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Abstract

We consider optimal mechanisms for inducing agents to acquire costly evidence in
a setting where a principal has a good to allocate that all agents want. We show that
optimal mechanisms are necessarily sequential in nature and have a threshold structure.
Agents with higher costs of obtaining evidence and/or worse distributions of value for
the principal are asked for evidence later, if at all. We derive these results in part
by exploiting the relationship between the Lagrangian for this problem and the classic
Weitzman (1979) “Pandora’s box” problem.



1 Introduction

A principal has a single unit of a good or resource to allocate to one of N agents under
uncertainty regarding the value he would receive from allocating it to any given one of
them. Each agent wants the good, independently of the value her receiving it provides
the principal. Each agent can obtain information which would reveal to her the value
she would provide the principal if she receives the good as well as evidence which would
prove this value to the principal. However, this information is costly to the agent, so she
would not be willing to get it without being promised a high enough chance that this will
lead to her receiving the good. We characterize optimal mechanisms for the principal in
this setting.

As examples of this situation, consider the head of an organization with multiple
divisions, such as a university with multiple departments. The head of the organization
has discrete resources to allocate, such as prestigious projects or assignments, or, in the
case of a university, job slots. Some divisions would use this resource in ways that are
more productive for the organization than others, but all divisions prefer to receive it,
independently of their productivity. For a division to determine what value it would
produce for the organization if it receives the resource is costly in time and/or effort, so
that the division may prefer not to make a serious proposal to receive the resource.

We assume monetary transfers cannot be used. Intuitively, divisions of an organi-
zation have funds available to them to carry out actions on behalf of the organization.
So it would be counterproductive to the organization to have divisions “bid” for these
resources.

What, then, can the principal do? First, assume agents are symmetric both in their
costs of obtaining evidence and in the probability distribution over the value they would
provide the principal with the resource. Let c ∈ (0, 1) denote the cost, let vi denote a
typical realization of the value to the principal of giving the good to agent i where these
variables are iid across agents, and normalize the value of receiving the good to an agent
to 1.

A natural mechanism to consider is for the principal to ask all agents to provide
evidence, awarding the good to the agent who proves the highest value. If the number
of agents, N , is large, this will not induce all agents to seek evidence. Specifically, if
c > 1/N , the cost exceeds the expected benefit. The principal could exclude some agents
from the mechanism and only ask some smaller number, say n, such that 1/n ≥ c. This
can never be optimal.

In this symmetric problem, the optimal mechanism is easy to describe. The principal
chooses a random ordering of the agents where all orderings are equally likely. He goes to
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the first agent in the selected ordering and asks her to provide evidence. In equilibrium,
she will pay the cost c, learn her value, and prove this value to the principal. If her value
is above a certain threshold, v∗, he stops and gives her the good. Otherwise, he continues
to the next agent, applying the same threshold to decide whether to give her the good
or continue. If all agents have values below v∗, he will end up asking all of them for
evidence. In this case, he gives the good to the agent with the highest value.

An important point is that when the principal asks an agent for evidence, he does not
tell her where she is in the sequence. To see why this is valuable, consider for simplicity
the case of two agents. Suppose that when the agent is asked for evidence, she knows
that she is second in line. Then she knows that the other agent’s value is below the
threshold. Letting F denote the common cdf for v, her probability of getting the good
is then 1−F (v∗) + (1/2)F (v∗) > 1/2. This is because she certainly gets it if her value is
above v∗ and she is symmetric to the other agent conditional on her value being below v∗

and so gets the good with probability 1/2 in this event. On the other hand, if she knows
she is the first one to be asked, then her probability of getting the good must be strictly
smaller. More specifically, it is 1 − F (v∗) + (1/2)[F (v∗)]2. This is because she knows
that if she’s below the threshold, the second agent will be asked for evidence and she’ll
only have a chance of getting the good if the other agent is also below the threshold. In
short, the second agent has a larger incentive to pay for evidence than the first. Since
the agents are symmetric, it is optimal to equalize the incentives by randomizing 50–50
over which agent is asked first, rather than to distort the allocation differently for the
two.1

When the agents are asymmetric, new considerations arise. Because the principal has
to give the good with enough probability to any agent he asks for evidence, agents with
higher probabilities on high values are better to ask earlier. Because agents with higher
costs must be given more incentive to induce them to obtain evidence, he may wish to
ask them later.

The optimal mechanism changes in two ways. First, instead of comparing the agent’s
values to the threshold or to one another, we compare virtual values. Specifically, for each
agent i, instead of comparing vi to the threshold or another agent’s value, we compare
vi + λi where λi reflects the severity of i’s incentive compatibility constraint. In fact, λi

is the Lagrange multiplier on this constraint: agents who are harder to incentivize are
given a constant “advantage” in the form of “extra points” added to their values.

Second, not surprisingly, the randomization over orders is no longer uniform. Indeed,
in some cases, the asymmetries across agents will lead to some or all aspects of the

1More specifically, it is not hard to see that there must be some v̄ > v∗ where the incentive constraints
hold with equality if the principal randomizes 50–50 over which agent to start with and uses threshold
v̄. Because v̄ > v∗, this mechanism gives the principal a higher expected payoff.
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ordering being deterministic. Intuitively, if one agent has much lower costs than another,
then that agent can more easily bear the burden of being asked for evidence first.

The most general ordering of an optimal mechanism involves what we refer to as tiers.
Specifically, the agents are partitioned into tiers. The principal starts with the highest
tier, asking agents in some random order for evidence. In each case, he compares the
agent’s virtual value to the tier 1 threshold, stopping and giving the good to the agent
if her virtual value is above the threshold, continuing otherwise. If all the tier 1 agents
have virtual values below the tier 1 threshold, the principal will learn all of their values.
At this point, he lowers the threshold. If any of the agents have virtual values above
this lower threshold, he gives the good to the one with the highest virtual value. If not,
he continues to the tier 2 agents now using this lower threshold for the tier 2 threshold
and continues in this fashion to lower tiers as needed. If none of the agents has a virtual
value above the lowest threshold, he asks all for evidence and gives the good to the agent
with the highest virtual value. This structure has the uniform randomization with all
agents in the same tier as the most symmetric case and the mechanism with each agent
in her own tier and a deterministic order in which agents are asked for evidence as the
most asymmetric.

Tiers are useful to the principal if the agents are relatively asymmetric. Suppose, for
example, that the agents all have the same distribution of values and all but one have
the same costs, with the remaining agent having a much higher cost than the others.
Suppose the principal uses a mechanism with only one tier and threshold v∗. Even if the
agent with the high costs is last, we must make the threshold v∗ very low and/or make
her λi very high to give her an incentive to get evidence. Either is very costly in terms
of the other agents. A low v∗ makes it likely we stop before getting to this agent, giving
the good to a low type of another agent. With λi very large, if none of the agents have
virtual values above the threshold, the high–cost agent is likely to get the good even when
there is an agent with a significantly higher value. With tiers, the principal can keep the
threshold for the first N − 1 agents at v∗ and only bring it down if none of these agents
has a high enough value. This way, the principal gets the value of the lower threshold in
incentivizing the high–cost agent but loses less on the first N − 1 agents than he would
with a single threshold.

In principle, an optimal mechanism could differ from the description above in one
more way. Specifically, it could be that the randomization over the next agent to ask for
evidence depends nontrivially on the result of evidence received from previous agents.
We call such a mechanism a generalized tiered threshold mechanism, or a generalized
mechanism for short. We use the term tiered threshold mechanism or, more briefly, a
simple mechanism for the class of mechanisms described above where the random order
is not conditional in this way. We show that if a generalized mechanism is optimal, then
there is a simple mechanism which is incentive compatible and yields the principal and
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every type of every agent the same expected payoff. In this sense, there is no loss in
restricting attention to simple mechanisms.

