. a
normalized cut and 2. cross-partition balance, as it can be seen in
Equation 7.

L=a Y (YoD)(1-VToa+p Y (Ty- %)2 @)
reduce reduce
sum sum
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The model and unsupervised loss function we have described
so far can be used to partition static graphs by assigning nodes to
partitions. However, our use-case targets edge-partitioning. As ex-
plained in Section 3.3, we derive edge assignments by applying this
model to the endpoint vertices of every edge in a stream, thus, mak-
ing this model applicable to edge streams. In addition, we introduce
load constraints to ensure good load balance across partitions.

In Algorithm 1, we summarize the unsupervised training execu-
tion logic which is based on mini-batch gradient descent for fast
convergence. The resulting embedding module (GraphSAGE) gener-
ates a single node embedding while the partitioning network (PNN
in Algorithm 1) is used to generate the assignment probabilities
(Algorithm 1 Line 4).

Neighborhood Sampling: The sampling method used on each
step of the mini-batch execution (Algorithm 1 Line 2) is instru-
mental to the model training. Due to the multiplication with the
adjacency matrix, if nodes were sampled arbitrarily, the probability
of choosing non-adjacent nodes would be high. Therefore, for each
vertex within a mini-batch, we also ensure to include its direct
neighborhood in the sample. This way, we update the model effec-
tively without nullifying the normalized cut of the loss function.

Loss Function Re-use: The training module produces two models
using the same loss function: an embedding and a partitioning
network. These can potentially be trained separately depending on
the encoder used. However, we chose to execute the training of the
two components jointly for simplicity and performance, by using
the same loss function. As a result, we could exploit GraphSAGE’s
ability to optimize its parameters based on a differentiable loss
function.

Training Graph: Training in GCNSplit is executed offline on a
snapshot or sample of a streaming graph. The training data is
extracted using a fixed-size window or snapshot of the graph stream
but it can also be a random sample. Furthermore, the training data
does not need to come from the same origin graph that is partitioned.
An entirely different graph can also be used for training as long as it
shares a similar feature set with the target graph. In Section 3.4 we
provide further insights on the generalization power of GCNSplit
to unseen graphs.

3.3 Model Serving

Enforcing load constraints is a critical extension we made to GAP’s
model. As we show in Section 6.1, GAP’s loss function leads to
50-226% higher normalized load (load imbalance) compared to GC-
NSplit when partitioning the same graph. To ensure that all parti-
tions stay within limits during continuous inference, we regulate
their sizes using assignment heuristics.

3.3.1 Assignment heuristics. We devise two heuristics to parti-
tion the edge stream using the models, HighestOrLeastLoaded and
HighestAuvailable. Figure 3 provides an example that shows how
the two methods are applied.

HighestOrLeastLoaded. The HighestOrLeastLoaded heuristic
first tries to assign an edge to the partition with highest assignment
probability of its endpoint vertices. For each endpoint vertex, we
retrieve the partition index with the highest assignment probability
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Algorithm 2: Model Serving with Heuristic

Data: training graph G, vertices v1, v2, number of elements
in partitions Sy, Sy, ..., Sk, maximum load M
Result: partition ID i

-

appendEdge (G, v1,02)
/* getting embeddings *x/
z1 = GraphSAGE(v1);
zZy = GraphSAGE(vg);

)

©w

/* getting assignment probabilities */
4 Y1 = PNN(Z]);
5 Yo = PNN(z2);

=N

removeEdge(G, v1,v2)
i = applyHeuristic(Y1, Yz, S, M)
return i

N}

o

and try to assign the edge to it. That is, given two vector probabili-
ties Y1 and Y2 produced by the partitioning module, the heuristic
retrieves the partition index with the highest assignment proba-
bility for each endpoint p; = argmax(Y1) and py = argmax(Y2). It
first tries to assign the edge to partition p, where p = max(p1, p2).
If the assignment exceeds the maximum load, we try assigning the
edge to the highest ranked partition of the other endpoint vertex.
If this assignment exceeds the load constraint again, we assign the
edge to the currently least loaded partition.

