

The Effect of APOE Gene SNPs on Brain Tissue Specific Gene Expression

I ILLINOIS

Blessing Ibe^{1,2}; Anastasia Gurinovich, Ph.D³; Paola Sebastiani, Ph.D.³

¹University of Illinois Urbana-Champaign Department of Statistics, ²Boston University Bioinformatics BRITE REU Program Summer 2019, ³Boston University Department of Biostatistics

Introduction and Objective

The gene *Apolipoprotein E* (*APOE*) has been found to be significantly associated with longevity and age-related diseases. The 3 major *APOE* alleles $\varepsilon 2$, $\varepsilon 3$, and $\varepsilon 4$ are derived from genotypic combinations of single nucleotide polymorphisms (SNPs) rs7412 and rs429358. Populations with high frequencies of the $\varepsilon 4$ allele are more susceptible to Alzheimer's disease (AD) and cognitive decline, while the $\varepsilon 2$ allele serves as a neuroprotective factor. The *APOE* gene, however, may have other significant undiscovered effects on age-associated diseases through its interaction with other genes.

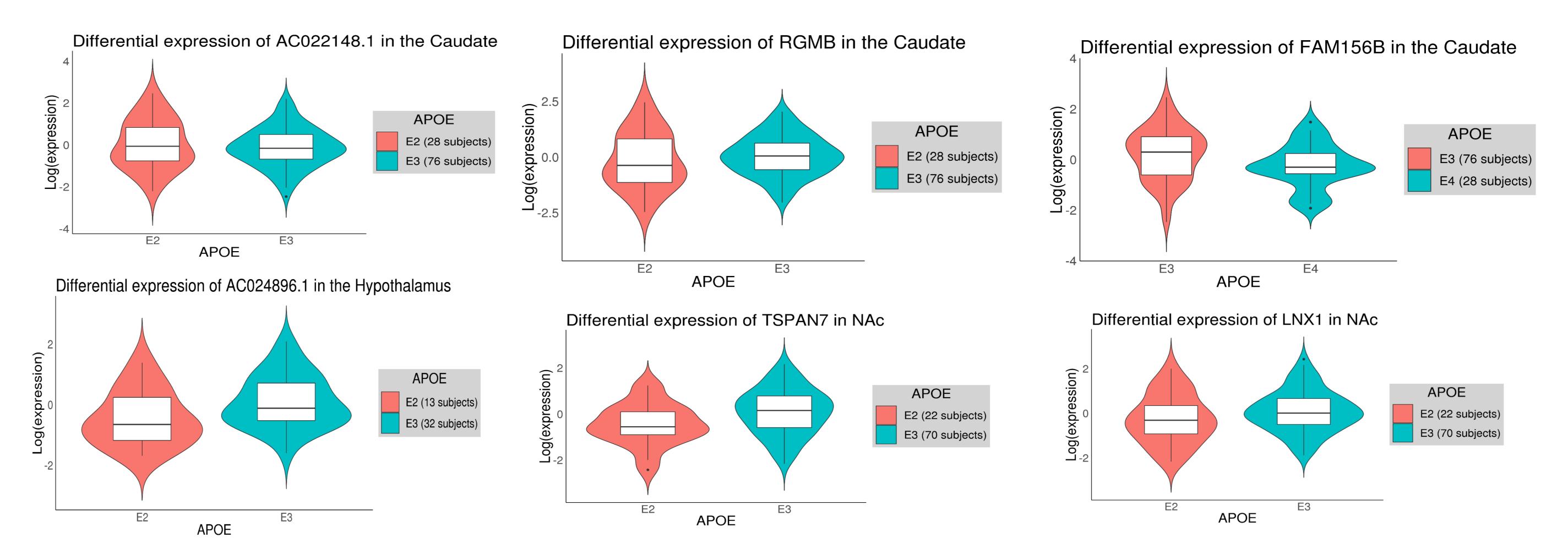
In this project, we investigated the effect of *APOE* alleles on brain tissue-specific gene expression in hopes of finding highly associated genes that may modify AD risk by interaction. We chose to investigate brain tissues because of the previously found link between *APOE* and AD.

Methods

- 1. We used normalized RNA-seq expression data from 13 different brain tissues, including: the Amygdala, Anterior Cingulate Cortex, Caudate, Cerebellar Hemisphere, Cerebellum, Cortex, Frontal Cortex, Hippocampus, Substantia Nigra, Hypothalamus, Nucleus Accumbens, Putamen, and Spinal Cord.
- 2. The data were obtained from the v7 release of the Genotype-Tissue Expression (GTEx) portal database, representing 80 to 154 subjects—depending on the brain tissue site. APOE genotype data were also available for all subjects.
- 3. APOE genotypes were coded using the following schema.