A key step in proving that the optimal mechanism takes this form exploits a connec-
tion to Weitzman’s (1979) Pandora box problem. As we explain below, the Lagrangian for
our problem takes exactly the form of Weitzman’s problem if we treat the Lagrange mul-
tipliers as exogenous “preference parameters.” This allows us to easily use Weitzman’s
characterization to show that every optimal mechanism is a generalized tiered threshold
mechanism. Characterizing the multipliers and showing that we can restrict attention to
simple mechanisms then completes the characterization of optimal mechanisms.

In Section 2, we state the model. In Section 3, we characterize the optimal mechanism.
In Section 4, we analyze the properties of the optimal mechanism, characterizing, in
particular, the optimal random ordering of the agents. This section also provides some
comparative statics results. We conclude with some extensions of the model in Section
5.

In the remainder of this section, we discuss the related literature. In addition to
Weitzman (1979), there are two related literatures. First, our work is connected to
the literature on evidence, following the seminal work of Grossman (1981) and Milgrom
(1981) as well as Green and Laffont’s (1986) analysis of mechanism design with evidence.
See, for example, Glazer and Rubinstein (2004, 2006), Bull and Watson (2007), Deneckere
and Severinov (2008), Hart, Kremer, and Perry (2017), and Ben Porath, Dekel, and
Lipman (2019). In these papers, evidence is exogenous: the agent simply has certain
evidence as a function of her type. By contrast, Ball and Kattwinkel (2022) and Ben
Porath, Dekel, and Lipman (2022) do consider mechanism design when evidence can be
acquired. These papers give some broad characterizations related to optimal one–agent
mechanisms in these settings, but do not characterize optimal mechanisms for specific
settings, as we do here.

Finally, there is a literature on mechanism design with information acquisition — see,
for example, the survey of Bergemann and Välimäki (2006). In our model, the agent does
not know her value until she acquires evidence, so evidence acquisition and information
acquisition go hand–in–hand. The key difference between our work and these models,
then, is exactly that the nature of the incentives to reveal the information acquired are
different. With evidence, an agent is restricted in the misreports she can potentially get
away with, so the honest–reporting constraints are different than in a model without
evidence.

The most closely related papers are two papers in this literature, namely, Gershkov
and Szentes (2009) and Crémer, Spiegel, and Zhang (2009). Both consider a principal
and multiple agents. Gershkov–Szentes differs from our model in a few ways. First,
they consider a public decision rather than a private allocation. The principal chooses
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a decision in {0, 1} where all agents have the same state–dependent preferences between
these options. In the optimal mechanism, the principal approaches agents in a random
order to ask them to obtain information and provide it to him. Agents bear a private
cost of obtaining information, as in our model. Because signals constitute evidence in
our model but not in theirs, they need to impose truth–telling constraints in addition to
the obedience constraints in both models. They consider only the case where agents are
symmetric and restrict attention to mechanisms that are ex post efficient. We do not
need either of these restrictions.

Crémer, Spiegel, and Zhang, like us, consider a model where the principal is, in effect,
allocating a single unit of a good. Unlike us, however, they do allow monetary transfers,
which are critical to their model. Also unlike us, the principal does not inherently care
which agent he gives the good to — instead, the principal is interpreted as a seller who
maximizes the revenue he receives. In their model, the information acquisition by an
agent is how the agent learns her valuation for the good. Crémer, Spiegel, and Zhang
assume that the principal controls the information acquisition and so can block an agent
from getting information before the principal is ready for her to do so. Essentially, they
construct a VCG mechanism which extracts the entire ex ante surplus from the agents.
Since agents can’t get information before the principal is willing to let them, this is
feasible. Then the principal pays the agents their information cost when he is ready for
them to get information. In effect, the mechanism turns into a search problem where
the principal seeks the most efficient way to find a high–value buyer to sell the good to.
Because of this, they can also use Weitzman’s (1979) results to characterize the optimal
mechanism.

2 Model

There are N ≥ 2 agents and a principal. The principal has one unit of a good to allocate
to an agent. The value to the principal of allocating the good to agent i is vi. However,
vi is unknown to the principal or any agent at the outset. We assume that the common
prior over vi is given by cdf Fi with strictly positive density fi over the support [0, 1]. We
assume vi’s are independently distributed across agents. Aside from the assumption that
the supports are the same, we impose no symmetry conditions on the distributions across
agents. We sometimes let Vi = [0, 1] denote the support of vi and V = [0, 1]N =

∏
i Vi.

Agent i can learn her value vi at a cost ci ∈ (0, 1).2 If she pays this cost, she not only
learns the realization of vi but also obtains evidence enabling her to prove this realization
to the principal. One can interpret “learning vi” as observing a verifiable signal which
generates a certain conditional expectation of vi. Agent i can then prove this conditional

2It is not difficult to extend our results to allow some agents to have costs above 1. See Section 5.
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expectation by showing this signal to the principal. Since all agents are risk neutral,
replacing vi with this conditional expectation changes nothing.

We assume all agents want the good. Not including the cost of evidence acquisition,
the agent’s payoff is 1 if she receives the good, 0 otherwise. As we discuss in Section
5.2, the structure of the optimal mechanism is the same if we instead assume that the
agent’s payoff to receiving the good is some function φi(vi). This allows the agent’s payoff
to receiving the good to be correlated (positively or negatively) with the payoff to the
principal of giving it to her. The agent’s final payoff is the payoff from the allocation
of the good minus ci if she acquired evidence. The principal’s payoff is independent of
whether/which agents incur evidence costs and is equal to 0 if he keeps the good and vi
if he gives the good to agent i.

In some examples, it is natural to assume that agent i cannot “consume” the good
without paying cost ci. For example, consider departments in a university competing
for a job slot. Suppose that the way departments prove their value to the university is
by identifying their preferred candidate and showing his/her characteristics. It seems
natural to suppose that even if a department were given the slot without needing to
compete for it, they would have to pay the cost to identify whom to hire. We assume
that paying the cost is not necessary for consumption in this sense, but our results and
proofs would be unchanged if we assumed it is necessary. As we explain in Section 5.3,
it is easier to extend our results to the case where the principal cares about the payoffs
of the agents if we assume paying the cost is necessary for consumption.

The set of dynamic mechanisms available to the principal is quite complex. At each
step, the principal can decide which agent or agents to ask for evidence, what (if anything)
to tell them about what has happened so far, and how to react to the evidence they
provide, if they do so. To keep the notation relatively simple, we restrict the class of
mechanisms in a few ways that are clearly without loss of optimality for the principal.

First, we assume that the principal never asks more than one agent for evidence at a
time. Because there is no discounting in our model, this is without loss for the principal
as he can always ask one agent, then immediately afterward ask another.

Second, we assume that if an agent is asked to get evidence and refuses, then she
is not given the good. By the Revelation Principle, we know that it is without loss of
generality to consider mechanisms which induce agents to obey. Hence we may as well
focus attention on mechanisms where agents are punished as severely as possible if they
refuse to obey. In our model, the most severe possible punishment for an agent is not
giving her the good.

Third, we assume no agent is asked for evidence more than once. The Revelation
Principle says we can focus on mechanisms in which agents always obey. Since the
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principal cannot gain by getting the same evidence twice, he never asks any agent more
than once.