HighestAvailable. The second heuristic, HighestAvailable, han-
dles the maximum load constraint differently. First, given the edge
endpoints v1 and vy, the corresponding assignment probabilities Y1
and Y; are merged into a list of partition indices Y, which is sorted
in descending order. Then, we iterate through Y, until we find the
first partition which can accept the new edge without exceeding
the load constraint.

3.3.2 Inference. In online partitioning, edges are processed one-
by-one, or window-by-window, where a window is a group of
consecutive edges. Thus, every edge assignment is done indepen-
dently of other assignments. In Algorithm 2, we show the steps of
the model serving process for the unsupervised-trained model. The
model application scheme of GCNSplit receives unbounded edge
streams and partitions them by first converting their counterparts
(vertices) into latent space vectors (Algorithm 2 Lines 2-3) and then
feeding them into the partitioning network (Algorithm 2 Lines 4-5).
Applying GraphSAGE to vertices corresponding to newly added
edges requires retrieving the nodes’ neighbourhoods. However,
GCNSplit operates on a possibly unbounded stream of edges, where
the evolving graph may not fit in main memory. Thus, we rely on
the training graph to retrieve information for the new vertices. Each
new edge is appended to the in-memory training graph at inference
time (Algorithm 2 Line 1). Then, GraphSAGE uses this graph to re-
trieve the neighbourhood information of the vertices and generate
embeddings. After the partitioning of the edge is completed, the
ingested edge is removed from the in-memory training graph to
ensure the state size remains constant over time (Algorithm 2 Line
6). As a result, the embedding network is capable of generating
more informative embeddings, since it has more information about
the node’s neighborhood, rather than just the attributes of the edge
endpoints. Then, the inference is performed on the corresponding
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assignment probabilities of the endpoint vertices. These probabili-
ties are generated from the partitioning network which takes two
separate embeddings of the endpoint vertices as input and pro-
duces two corresponding assignment probability vectors. Lastly,
the chosen assignment heuristic assigns the edge to a partition (Al-
gorithm 2 Line 7). In Figure 3, we summarize the partitioning logic
in an end-to-end example of model application from the ingestion
of an edge to its final assignment.

3.4 Partitioning Quality and Applicability

Like any ML-driven application, GCNSplit’s effectiveness depends
on the quality of the training data and the characteristics of the
examples it will be applied on. The graph embedding process is
tuned so that similar vertices are represented by vectors that are
close to each other in the embedding space. Similarity refers to the
structural position of nodes in the graph, as well as the statistical
similarity of their associated features. As a result, we expect GCN-
Split to be particularly effective on graph streams whose structural
characteristics and feature distribution remain relatively stable over
time. Nevertheless, if GCNSplit is applied on a graph stream with
major concept drift, it will—in the worst case—behave like hash
partitioning. The partitioning classifier will assign vertices to parti-
tions at random, yet it will still be guaranteed to produce balanced
partitions, thanks to the enforcement of the load balance constraint.
We empirically verify this claim in Section 6.1. The underlying
assumption of GCNSplit is that the distribution of the data does
not shift drastically over time. Otherwise, GCNSplit could either (1)
integrate online learning techniques that let the model adapt over
time [22, 37] or (2) resort to full model re-training.

With regards to generalization, GCNSplit is applicable to any
unseen graph with the same feature set as the graph used for model
training. As in the case of partitioning unseen vertices of the same
graph, high structural and feature similarity between the target
and training graphs is instrumental to achieving high partitioning
quality. Our evaluation results (cf. Sec. 6.3) indicate that a richer
set of features leads to better generalization. However, we believe
this issue requires a further investigation that is beyond the scope
of this paper.

4 IMPLEMENTATION

We now briefly outline the implementation of the GCNSplit frame-
work. Training is a batch process that takes place offline, before
partitioning. The user needs to provide a training graph. Parti-
tioning is an online process that ingests a graph stream either
edge-by-edge or in a micro-batch fashion. The ingestion window
size is configurable. In addition, the user needs to set the number
of target partitions and select the heuristic to use.