	APOE S	NPS	APOE SNP combinations					
rs7412	rs429358	APOE allele		rs429358				
T.		4	rs7412	TT	TC	CC		
1	C	$\varepsilon 1$	TT	$\varepsilon 2\varepsilon 2 \rightarrow \varepsilon 2$				
Т	Т	$\varepsilon 2$	1 1	8484-784	•	•		
	T		TC	$\varepsilon 2\varepsilon 3 \rightarrow \varepsilon 2$	$\varepsilon 2\varepsilon 4 \rightarrow \varepsilon 4$			
C	T	$\varepsilon 3$						
C	\mathbf{C}	ε4	CC	$\varepsilon 3\varepsilon 3 \rightarrow \varepsilon 3$	$\varepsilon 3\varepsilon 4 \rightarrow \varepsilon 4$	$\varepsilon 4 \varepsilon 4 \rightarrow \varepsilon 4$		

- 3. For each genotype, we computed mean gene expression and log fold change values setting our reference level as $\varepsilon 3$.
- 4. Genes with log(fold change) $<\pm 1.5$ were removed from the data in order to remove outliers
- 5. With the homozygous $\varepsilon 3$ allele as a reference factor, we fit the following linear regression model using *APOE* alleles and 20 GTEx-provided covariates (such as gender) as predictors for gene expression in brain tissue.


$$Log(expression) = \beta_0 + \beta_1 * (\varepsilon 2 - \varepsilon 3) + \beta_2 * (\varepsilon 4 - \varepsilon 3) + \beta_3 * (Covariate_1) + \dots + \beta_{22} * (Covariate_{20})$$

Results

Tissue-specific associations between APOE genotype and genes (FDR 10% adjusted) are shown below. Significant results were only found in 3 tissues

Tissue	Gene	Genotype	Estimate	Std Error	t-statistic	adj. p-value
	AC022148.1	ε2 v. ε3	0.51	0.11	4.7	0.09
Caudate Nucleus	RGMB	ε2 v. ε3	-0.49	0.10	-4.7	0.09
	FAM156B	ε4 v. ε3	-0.71	0.14	-4.9	0.07
Hypothalamus	AC024896.1	ε2 v. ε3	-1.0	0.20	-5.1	0.06
Nucleus Accumbens	TSPAN7	ε2 v. ε3	-0.47	0.09	-5.1	0.05
1 (deledo 1 lecalifocilo	LNX1	ε2 v. ε3	-0.35	0.07	-4.8	0.06

Gene	Functionality
AC022148	Long non-coding RNA
RGMB	Plays negative roles in breast cancer
FAM156B	Associated with X-linked Intellectual disability
AC024896.1	Long non-coding RNA
TSPAN7	 Associated with X-linked intellectual disability In lung cancer, associated tumor size, and poor prognosis Plays role in synapse development and cognition
LNX1	 Contributes to tumor growth by down-regulating p53 (tumor suppressor) stability. Associated with synaptic transmission at electrical synapses

Conclusion

Based on our modelling process, we can conclude that there are indeed significant tissue-specific interactions between APOE genotypes and gene expression.

Future directions for this study may include:

- Incorporating more data
- Further in-depth analysis of the significant genes that we identified in order to assess the nature of their relationship with APOE and disease
- Study whether tissue-specific expression informs disease risk or disease risk informs expression levels
- The influence of subjects' racial profiles is also worth investigating as previous studies have revealed APOE expression to be differentially affected by race

References and Acknowledgements

- 1. Paola Sebastiani, Anastasia Gurinovich, et al. APOE Alleles and Extreme Human Longevity, The Journals of Gerontology: Series A, Volume 74, Issue 1, January 2019, Pages 44–51, https://doi.org/10.1093/gerona/gly174
- 2. Carithers, Latarsha J, Ardlie, et al., on behalf of the GTEx consortium, A Novel Approach to High-Quality Postmortem Tissue Procurement: The GTEx Project, Biopreservation and Biobanking 13(5), 2015, p 311–319.
- 3. Zhang A, Zhao Q, Xu D, Jiang S. Brain APOE expression quantitative trait loci-based association study identified one susceptibility locus for Alzheimer's disease by interacting with APOE ε4. *Sci Rep*. 2018;8(1):8068. Published 2018 May 23. doi:10.1038/s41598-018-26398-1
- 4. Wang X, Lin M, Zhao J, Zhu S, Xu M, Zhou X. TSPAN7 promotes the migration and proliferation of lung cancer cells via epithelial-to-mesenchymal transition. *Onco Targets Ther*. 2018;11:8815–8822. Published 2018 Dec 13. doi:10.2147/OTT.S167902
- 5. Li, Jin & Ye, Lin & Sanders, Andrew & Jiang, Wen. (2012). Repulsive guidance molecule B (RGMB) plays negative roles in breast cancer by coordinating BMP signaling. Journal of cellular biochemistry. 113. 2523-31. 10.1002/jcb.24128.
- 6. Park, Rackhyun & Kim, Hyunju & Jang, Minsu & Jo, Daum & Park, Yea-In & Namkoong, Sim & Lee, Jin & Jang, Ik-Soon & Park, Junsoo. (2019). LNX1 contributes to tumor growth by down-regulating p53 stability. The FASEB Journal. fj.201900366R. 10.1096/fj.201900366R.
- 7. Lombard, Zané & Park, Chungoo & Makova, Kateryna & Ramsay, M.. (2011). A computational approach to candidate gene prioritization for X-linked mental retardation using annotation-based binary filtering and motif-based linear discriminatory analysis. Biology direct. 6. 30. 10.1186/1745-6150-6-30.

This work was funded, in part, by NSF grant DBI-1559829, awarded to the Boston University Bioinformatics BRITE REU program