Finally, we assume that the principal never provides any information for an agent upon
asking her to obtain evidence. Put differently, each agent has (at most) one information
set in the game the principal induces. To see that this is without loss for the principal,
suppose instead that there are two different information sets for the agent. Then incentive
compatibility requires that the agent’s expected utility to obeying the principal is higher
than her expected payoff to disobeying conditional on each information set. This implies
but is not implied by the statement that the agent’s expected utility to obeying is higher
than her expected utility to disobeying unconditionally. Hence the principal weakly
improves incentives by pooling these histories together.3

A dynamic mechanism specifies one of the following after every history. Either (a)
the principal ends the process and keeps the good, (b) the principal ends the process and
gives the good to an agent, or (c) the principal asks some agent to obtain and provide
evidence.

More formally, a history is a sequence of agents and their responses to being asked for
evidence. To be specific, a length n history is a sequence ((i1, x1), (i2, x2), . . . , (in, xn))
with the following properties. First, in ∈ {1, . . . , N} for all n. That is, in is the agent
who is the nth agent asked for evidence. Second, xn ∈ [0, 1]∪{R}. Here xn = R denotes
the response of agent in to refuse to provide evidence. If xn ∈ [0, 1], then xn is the value
proved by agent in. Finally, ik = iℓ, then k = ℓ — that is, no agent can be asked for
evidence twice.

Let Hn be the set of all length n histories and let H = ∪N
n=0Hn where we define

H0 = {e}, so e is the empty history. Note that there cannot be a history of length more
than N .

A (pure) dynamic mechanism is a measurable function d : H → ({0}×{0, 1, . . . , N})∪
({1} × {1, . . . , N}) satisfying the properties stated below. If d(h) = (0, i), this means
the principal ends the process on history h and gives the good to agent i (where i = 0
— that is, keeping the good — is possible). If d(h) = (1, i), this means the principal
continues the process on history h and asks agent i for evidence. Note that d(h) cannot
equal (1, 0) — that is, the principal cannot ask himself for evidence.

We require d to satisfy the following properties. First, we require

d((i1, x1), (i2, x2), . . . , (in, xn)) ̸= (0, ik)

if xk = R for any k. I.e., if ik was asked for evidence and refused, she cannot get the

3Gershkov and Szentes (2009) use a similar argument. The earliest reference we know to this kind of
reasoning is Myerson (1986).
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good.

Second, we require that

d((i1, x1), (i2, x2), . . . , (in, xn)) ̸= (1, ik)

for any k ∈ {1, . . . , n}. That is, the principal cannot ask any agent for evidence more
than once.

Let D̂p denote the set of pure dynamic mechanisms and let D̂ denote the set of

probability mixtures over D̂p — that is, the set of random mechanisms.

The following lemma shows that we can restrict the set of dynamic mechanisms
further. We will restrict attention to mechanisms that satisfy a property we call no free
lunch. We say a mechanism satisfies no free lunch if it never gives the good to an agent
who has not provided evidence. It is easy to see that the principal may as well choose a
mechanism satisfying this property as he does not pay the costs. The following lemma
establishes the more substantial point that every optimal dynamic mechanism satisfies
this property.4

Lemma 1. Fix any incentive compatible dynamic mechanism violating no free lunch
on a set of histories with strictly positive probability. Then there is another incentive
compatible mechanism which gives the principal a strictly higher expected payoff. So any
optimal incentive compatible mechanism satisfies no free lunch up to sets of measure zero.

Proof. SupposeH∗ is a positive probability set of histories on which the principal gives the
good to agent i with positive probability even though i has not provided evidence. There
are two cases. First, suppose every history in H∗ has the property that the principal
previously received evidence from at least one agent. (If H∗ does not have this property
but some positive measure subset does, we can replace H∗ with this subset.) For each
history h ∈ H∗, let v̄(h) denote the highest value which some other agent has previously
proven to the principal. Because this set of histories has positive measure, there is a
natural number n such that the set of histories h ∈ H∗ with v̄(h) > 1/n has strictly
positive measure.

Let v̄i be defined by 1 − Fi(v̄i) = ci. Because ci < 1 for all i and because Fi is
continuous for all i, we know that v̄i > 0. Fix some ε ∈ (0, v̄i).

Change the mechanism only on histories in H∗ as follows. With the probability the
original mechanism gave the good to agent i, the principal instead asks i for evidence.
If i does not provide evidence, the principal keeps the good. If i gives evidence showing

4This lemma makes nontrivial use of the continuum of types — it need not hold with finitely many
types.
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either vi ≥ v̄i − ε or vi ≥ v̄(h), the principal gives the good to i. If i’s evidence shows
that vi < v̄i − ε and vi < v̄(h), the principal gives the good to the agent who proved
value v̄(h).

It is easy to see that i’s probability of receiving the good if she provides evidence is
strictly larger than her cost, so it is strictly optimal for her to provide evidence.5 Also,
every other agent’s incentive to provide evidence is at least as large as before since any
agent who obtains evidence now gets rewarded with the good more often. Hence the
new mechanism is incentive compatible. Clearly, the probability that the principal gains
by giving the good to an agent with a value higher than vi is strictly positive, so the
principal’s expected payoff to the alternative mechanism is strictly larger. Hence the
original mechanism was not optimal.

Second, suppose that the set of histories for which the principal gives the good to i
with positive probability without obtaining evidence from i has positive probability, but
the subset of these histories on which some other agent has previously provided evidence
has probability zero. By incentive compatibility, this means that on these histories, no
other agent has been asked for evidence. In this case, fix any agent j ̸= i and replace v̄(h)
in the argument above with E(vj). The change in the mechanism now has no effect on
the incentives of other agents to obtain evidence since the change only takes place when
none of them have been asked to do so. Hence the new mechanism is again incentive
compatible and improves the principal’s payoff, implying that the original mechanism
was not optimal.

Let Dp denote the set of pure dynamic mechanisms d ∈ D̂p satisfying no free lunch —
i.e., those such that d(h) = (0, i) only if h = ((i1, x1), (i2, x2), . . . , (in, xn)) where i = ik
for some k. Let D denote the set of probability mixtures over DP .

By the Revelation Principle, it is without loss of generality to focus attention on
mechanisms in which agents find it optimal to obey the principal. That is, once we
restrict to incentive compatible mechanisms, we know that the relevant histories will
be ones where agents who are asked for evidence do provide it. Given such a dynamic
mechanism, we can compute the outcome under the mechanism as a function of the
profile of types v.6

5Note that it is optimal for this agent to get evidence whether the principal informs her that she is
on one of these histories or if the principal pools this set of histories with any other histories on which
she would be asked for evidence in the original mechanism. In the latter case, we are pooling two sets
of histories, where it is optimal for the agent to get evidence conditional on either separately and hence
conditional on the union.

6We omit the precise definition as it will not be needed. Briefly, one can iteratively define the
probability distribution over realized histories given d as a function of the profile v. This then determines
the probability distribution over outcomes.
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Let P (d) = (P1(d), . . . , PN(d)) denote the allocation probabilities induced by dynamic
mechanism d. That is, for each d, Pi(d) is a measurable function mapping V to [0, 1]
where

∑
i Pi(v | d) ≤ 1 for all v ∈ V . Let ei(d) denote the probability agent i is asked

for evidence in mechanism d.

We can now state the principal’s maximization problem. The principal’s objective
function is Ev [

∑
i Pi(v | d)vi].