Model implementation. We implement our GCN-based parti-
tioning models using PyTorch. Our partitioning models consist of
two components: 1) the GCN component, which generates node
embeddings of the incoming graph stream using GraphSAGE and
2) the partitioning component, which generates a probability vec-
tor for assigning the incoming edges to given partitions based on
the previously generated embeddings using a 3-layered neural net-
work. We adapted the GraphSAGE implementation from an existing
code-base [1]. Both the GraphSAGE network and the partitioning
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network are built using PyTorch building blocks that provide sup-
port for implementing neural networks. Furthermore, PyTorch’s
strong support for GPU makes operations such as matrix and vector
multiplication fast for our neural network-based models.

Parallel model serving. Since models are immutable, GCNSplit
can leverage data parallelism to allow for scalability and sustain
high-throughput streams. In contrast to stateful algorithms like
HDRF, GCNSplit does not need to remember past partitioning deci-
sions and partitioner processes can operate independently of each
other. The serving pipeline of GCNSplit is implemented as a set of
processes that communicate via queues. At the top of the pipeline,
a stream producer process ingests edge streams from a streaming
source and pushes them into an ingestion queue. Next, a set of
parallel stream consumer processes pull edges from the queue and
invoke the partitioning method on them, going through the steps
shown in Figure 3. Partitioning decisions are then written into
an output queue that can be consumed by a downstream graph
streaming application. These partitioning decisions are based on
load values that are kept local by each partitioning process to ensure
that the load does not exceed the set load limit. To implement the
multi-process system and inter-process communication we utilized
the torch.multiprocessing package, which is a wrapper around the
Python’s multiprocessing package optimized towards working with
torch.Tensor data structure. In order to ensure equal distribution
of computing power between the processes running on the same
machine, we limit each process to using a single core.

State size configuration. Stateful streaming graph partitioning
algorithms like HDRF keep partial vertex degrees and the previous
assignments of the processed nodes so far as in-memory state. This
state grows as more distinct vertices appear in the input stream.
Instead, GCNSplit keeps a constant state in memory which depends
only on the size of the machine learning model it produced during
training. The model size depends on the number of training parame-
ters (which depend on the number of layers in the model’s network),
the embedding size, and most importantly on the dimensions of the
feature set. A dataset with a rich feature set will have a model size
larger than that of another dataset with a less rich feature set. In all
of our experiments, we found that effective models are no larger
than a couple of MBs, and in most cases, they took only a few KBs
of space in memory.

5 EVALUATION METHODOLOGY

We evaluate GCNSplit’s efficiency, scalability, and partitioning qual-
ity in various scenarios. Before presenting the results, we first
describe our experimental setup and evaluation methodology in
this section. We present the datasets and baseline algorithms we
use for our experiments and the partitioning quality evaluation
metrics. The configuration parameters used during model training
can be found in the Appendix [2].

5.1 Experimental Setup

We trained our models using an on-premises physical machine
consisting of a Nvidia RTX 2070 Super GPU with 8GB of internal
memory. We served the models using a machine comprising of an
AMD Ryzen Threadripper 2920X 12-Core processor with 128GB
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Table 2: Graph datasets used for evaluation

Dataset ‘ Nodes ‘ Edges ‘ No. of features
Twitch DE 9.4K 153K 2.5K
Twitch PTBR 1.9K 31K 2.5K
Twitch ENGB 7.1K 35K 2.5K
Twitch RU 43K 37K 2.5K
Twitch ES 4.6K 59K 2.5K
Twitch FR 6.5K | 112K 2.5K
Deezer RO 41K | 125K 84
Deezer HU 47K 222K 84
Deezer HR 54K | 498K 84
Bitcoin 203K 234K 165
Reddit 230K 5.9M 602
Papers100M 110M 1.6B 128
Synthetic 930M 1.3B 64

RAM. All modules of the system are implemented using Python 3.8.
We used Pandas 1.0.2 [20] to read edges from CSV files and NumPy
1.16.2 [19] to process arrays containing the node’s features. We
used PyTorch 1.4 [21].

5.2 Datasets

Table 2 shows the characteristics of the datasets we use to evaluate
GCNSplit, ordered by their number of edges. GCNSplit expects an
input graph with associated features, as well as timestamps. Of
those publicly available, we have selected graphs from different
domains to evaluate partitioning quality and of various sizes to
verify that the quality of partitioning does not degrade for large
graphs. We have also chosen graphs with different feature sets to
study how the state size changes.