The constraints are the N incentive compatibility constraints. One might expect
these constraints to be very complex since they say that conditional on being asked for
evidence, an agent finds it optimal to obey. This conditioning depends in a complex way
on the dynamic mechanism since we have to identify the set of histories on which this
agent might be asked for evidence. Fortunately, we are able to bypass this complexity
by expressing the incentive compatibility constraint at the ex ante stage. Recall that
each agent has (at most) one information set in the mechanism. Hence we can write the
incentive compatibility constraint as requiring that the ex ante optimal strategy for the
agent is to obtain evidence and provide it if asked for it. Note that if the agent obeys
the principal, then her expected payoff in mechanism d must be EvPi(v | d)− ciei(d).

To pin down the agent’s deviation payoff, first, consider the deviation strategy where
the agent does get evidence when asked but does not always report it. In this case,
her expected costs of evidence acquisition are still ciei(d), but she must receive the good
weakly less often. Hence obeying the principal must give a weakly higher payoff than this.
Second, consider the deviation strategy of not getting evidence. In this case, she gets a
payoff of 0 whether she is asked for evidence (because she disobeys) or not (because of
no–free–lunch) and hence her expected payoff is 0. Therefore, we can write the incentive
compatibility constraint for agent i as EvPi(v | d) ≥ ciei(d).

Hence we can state the principal’s optimization problem as follows. We say that
d ∈ D∗ is optimal if it solves the problem

max
d∈D

Ev

[∑
i

Pi(v | d)vi

]

subject to
Ev[Pi(v | d)]− ciei(d) ≥ 0, ∀i.

Let D∗ denote the set of optimal d’s. In the next section, we characterize this set.

10



3 Characterizing the Optimal Mechanism

We show that without loss of utility for the principal, we can focus on a class of mecha-
nisms we call tiered threshold mechanisms or sometimes simple mechanisms for short. A
tiered threshold mechanism consists of the following. We have a partition of the set of
agents into K tiers, denoted I1, . . . , IK . For each tier Ik, we have two additional objects.
First, we have a random ordering of the agents in that tier. More specifically, there is
a probability distribution, denoted Ok over the set of linear orders over Ik where we
interpret a typical such order, ≻k, by saying that if i ≺k j, then i goes before j. Second,
for each tier Ik, we have a threshold v∗k ∈ R+ where v∗k > v∗k+1 for all k. Finally, for each
agent i, we have a non–negative number λi. We refer to vi + λi as i’s virtual value.

Given these objects, the tiered threshold mechanism works as follows. First, we draw
random orders over the sets of agents in each tier. Let ≻k be the ordering drawn for
tier k. We ask the first agent according to ≻1 for evidence. (In equilibrium, all agents
obey requests for evidence.) If vi + λi > v∗1 so that her virtual value is above the tier
1 threshold, the mechanism gives i the good. Otherwise, we continue to the next agent
according to ≻1 and continue similarly. If all the tier 1 agents have virtual values below
v∗1, then all will be asked for evidence. At this point, if the virtual value of any of these
agents is above the tier 2 threshold, v∗2, the mechanism gives the good to that agent
with the highest virtual value (unique with probability 1 as the vi’s are continuously
distributed). If not, we continue to the first agent in tier 2 according to ≻2. Again, the
mechanism gives the good to this agent if her virtual value is above the tier 2 threshold
and continues otherwise. If none of the tier 2 agents has a virtual value in this range, we
compare the virtual values of all tier 1 and tier 2 agents to the tier 3 threshold v∗3, and
continue in this manner.

If all agents have virtual values below the tier K threshold, the mechanism will ask all
of them for evidence. Then the good is allocated to that agent with the highest virtual
value.

We also show that all optimal mechanisms are what we call generalized tiered thresh-
old mechanisms or generalized mechanisms for brevity. The only difference between a
generalized mechanism and a simple mechanism is in the distribution over orders within
a tier. In a simple mechanism, there is a single random choice of an order for each tier.
In a generalized mechanism, which agent within a tier is chosen at any point can depend
on all past observations by the principal.

Our proofs connect the dynamic mechanism design problem to Weitzman’s (1979)
“Pandora’s box” problem. First, we briefly summarize Weitzman’s results.

Weitzman considers the following problem, simplified here to more easily line up with
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our problem. There is a searcher who facesN “boxes.” Box i has a certain monetary prize
xi in it where xi is distributed according to a distribution F̂i. Prizes are independently
distributed across boxes. There is a cost, ĉi, to opening box i. At each point in the
search process, the searcher decides between quitting and taking no box, quitting and
taking some box she has previously opened, or opening a box she has not yet opened.
The searcher’s payoff is the prize in the box she takes (or 0 if she takes no box) minus
the accumulated costs of the boxes she has opened.

Weitzman characterizes the set of optimal search procedures as follows. For each box
i, define an index, ri, by

ĉi = Exi
max{xi − ri, 0}.

Intuitively, ri is that value such that the searcher would be indifferent between stopping
with value ri or opening box i and then quitting with the larger of ri and the prize
in box i. For simplicity, for this discussion, we assume ri > 0 for all i, as the analog
of this property will necessarily hold for our use of Weitzman’s result. Given this, a
search procedure is optimal iff it takes the following form. First, the searcher opens
any box i1 with the highest index — i.e., such that ri1 = maxj rj. If there is more
than one such box, any randomization is optimal. If the prize in box i1, xi1 , satisfies
xi1 > maxj ̸=i1 rj, then the searcher stops and takes box i1. In our problem, the analog
of the xi’s will be continuously distributed, so we do not need to consider what happens
if xi1 = maxj ̸=i1 rj. If xi1 < maxj ̸=i1 rj, the searcher opens any box i2 with the highest
index of the remaining boxes — i.e., such that ri2 = maxj ̸=i1 rj. The searcher continues in
this fashion, comparing the largest prize found so far in any box to the maximum index
of the unopened boxes. If the largest prize is strictly above the highest index among
the unopened boxes, the searcher stops and takes the corresponding box. Otherwise, she
continues and opens any unopened box with the largest possible index. If she opens all
boxes, she takes the one with the largest prize.

The following lemma will link Weitzman’s result to our problem. Recall that D∗ is the
set of optimal d’s. Given λ ∈ RN

+ , let D
∗∗(λ) be the set of maximizers of the Lagrangian

L = Ev

[∑
i

Pi(v | d)vi

]
+
∑
i

λi [EvPi(v | d)− ciei(d)]

and let D∗∗ denote the set of incentive compatible d ∈ D∗∗(λ) for some λ such that
λi[EvPi(v | d)− ciei(d)] = 0 for all i.

Lemma 2. D∗ = D∗∗.

In other words, strong duality holds. This follows from the fact that the set of (P, e)
that can be generated by a mechanism is convex and that payoffs are linear in (P, e). The
proof of this result is relatively standard but is contained in the supplemental appendix
for the convenience of the reader.
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Given this lemma, Weitzman’s result almost immediately yields the following:

Theorem 1. Every optimal dynamic mechanism is a generalized tiered threshold mech-
anism.

Proof. We can rewrite the Lagrangian as

Ev

[∑
i

Pi(v | d)(vi + λi)− λiciei(d)

]
.

Let d∗ denote an optimal mechanism. By Lemma 2, there exist Lagrange multipliers λ∗

such that d∗ solves the problem

max
d∈D

Ev

[∑
i

Pi(v | d)(vi + λ∗
i )− λ∗

i ciei(d)

]
.

This is almost exactly Weitzman’s problem. Think of agent i as box i where the prize in
box i is vi+λ∗

i and the cost of opening box i is λ∗
i ci. Think of Pi(v | d) as the probability of

choosing box i under search procedure d when the prizes are given by (v1+λ∗
1, . . . , vN+λ∗

N)
and ei(d) as the probability of opening box i under search procedure d.

The only difference between this problem and Weitzman’s is that a mechanism in
our problem must specify what to do on a history where some agent has been asked
for evidence and refused to comply. In Weitzman’s problem, a search procedure is not
defined on such a history as boxes cannot refuse to be opened. Let H∗ denote the set
of all possible histories in our problem with the property that no agent has ever refused
when asked for evidence. Then the set of search procedures in Weitzman is exactly our
set of dynamic mechanisms when we restrict the set of histories to H∗. Because an agent
will not refuse to provide evidence if asked, the histories we exclude when considering
H∗ are payoff irrelevant.

Hence d∗ must be in the class of search procedures Weitzman identifies. The index
for box/agent i, which we denote by v̂i + λ∗

i , is defined by

λ∗
i ci = Evi+λ∗

i
max{vi + λ∗

i − (v̂i + λ∗
i ), 0} = Evi max{vi − v̂i, 0}.

Partition the set of agents into tiers, I1, . . . , IK where the agents in I1 have the largest
index, those in I2 have the next largest index, etc. For tier Ik, let v

∗
k denote the common

index for the agents in that tier.

Then the optimal procedure starts with the agents in tier 1, asking them for evidence
in some order. This order is arbitrary in Weitzman and so could depend on the specific
agents previously asked for evidence and/or the evidence they show. If the prize in box
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i/associated with agent i of vi+λi is larger than v∗1, then we stop and take that box/give
the good to that agent. Otherwise, we continue to some other box/agent in tier 1. After
checking the last agent in tier 1, the relevant comparison is to the common index for the
second tier, v∗2. Thus if the agent with the highest virtual value in tier 1 is above v∗2, this
agent gets the good and otherwise we continue to tier 2.

It is not hard to see that this is exactly a generalized tiered threshold mechanism.

As the proof of Theorem 1 shows, Weitzman’s theorem implies that the optimal
mechanism has the form of a generalized tiered threshold mechanism. However, his
results do not identify the randomization over the order of checking, not even whether it
varies with previous observations by the principal. In Weitzman, if two boxes have the
same index, then any randomization over which to check first is equally good, including
randomizations that depend on the prizes in previously opened boxes. For our model,
though, these randomizations are crucial for incentive compatibility. As discussed in the
introduction, all else equal, an agent who is asked earlier for evidence is less likely to
receive the good. Hence an agent who is more likely to be asked early has less incentive
to obey when asked for evidence. In short, Weitzman’s theorem identifies the form
of the optimal mechanism for some profile of λi’s without identifying anything about
the randomizations involved. The next step is to identify the λi’s and characterize the
randomizations.

A key simplification is that we can restrict attention to the simpler class of tiered
threshold mechanisms, rather than considering generalized tiered threshold mechanisms.
Intuitively, the application of Weitzman’s theorem tells us that the payoff of the principal
is not directly affected by the randomizations, so the principal does not directly gain from
making these depend on the past history. As we show, such dependence does not help
with incentive compatibility either, so there is no value to it.

More specifically, for any generalized tiered threshold mechanism, we will show that
there is a simple mechanism which is equivalent in the following sense.

Definition 1. Mechanisms d and d′ are interim–equivalent if for all i and all vi ∈ [0, 1],
Ev−i

Pi(vi, v−i | d) = Ev−i
Pi(vi, v−i | d′) and if for all i, ei(d) = ei(d

′).

Because the agents are not endowed with private information, it would be natural to
call two mechanisms equivalent if they gave the principal and every agent the same ex
ante expected payoff. We use the stronger notion of interim–equivalence both because it
gives a stronger result and because the interim comparison is convenient for proving our
results.

For brevity, we define the usual interim (or reduced form) probabilities by pi(vi | d) =
Ev−i

Pi(vi, v−i | d).
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The following lemma shows the significance of interim–equivalence.

Lemma 3. If d is an optimal incentive–compatible mechanism and d′ is interim–equivalent
to it, then d′ is also an optimal incentive–compatible mechanism and every type of every
agent obtains the same payoff in d′ as in d.

Proof. Since d is incentive compatible, we have

0 ≤ EPi(v | d)− ciei(d) = Evipi(vi | d)− ciei(d)

for all i. Hence, since d′ is interim–equivalent to d, we have

Evipi(vi | d′)− ciei(d
′) ≥ 0

for all i, so d′ is also incentive compatible. More generally, the payoff to agent i of type
vi in mechanism d is

Ev−i
Pi(vi, v−i | d)− ciei(d) = pi(vi | d)− ciei(d) = pi(vi | d′)− ciei(d

′),

so every type of every agent is indifferent between the two mechanisms.

Finally, we can write the payoff of the principal under d as

Ev

[∑
i

Pi(v | d)vi

]
=

∑
i

Evi

[
Ev−i

Pi(vi, v−i | d)vi
]
=

∑
i

Evi [pi(vi | d)vi] .

Since d′ is interim–equivalent to d, the principal’s payoff is the same under d and d′, so
if d is optimal, d′ must be optimal as well.

Lemma 3 says we can identify optimal mechanisms (at most) up to interim–equivalence.
Hence we may as well focus on a convenient selection from the interim–equivalent optimal
mechanisms. We show below that tiered threshold mechanisms are such a selection.

This claim follows from a result which is broadly useful for characterizing the optimal
mechanism. Specifically, we show that we can identify the λi’s and the ei’s and use
these variables to identify the randomizations. That is, any two mechanisms which have
the same λi’s and the same ei’s are interim–equivalent. We then characterize the set of
feasible ei’s given the λi’s and show that any feasible ei can be generated by a simple
tiered threshold mechanism, implying that we can restrict attention to these mechanisms.

Recall that a tiered threshold mechanism specifies numbers λ1, . . . , λN , a partition
of the agents into tiers I1, . . . , IK , and thresholds for each tier. The difference between
generalized and simple tiered threshold mechanisms is how the order of asking agents
within a tier is determined. As the proof of Theorem 1 shows, once we specify the λi’s,
the indices v̂i+λi are defined by Weitzman’s formula, which in turn defines the thresholds
and tiers. Hence we only need to specify the λi’s and the order of asking agents within
each tier.
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Lemma 4. Fix mechanisms d and d̂ in D∗∗(λ) satisfying ei(d) = ei(d̂) for all i. Then d
and d̂ are interim–equivalent.

Proof. We show that we can write pi(vi | d) entirely as a function of the λ’s and ei. Given
this, if two mechanisms have the same λ’s and e’s, they must be interim–equivalent.

So fix any λ ∈ RN
+ and any d ∈ D∗∗(λ). The proof of Theorem 1 shows that this must

be a generalized tiered threshold mechanism. Fix the e’s generated by this mechanism.

The proof of Theorem 1 shows that we can define the index for i entirely from λi.
Specifically, it is v̂i + λi where v̂i is defined by

λici =

∫ 1

v̂i

(v − v̂i)fi(v) dv.

It is easy to see that v̂i is uniquely determined by λi.

Given the profile (v̂1+λ1, . . . , v̂N+λN) and e = (e1, . . . , eN), we can compute pi(vi | d)
for any i and any vi as follows. First, if vi ≥ v̂i, then agent i receives the good if and
only if she is asked for evidence, so pi(vi | d) = ei(d). Second, if vi < v̂i, we have

pi(vi | d) =
∏

j ̸=i|v̂j+λj≥vi+λi

Fj(vi + λi − λj).

To see this, first, consider vi ≥ v̂i. By no–free–lunch, i does not receive the good if she is
not asked for evidence. If she is asked for evidence and vi ≥ v̂i, then vi + λi ≥ v̂i + λi, so
i’s virtual value is higher than her Weitzman index. Since she is being asked for evidence,
the Weitzman index for every agent who has not yet been asked for evidence must be
below v̂i+λi, so her virtual value is above the relevant threshold. Hence she receives the
good. In short, if vi ≥ v̂i, we have pi(vi | d) = ei(d).