Twitch: The Twitch dataset [26] represents a user-to-user network
of the platform where streamers broadcast their activities live. The
dataset consists of six different networks based on the user’s lan-
guage. The node attributes consist of a user’s location, streaming
habits, and activity information and all networks have the same
feature set representation.

Deezer: The Deezer dataset [27] represents the user’s friendship
network on a music streaming service. The dataset contains three
different networks based on the user’s country and the features
consist of users’ preferred music genres.

Bitcoin: The Bitcoin dataset [39] represents Bitcoin transactions
mapped to real entities. A node in the graph represents a transaction
and edges represent the flow of Bitcoins between these transac-
tions. Node features consists of the timestamp associated with each
transaction, the number of inputs/outputs, transaction fees, and
other transaction information.

Reddit: The Reddit dataset [12] represents a post-to-post network
of Reddit, which is a social media platform where users post and
comment on topics of their interest. Edges represent comments
between posts and node features consist of the post title and the
number of comments.

Papers100M: The Papers100M dataset [38] represents the citation
network between computer science arXiv papers. Each node has a
feature vector of 128 dimensions created by embedding the paper’s
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title and abstract. We order the edges of the dataset using their
publication year to have a time-based set of edges.

Synthetic: To evaluate the performance of GCNSplit in a more
challenging scenario, we generate a large random graph with 1.3B
edges and 930M nodes. The graph has 64 random synthetic features
and we use a subset of 10K edges for model training. We use this
graph to demonstrate that GCNSplit’s throughput and state size is
independent of the graph size.

5.3 Baseline partitioning methods

We compare GCNSplit with two baseline methods that prioritize
different quality metrics: a hash-based stateless method that fa-
vors load balancing and a state-of-the-art stateful method, namely
HDREF [24], that optimizes cuts. Our goal with GCNSplit is to strike
a balance between the two, providing both well-balanced and high-
quality partitions.

5.4 Quality Metrics

We evaluate the quality of partitioning methods with the following

metrics. We use the normalized load(p) on the highest loaded

partition, p = load on the hzgie*skt_lloaded partltzon, where 1 is the

number of edges in the graph and k is the number of partitions.
p ~1 indicates that the load is well-distributed across the parti-
tions. To evaluate partitioning quality, we use the replication
factor(c), which indicates how many vertex copies, i.e., the vertex-
cuts, are created by the partitioning algorithm. It is defined as

T .
— Total number of vertex COPLES The lower the o, the better the
Total number of vertices

partitioning quality.

5.5 Model Parameters

In our experiments, we trained models using different configu-
rations for each dataset. The Appendix [2] contains all training
configurations. The training sets are created based on dataset’s
granularity that includes years, epochs and timestamps etc. For
example, the Reddit dataset models were trained on the first 10,000
edges based on timestamp order and Bitcoin models were trained
on the first 9,164 edges based on the first dataset epoch.

All models used the Adam optimizer [14] with a learning rate
equal to 0.0001. The embedding size is 64. The number of layers
of the embedding network is 2. The number of layers in the parti-
tioning network is 3 and the number of neurons in a hidden layer
of the partitioning network is 64. The maximum load parameter
is set to 1.01, which means that the ratio between the number of
edges in the highest loaded partition and the ideal (%) partition
was always below 1.01. Certainly, this setting is different for experi-
ments regarding the trade-off between the maximum load value and
the replication factor. Finally, we set the A parameter of the HDRF
algorithm to 1 and € = 107>, based on its default configuration.

6 EVALUATION RESULTS

We organize the evaluation section in the following three parts. First,
we evaluate partitioning quality and show that GCNSplit is on par
with HDRF in terms of replication factor, while it maintains well-
balanced partitions (Sec. 6.1.). Second, we present performance
results that demonstrate how GCNSplit provides high-throughput
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Figure 5: Reddit (p = 16). Figure 6: Reddit (k = 3).

partitioning and scales with the number of parallel processes while
having small and constant state requirements (Sec. 6.2.). Third, we
evaluate the model generalization and demonstrate that GCNSplit
not only produces high-quality partitions for unseen graphs but
also outperforms HDRF in multiple instances (Sec. 6.3).