So suppose vi < v̂i, so i’s virtual value is below her index. In this case, i receives the
good only if all the other agents who are checked have virtual values below hers. More
precisely, note that any agent j with v̂j + λj > vi + λi will be checked before agent i is
given the good. So for i to receive the good when her value is vi, it must be the case
that all such j have vj + λj < vi + λi. The expression above gives the probability of this
event.

Hence pi(vi | d) is uniquely identified by the λ’s and e’s generated by d.

Next, we identify the set of ei’s that can be generated by an optimal mechanism given
the λ’s. To see the issue, suppose tier 1 consists of agents 1 and 2, that v̂1 = v̂2 ∈ (0, 1),
and that e1 = e2 = 1. From the above, if v1 ≥ v̂1 and v2 ≥ v̂2, both agents 1 and 2 have
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virtual values above the threshold for tier 1. Hence both get the good iff they are asked
for evidence. But we are hypothesizing that both are asked for evidence with probability
1. But this implies both get the good when v1 ≥ v̂1 and v2 ≥ v̂2 which is impossible.

In other words, given the λ’s, not every (e1, . . . , eN) can be generated by some choice of
randomization over the order of asking agents for evidence. The issue may seem different,
but it turns out to be related to Border’s (1991) characterization of the set of interim
allocation functions which are feasible in the sense that they can be generated by some
allocation functions. Border’s result covered symmetric distributions and subsequent
work extended his results in many directions — see, for example, Mierendorff (2011) or
Che, Kim, and Mierendorff (2013). Here we give some clearly necessary conditions on
the ei’s in the spirit of the Border conditions. In the Appendix, we show that these
conditions are sufficient.

Lemma 5. Fix λ = (λ1, . . . , λN) and the associated v̂1, . . . , v̂N . If there exists a gen-
eralized tiered threshold mechanism d ∈ D∗∗(λ) which generates (e1(d), . . . , eN(d)) =
(e1, . . . , eN), then the following conditions hold. First,

∑
i∈Ik

ei[1− Fi(v̂i)] =

[ ∏
i∈Ik−1

Fi(v
∗
k − λi)

][
1−

∏
i∈Ik

Fi(v̂i)

]
, (1)

where the first term on the right–hand side is defined to be 1 for k = 1 and otherwise

Ik−1 =
k−1⋃
ℓ=1

Iℓ.

Second, for all I ⊂ Ik,∑
i∈I

ei[1− Fi(v̂i)] ≤

[ ∏
i∈Ik−1

Fi(v
∗
k − λi)

][
1−

∏
i∈I

Fi(v̂i)

]
, (2)

Furthermore, for any e satisfying these conditions, there is a simple tiered threshold
mechanism d ∈ D∗∗(λ) that generates ei(d) = ei for all i.

Because of their similarity to the conditions identified by Border (1991), we refer to
equations (1) and (2) as the Border conditions.

Proof. The proof that any e generated by a generalized tiered threshold mechanism must
satisfy the Border conditions is straightforward. First, consider tier 1. For k = 1, the
first Border condition, equation (1), says∑

i∈I1

ei[1− Fi(v̂i)] = 1−
∏
i∈I1

Fi(v̂i).
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To understand the left–hand side, consider an agent i in tier 1 with vi ≥ v̂i (equivalently,
vi + λi ≥ v̂i + λi). By the definition of a generalized tiered threshold mechanism, such
an agent gets the good if and only if she is asked for evidence. Hence the left–hand side
is the probability that the good goes to some agent i in tier 1 with a value in this range.
However, the definition of a generalized tiered threshold mechanism also says that if there
is some agent i in tier 1 with a value in this range, then the good must go to such an
agent. Since the right–hand side is the probability that the realized v has at least one
tier 1 agent with a value in this range, we see that the left–hand side and right–hand
side must be equal.

Continuing with k = 1, the second Border condition, equation (2), says∑
i∈I

ei[1− Fi(v̂i)] ≤ 1−
∏
i∈I

Fi(v̂i),

for all I ⊆ I1. To see that this must hold, note that the left–hand side is the probability
that an agent i ∈ I has vi ≥ v̂i, is asked for evidence, and hence receives the good, while
the right–hand side is the probability that some agent i ∈ I has vi ≥ v̂i. Hence the
left–hand side must be smaller than the right.

Similarly, consider k = 2, where the first Border condition says that

∑
i∈I2

ei[1− Fi(v̂i)] =

[∏
i∈I1

Fi(v
∗
2 − λi)

][
1−

∏
i∈I2

Fi(v̂i)

]
.

Now the left–hand side is the probability that an agent i in tier 2 has a value vi ≥ v̂i,
is asked for evidence, and hence receives the good. We know that this happens if and
only if all the tier 1 agents have virtual values below the tier 2 threshold v∗2 and some
tier 2 agent has vi ≥ v̂i. A tier 1 agent i has virtual value below the tier 2 threshold iff
vi + λi < v∗2 or vi < v∗2 − λi. So the right–hand side is exactly the probability a tier 2
agent with virtual value above the tier 2 threshold gets the good.

For k = 2, the second Border condition says that

∑
i∈I

ei[1− Fi(v̂i)] ≤

[∏
i∈I1

Fi(v
∗
2 − λi)

][
1−

∏
i∈I

Fi(v̂i)

]
,

for every I ⊆ I2. In this case, the left–hand side is the probability that some agent
i ∈ I has a value above v̂i and gets the good, while the right–hand side is the obviously
necessary condition that no agent in tier 1 gets the good before we get to tier 2 and that
there is some agent i ∈ I with vi ≥ v̂i. Hence this inequality is necessary.

The proof for other tiers is analogous. The proof that any e satisfying the Border
conditions can be generated by a simple tiered threshold mechanism is in the Appendix.
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Corollary 1. For any optimal generalized tiered threshold mechanism d, there is a simple
tiered threshold mechanism d′ which is interim–equivalent to it. Hence there is always an
optimal mechanism which is a tiered threshold mechanism.

To see why the corollary holds, note that Lemma 5 implies that the e generated by
any d ∈ D∗∗(λ) can also be generated by a simple tiered threshold mechanism d̂ ∈ D∗∗(λ).
By Lemma 4, then, for any generalized tiered threshold mechanism, there is an interim–
equivalent simple tiered threshold mechanism.

Summarizing, we have shown

Theorem 2. An incentive–compatible mechanism d is optimal if and only if it is a
generalized tiered threshold mechanism with tiers defined by v̂1 + λ1, . . . , v̂N + λN where
λi ≥ 0 for all i,

λici =

∫ 1

v̂i

(v − v̂i)fi(v) dv, ∀i,

λi [Evipi(vi | λ, ei)− ciei] = 0, ∀i,

and the Border conditions (1) and (2) hold, where ei = ei(d) for all i.

Furthermore, given any optimal mechanism d, there is a simple tiered threshold mech-
anism which is also optimal and yields every type of every agent the same expected payoff.

A tempting but incorrect intuition suggests that the complexities of identifying these
randomizations can “typically” be avoided. We only need to identify the random order
in which agents are asked when agents are in the same tier. Agents are only in the same
tier when they have the same index. It is tempting to suspect that for “generic” ci’s and
Fi’s, indices never tie, so, in this sense, randomization is “almost always” irrelevant.

This is not correct. Recall that the index, v̂i + λi, is defined by

λici =

∫ 1

v̂i

(v − v̂i)fi(v) dv.

Hence the index depends on the exogenous ci and Fi, but also on the endogenous λi.
This endogeneity leads to ties in the indices and hence tiers with more than one agent.
In fact, “similar enough” agents must be in the same tier, so that ties are not “measure
zero.”

To see the intuition, first consider the (nongeneric) symmetric agent case. Suppose
there are two agents with the same Fi’s and the same ci’s and assume the incentive
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compatibility constraint is binding7 for both agents. In this case, the optimal mechanism
must randomize 50–50 over who to start with. The key reason for this is that, as is
easily shown, v̂i + λi is decreasing in λi in the relevant range.8 So suppose we try to
construct an optimal mechanism where these two agents are in different tiers. Without
loss of generality, suppose we try to put 1 in the higher tier, so v̂1 + λ1 > v̂2 + λ2. The
functions defining v̂ from λ are the same for the two agents since they have the same ci
and Fi. So the fact that the index is decreasing in λ implies that we must have λ1 < λ2.

But then 1 has the pressure of going first and the disadvantage of a smaller “bonus” in
the form of a smaller λ. Because the agents are identical, this implies that the incentive
constraint cannot be binding for both agents.9

So suppose v̂1 + λ1 = v̂2 + λ2, so the two agents are in the same tier. Because the
two agents have the same index, they must have the same λi’s. Thus everything that
enters their payoffs is the same except possibly the randomization over which is asked for
evidence first. Since the one more likely to go first must have a lower expected payoff,
both incentive constraints can bind only if the randomization is 50–50.

Given that a 50–50 randomization is the unique solution for identical agents, it should
not be surprising that nearby randomizations are the unique solution for nearly identical
agents. Hence ties are not “nongeneric.”

The figure above illustrates. Assuming two agents, each with vi ∼ U [0, 1], the area
between the red curves is the set of (c1, c2) in the range [.5, 1]2 where the two agents
have the same index in the optimal mechanism. As the intuition above suggests, it is a
non–negligible set of types around symmetry.

7Here and elsewhere, we say a constraint is binding if the principal would obtain a strictly higher
payoff in its absence. In nongeneric situations, we can have the constraints holding with equality at the
solution and yet not binding in this sense. For example, with two symmetric agents with cost equal
to 1/2, we obtain the first–best even though both agents receive zero utility and hence have incentive
constraints holding with equality. It is not hard to show that if the incentive constraint for i is binding
in our sense, then her payoff is zero at the optimum, even though the converse can be violated. Also,
one can show that the incentive constraint for agent i is binding in our sense if and only if λi > 0 at the
optimum.

8It is not hard to use λici =
∫ 1

v̂1
(v − v̂i)fi(v) dv to show that ∂v̂i/∂λi = −ci/(1 − Fi(v̂i)). Hence

∂(v̂i+λi)/∂λi = (1−Fi(v̂i)− ci)/(1−Fi(v̂i)). In the range where the incentive compatibility constraint
binds, we must have 1− Fi(v̂i) < ci, so this is negative.

9If both constraints bind, the probability of getting the good conditional on being asked for evidence
must be c for both agents. To see that this cannot hold, note that 1 gets the good if v1 > v̂1 or if v1 < v̂1
and v1 +λ1 > v2 +λ2. 2 is asked for evidence if v1 < v̂1. Hence conditional on being asked for evidence,
she gets the good if v2 > v̂1 or if v1 + λ1 < v2 + λ2. Given that F1 = F2, if λ2 > λ1, 2’s conditional
probability of receiving the good is strictly larger than 1’s, a contradiction.
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Figure 1: (c1, c2) values with one tier when N = 2, v1, v2 ∼ U [0, 1].

4 Properties of the Optimal Mechanism

In this section, we describe properties of optimal mechanisms. Section 4.1 specializes the
discussion to the particularly tractable symmetric case, describing the mechanism and
its properties in detail. In Section 4.2, we return to the general case and characterize the
optimal random ordering of agents. Finally, Section 4.3 gives some comparative statics.

4.1 Symmetric Mechanisms

When the agents are symmetric in the sense that ci = cj ≡ c and Fi = Fj ≡ F for all i
and j, the analysis simplifies greatly. In this case, the principal doesn’t care which agent
he asks for evidence and only needs to decide whether to seek evidence at any given
history.

More formally, in the symmetric setting, there must be an optimal mechanism which
is symmetric in the sense that it treats the agents identically. Thus λi, v̂i, and ei are all
independent of i. In this subsection, we drop the i subscripts on these variables.

Since all agents have the same v̂+λ, clearly, there is only one tier and one threshold.
In this case, there is no point distinguishing between virtual values, vi + λ, and actual
values, vi, since the λ will cancel out of any comparison across agents or comparison of
an agent to the threshold. Hence we may as well simplify and ignore the λ.

In this case, the optimal mechanism is simply stated. If the incentive compatibility
constraint does not bind, then ei = 1 for every agent i and v̂i = 1. That is, every agent is
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asked for evidence and the good is allocated to the agent with the highest value. Hence
incentive compatibility binds iff c > 1/N .

If the incentive compatibility constraint does bind, then ei = 1/(Nc) for all i. To
see this, recall that the incentive compatibility constraint is that Evipi(vi) ≥ ciei. In the
symmetric case, all agents are equally likely to receive the good, so the left–hand side is
1/N . Since this constraint binds and ci = c for all i, we see that ei = 1/(Nc) for all i.
Finally, Lemma 5 implies that v̂ is pinned down by∑

i

ei[1− Fi(v̂i)] = 1−
∏
i

Fi(v̂i)

Using symmetry and rearranging, this is

e =
1

N

Å
1− [F (v̂)]N

1− F (v̂)

ã
=

1

N

N−1∑
j=0

[F (v̂)]j,

where the last equality comes from the formula for the sum of a geometric series. To see
how this lines up with the dynamic mechanism, recall that we choose an order at random
with, in the symmetric case, all orders equally likely.10 This means that any given agent
i has a 1/N chance of being first, 1/N chance of being second, etc. Think of the index j
on the right–hand side as denoting how many agents are ahead of i in the selected order.
If j = 0, then i is first and hence asked for evidence with certainty. If j = 1, there is
one agent ahead of i and so i is asked for evidence iff this agent has a value below v̂.
Hence in this case, i is asked for evidence with probability F (v̂). In general, there are j
agents ahead of i with probability 1/N and i is asked for evidence in this situation with
probability [F (v̂)]j, the probability all these agents have values below v̂. In short, using
the value computed earlier for e, we see that v̂ is defined by

1

c
=

N−1∑
j=0

[F (v̂)]j.

The comparative statics for the symmetric case are straightforward. If c increases, the
left–hand side of the equation above falls, so v̂ must fall. This is natural — if the cost of
acquiring evidence goes up, agents must be promised a higher chance of getting the good
to induce them to obtain evidence. This requires reducing the threshold. The evidence
probability e also is reduced. Again, this fits with the reduction in the threshold. With
a lower threshold, each agent is less likely to be reached and asked for evidence.

10To be sure, there are other ways to generate the same evidence probabilities. For example, we could
randomize uniformly over the orders (1, 2, . . . , N). (2, 3, . . . , N, 1), (3, 4, . . . , N, 1, 2), . . ., (N, 1, 2, . . . , N−
1).

22



If the distribution F of values is shifted up in the sense of first–order stochastic
dominance, then F (v̂) is smaller at every point. Hence we must increase v̂ to restore
equality. Again, this is intuitive: if agents are more likely to have high values, then the
principal can raise the threshold and be “pickier.” Note that e is unchanged since it
is 1/(Nc). So the improvement in an agent’s probability of getting the good from the
improvement in F is entirely extracted by the principal in raising the threshold.