6.1 Partitioning Quality

We evaluate GCNSplit’s partitioning quality in terms of replication
factor and load balance and compare it with HDREF, hash partition-
ing, and a baseline approach that uses GAP’s loss function. We
also study how the replication factor is affected by the maximum
load constraint, the number of edges in the graph stream, and the
number of partitions. Finally, we evaluate how the heuristics we
introduce in Section 3.3 affect the replication factor.

Replication factor. We use HDRF, Hash, and GCNSplit to partition
the graphs into 6 partitions. We set the maximum load limit for
GCNSplit to 1.01, effectively forcing the creation of well-balanced
partitions. We measure the replication factor of the resulting parti-
tions and plot the results in Figure 4. GCNSplit outperforms Hash on
all real graphs and exhibits marginally higher ¢ than HDRF on the
Reddit and Bitcoin graphs. The HDRF baseline ran out of memory
before completing the partitioning of Papers100M and Synthetic
graphs. The synthetic graph represents a worst-case scenario for
GCNSplit, having random structure and features, yet, its worst-case
performance falls back to that of hash partitioning (cf. Section 3.4).

Effect of the number of partitions. Next, we evaluate the sen-
sitivity of o to the number of partitions. We partition the Reddit
graph into an increasing number of partitions, using GCNSplit,
HDREF, and Hash, and we measure the replication factor of the re-
sulting partitions. Figure 5 shows that o increases with the number
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The baseline models produce highly unbalanced partitions, greatly
exceeding GCNSplit’s 1.01 load constraint.

of partitions across approaches. Hash produces the highest o value,
while HDRF and GCNSplit perform similarly with the best cut ratio
and lowest .

Effect of the number of edges. We now study how the replication
factor changes over time, as the streaming algorithms partition
continuously arriving edges from the graph stream. We stream the
Reddit graph in timestamp order and fix the number of partitions
to k = 3. We measure the o after certain intervals based on the
x-axis ticks as shown in Figure 6. As expected, o increases with the
number of edges for all algorithms. However, once again, GCNSplit
performs as well as HDRF, producing the lowest number of cuts.

Load balance. In our experiments so far, we set the maximum
load limit constraint to 1.01. We now study how much further
we can improve GCNSplit’s replication factor by increasing the
maximum load constraint to control the normalized load, p. Hash
partitioning exhibits p ~1, while HDRF achieved 1 < p < 1.0314,1in
our experiments, depending on the dataset and number of partitions.
For this experiment, we use the Reddit graph and we set the number
of partitions to k = 3. We measure the effect of changing the
maximum load limit constraint on the replication factor ¢ and plot
the results in Figure 7. Overall, o decreases with an increasing
maximum load limit.

Effect of heuristics. Our experiments so far have used the High-
estOrLeastLoaded heuristic. In this section, we evaluate how this
choice compares with the HighestAvailable heuristic and how both
methods behave on different graphs. Figure 7 plots the replication
factor on the Reddit graph in a streaming scenario where edges
arrive continuously and are assigned to 3 partitions. HighestOr-
LeastLoaded performs consistently better than HighestAvailable
throughout the duration of the experiment.
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Table 3: Partitioning state size (k=6) and training times.

Dataset GCNSplit state ‘ HDREF state ‘ Training (min) ‘
Twitch DE 1.6MB 4.1MB 22
Deezer RO 126KB 5.4MB 38
Bitcoin 166KB 19MB 10
Reddit 385KB 47MB 36
Papers100M 147KB >116GB 233
Synthetic 115KB >116GB 13

Comparison with GAP’s loss function. We now compare GCN-
Split’s partitioning quality to a baseline that represents an adapta-
tion of GAP to the streaming setting. As vanilla GAP is an offline
vertex partitioning method, we cannot directly use it to partition
edge streams. Instead, we incorporate its loss function into our
framework and compare its load balance to that of GCNSplit. Fig-
ure 8 shows the results for the Twitch (T-*), Deezer (D-*), and Reddit
graphs. The GAP baselines exhibit significant imbalance, up to 226%
higher than GCNSplit.

6.2 Partitioning Performance

We evaluate performance in terms of throughput and state size and
compare GCNSplit with HDRF using graphs from Table 2.

Throughput. Any efficient streaming graph partitioning algorithm
needs to be capable of making decisions online, as edges arrive at its
input. A traditional stateful algorithm, like HDRF, makes decisions
by performing state lookups and computing a heuristic to rank
partitions. For GCNSplit, however, the partitioning decision relies
on model inference and entails producing graph embeddings for
both edge endpoints before computing the heuristics. Nonetheless,
as GCNSplit’s state is immutable, we can leverage data parallelism
to increase its throughput by adding partitioner processes.

For this experiment, we partition the 0.2B edges of Papers100M
dataset into k = 6 partitions with HDRF and GCNSplit and measure
the number of edges processed per second. The reason to select
0.2B edges was that HDRF runs out of memory with more edges.
We set GCNSplit’s input window size to 1K edges and increase the
number of parallel partitioner processes from 2 up to 32. Figure 9a
shows how GCNSplit scales with the number of parallel partitioners
while outperforming HDRF with 8 or more processes. GCNSplit’s
throughput peaks at 111K edges/s with 32 processes, while HDRF
cannot scale to more than 70K edges/s. We further executed the
same experiment for the entire Papers100M dataset. In this scenario,
GCNSplit maintained 430K edges/s of average throughput with 32
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processes, excluding disk access costs. In contrast, HDRF ran out
of memory and was therefore unable to complete the task.

Effect of window size. The throughput of streaming applications
largely depends on the input batch size of the streams they process.
We examined GCNSplit’s throughput in respect to window size,
using the Reddit graph with k = 6 partitions and p = 16 processes.
In Figure 9b it is observed that in this setting throughput caps at
1K edge windows, which we adopt as a constant in all experiments.

State size. We further compare GCNSplit and HDRF model state
size for various graphs. Table 3 shows the results for 6 partitions.
As expected, HDRF accumulates much larger state than GCNSplit,
proportional to the size of the graphs. GCNSplit, on the other hand,
has orders of magnitude smaller state requirements, requiring just
115KB for Synthetic (1.3B edges) and 147K B for Papers100M (1.6B
edges) to store the models corresponding to the biggest graphs.

We also observed the state size of the algorithms while ingesting
the edge stream. In the synthetic graph, HDRF’s state would grow
continuously during ingestion and eventually exceed the available
memory before completing the partitioning. Using 32 processes,
GCNSplit could successfully partition the entire graph keeping its
total memory requirements below 11GB, while sustaining 100K
edges/s throughput. When it comes to the Papers100M graph, GCN-
Split achieved an average partitioning throughput of 430K edges/s,
using up to 14GB of memory.

It is noteworthy to discuss the effect of the graph structure on
the partitioning throughput. As detailed in Table 2, the Papers100M
dataset contains 9 orders of magnitude fewer nodes compared to
the highly dense synthetic graph. Combined with the fact that
the datasets are streamed in time windows, the probability of en-
countering duplicate graph nodes in the same window is much
higher in the case of Papers100M than that of the synthetic graph,
therefore, leading to less unique embedding lookups per batch
and higher throughput. Thus, the synthetic graph prescribes a
worst-case throughput performance scenario due to its sparsity and
randomized edge ordering.

Training time. GCNSplit performs training offline on a snapshot
of the streaming graph and re-training is not required when parti-
tioning graphs with the same feature set (c.f. Section 3.2). Table 3
reports the training times for the models we use. We found that
the training performance depends on the snapshot size rather than
the resulting model size. Training the largest model (Reddit) takes
36 minutes on a snapshot of 16K nodes. Training the Papers100M
model takes 6.5x longer for a 62.5x bigger snapshot with 1M nodes.

6.3 Generalization to Unseen Graphs

So far we have shown GCNSplit’s capability of producing high-
quality partitions for unseen nodes of a streaming graph, using a
fixed-size model. Here, we evaluate GCNSplit’s ability to effectively
partition completely unseen graphs. Specifically, we train GCNSplit
on a subset of a graph and then use its model to partition a different
graph stream, albeit with a common feature set.

For this experiment, we use the Twitch and Deezer networks
and set k = 6. We train the models on the complete Twitch-DE
graph and 10K edges of the Deezer-RO graph and use the rest of
the networks for inference. Figure 10 plots the replication factor of
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Figure 10: Generalization: partitioning quality on unseen graphs.

GCNSplit, alongside that of HDRF and Hash. GCNSplit generalizes
well to unseen graphs having matching feature sets and has a low
replication factor across experiments. More importantly, GCNSplit
outperforms HDREF for all but one instance of the Twitch network.
A comparison across graphs also provides an insight into the effect
of the feature set, suggesting that the richer the features the better
the partitioning quality. Recall that Twitch contains 2.5K features,
while Deezer exhibits a mere 83 features per node.

Our observations showcase an important finding. GCNSplit is
capable of producing high-quality partitions for entirely unseen
graphs whose feature set matches that of the training graph. Whereas,
the state of the art algorithms accumulate state tailored to a single
graph and cannot be re-used in other partitioning instances.

7 RELATED WORK

To the best of our knowledge, GCNSplit is the first attempt to
leverage inductive graph representation learning for online par-
titioning. Other than the offline approaches outlined in the GAP
papers [17, 18], we are not aware of closely related work. First, as
GAP requires prior knowledge of the full graph during the training
phase, it cannot be directly used on continuously ingested graph
streams. Further, GAP is a vertex partitioning method and applying
its loss function to edge partitioning leads to high load imbalance
as proven previously in Figure 8. GCNSplit overcomes these lim-
itations by providing (i) offline training on a small graph sample
coupled with continuous and scalable online inference, (ii) two
assignment heuristics that combine vertex embeddings to make
edge assignment decisions and (iii) load constraints to ensure good
load balance across partitions.

Within the space of ML-enabled data management research, our
work resembles that of learned indexes and data structures [8, 15,
16]. GCNSplit relies on learned characteristics of the input data
(the graph) to improve the performance of a data management
task, which in our case is partitioning rather than search, as in
existing work. We now summarize existing work in devising graph
representation learning approaches that can serve as alternatives to
GraphSAGE, as we believe this adjacent area will be instrumental
in future research.

Transductive methods [6, 10, 11, 23, 32] are of little use in the
streaming context, as they can only generate representations for
nodes used during the training phase. Nevertheless, they could be
leveraged in static graph scenarios and when node features are
absent. On the other hand, inductive methods are more suitable for
a streaming setting and numerous methods exist that could replace
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GraphSAGE in GCNSplit. The algorithms differ in the way they
aggregate and sample neighbors, as well as in their approach to gen-
erating and combining representations. With regards to the problem
of partitioning, we believe that graph attention networks [35] and
position-aware graph neural networks (P-GNN) [42] are particu-
larly interesting. The first approach utilizes the attention strategy
to conduct neighborhood aggregation. Trainable parameters are
applied to a node’s neighbors to weight contributions from neigh-
bors differently. In P-GNNs, nodes are represented by their relative
distances to a chosen anchor set, which consists of one or several
randomly chosen nodes acting as reference points for other nodes.

8 CONCLUSION AND FUTURE WORK

We presented GCNSplit, an ML-driven streaming graph partitioning
method that overcomes the problem of increasing state size for
unbounded streams without sacrificing quality. GCNSplit leverages
node features to make partition assignment decisions and benefits
from recent advances in GCNs. GCNSplit can successfully generalize
to unseen nodes and graphs, as long as they bear matching feature
set dimensions.

Further Work. We believe that GCNSplit paves the way for exciting
future work towards fully-dynamic graph streaming frameworks
able to tune their configuration parameters. GCN-based partitioning
can be exploited to facilitate the evolution of distributed graph
query engines and databases with stream ingestion. Furthermore,
the quality of our techniques can be improved via feature analysis
or online learning methods to allow the periodic update of the
model when significant changes are detected (new features and
structural properties). Another interesting direction is exploring
how to dynamically change the number of partitions over time.
Elasticity could be achieved by training with a large number of
virtual partitions. An additional layer could then be used to map
physical partitions to virtual ones without updating the model.
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