Finally, the effects of increasing the number of agents, N , is similarly straightforward
to compute. If we increase N , then we must reduce v̂ to restore equality in the equation
above. So if there are more agents, the principal holds each to a lower standard, a
perhaps unexpected conclusion. Intuitively, the principal does this because the increase
in the number of agents reduces any one agent’s likelihood of getting the good if the
threshold is unchanged. Thus each agent’s incentive to obtain evidence is reduced and
must be restored by lowering the threshold. Increasing N also lowers the probability the
agent is asked for evidence.

One might expect that the principal would be better off excluding some agents to
keep the threshold higher. While it can be optimal for the principal to exclude some
agents in asymmetric settings, this is never true in the symmetric case. Increasing the
number of agents in the symmetric case always makes the principal strictly better off.

One way to see this is to consider the expected number of agents asked for evidence.
We know that if the principal asks, say, n agents for evidence, then each agent has an
equal probability of being one of the n agents asked. Hence each agent has probability
n/N of being asked for evidence in this case. So, overall, the expected probability that
an agent is asked for evidence is 1/N times the expected number of agents asked. Since
we know this probability is 1/(Nc), this says that the expected number of agents asked
for evidence is 1/c, independent of N . On the other hand, if the number of agents goes
from N to N+1, the probability the principal asks N+1 agents for evidence goes from 0
to something strictly positive. Because the threshold falls, the probability the principal
asks only one agent for evidence also increases. In other words, as we increase the number
of agents, the optimal mechanism changes so as to generate a mean–preserving spread
in the number of agents asked. This change is valuable to the principal. It enables him
to sample more agents when the draws are all low, though at the cost of sampling fewer
when the draws are high.

Another way to see the point is to suppose that the principal designs a mechanism for
N symmetric agents and then one more is added. Suppose that the principal is restricted
to asking at most N agents for evidence, but can give the good to the (N + 1)st agent.
Suppose the principal chooses N of the N + 1 agents at random, with all agents equally
likely to be included, and then runs the N agent mechanism with the chosen subset.
If he ends up asking all N agents for evidence and all have values below E(v), then,
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instead of giving the good to the agent with the highest value, he gives it to the (N+1)st
agent, the one he did not get evidence from. Clearly, if this is incentive compatible, it
is better for the principal than the usual N agent mechanism. To see that it must be
incentive compatible, consider any agent’s probability of being asked for evidence. If
the agent is one of the N agents chosen at the outset, then her probability is the same
as in the N–agent mechanism. Of course, if she is not chosen, her probability of being
asked for evidence is 0. Hence her overall probability of being asked is N/(N + 1) times
the probability of being asked in the usual N–agent mechanism. But we know that the
probability of being asked in the N–agent mechanism is 1/(Nc), so in this mechanism,
it is 1/[(N + 1)c]. Hence her expected evidence cost is 1/(N + 1). Because the overall
mechanism treats all agents symmetrically, her probability of receiving the good is also
1/(N + 1), so this mechanism is indeed incentive compatible. So the principal is strictly
better off with N + 1 agents than with N .

This observation generalizes to where not all of the agents are symmetric as follows.11

Theorem 3. Suppose ci = cj and Fi = Fj. In any optimal mechanism, ei = 0 iff ej = 0.

4.2 Optimal Ordering

In the symmetric case, the agents are identical, so there is no reason for the principal to
prefer one order for seeking evidence over another. When agents are asymmetric, what
determines the optimal randomization over the order?

Intuitively, agents who are later in the order are more protected from competition.
These later agents are only asked for evidence when the values of the earlier agents are
relatively low, so being asked is a good sign for them about the competition they face.
This suggests that the principal will tend to put “stronger” agents earlier. Theorem 4
shows that this intuition is correct.

We say that agent i is stronger than agent j if ci ≤ cj and Fi (weakly) first–order
stochastically dominates Fj. Note that one or both of these comparisons can be an
equality relation — i.e., agents with the same cost and same distribution are each stronger
than the other.

Theorem 4. If i is stronger than j, then in an optimal mechanism, we have ei ≥ ej.

The following corollaries elucidate the implications of this result.

11This result follows directly from Theorem 4 below, but it is more convenient to prove it separately.
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Corollary 2. If i is stronger than j, then i’s index, v̂i + λi is weakly larger than j’s.
Hence if i is stronger than j and they are in different tiers, then i is in a higher tier than
j. In particular, if the optimal order is deterministic, i is asked before j.

To see why the corollary follows, first note that if i and j have different indices and
hence are in different tiers, then ei ≥ ej implies that i must be the one in the higher
tier. This is because agents in tier k are not asked for evidence until all agents in all
higher tiers have been asked. Similarly, if the optimal order is deterministic, agents who
are later in the order are necessarily asked for evidence with lower probability than those
before.

Corollary 3. If i is stronger than j and j is stronger than i, then ei = ej. In this case,
the optimal order cannot be deterministic if their incentive constraints are binding.

If i and j have the same costs and same distribution, each is stronger than the other,
so Theorem 4 implies that ei = ej. If the order is deterministic, this means that i is
asked for evidence if and only if j is also asked. This cannot be optimal if the incentive
constraints for i and j are both binding, so the optimal order cannot be deterministic.
Note that if both incentive constraints are slack, both agents are asked for evidence with
probability 1 and the principal does not care whether he asks both at the same time or
in some order.

Corollary 4. If i is stronger than j and i is excluded in the sense that she never receives
the good, then j is excluded. Hence in the symmetric case, exclusion is not optimal.

To see this, note that i is excluded if and only if ei = 0. If ei = 0, then no–free–
lunch implies that i never receives the good and hence is excluded. Conversely, if i never
receives the good, then her incentive constraint becomes −ciei ≥ 0, implying ei = 0. If i
is stronger than j and i is excluded, then we have ei = 0 and hence ej = 0.

In a symmetric model, all agents are stronger than all other agents. Hence all must
have the same ei. So if one of them is excluded in the optimal mechanism, all must be.
But this can never be optimal since the principal could do better simply by giving the
good to one of the agents without asking anyone for evidence.

4.3 Comparative Statics

As noted in Section 4.1, comparative statics in the symmetric case are relatively simple
to derive. Unfortunately, this is not true in the asymmetric case.
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To see why the comparative statics are complex and can vary across the parameter
space, consider the effects of an increase in c1 in the two–agent case. Throughout this
discussion, we assume both incentive constraints bind. First, suppose we start at a point
where v̂1 + λ1 > v̂2 + λ2. In this case, the optimal mechanism begins by asking 1 for
evidence. If v1 + λ1 > v̂2 + λ2, or, equivalently, v1 > v∗ ≡ v̂2 + λ2 − λ1, 1 receives the
good. Otherwise, 2 is asked for evidence and whichever agent has the higher virtual value
receives the good. That is, 1 receives the good iff v1 + λ1 > v2 + λ2 or v1 > v2 + λ2 − λ1.
Note, then, that the allocation of the good depends only on v∗ and λ2 − λ1.

When c1 increases, we must change the allocation or else 1’s incentive constraint will
be violated. Assume the change in c1 is small so that we continue to have v̂1+λ1 > v̂2+λ2

and hence continue to start with agent 1. Then we must change v∗ and λ2−λ1 in such a
way as to improve 1’s probability of receiving the good to offset the increase in her costs
without violating 2’s incentive constraint.

It is not hard to see that the variables v∗ and λ2 − λ1 affect 2 in opposite directions
but affect 1 in the same direction. To be specific, decreases in v∗ and in λ2 − λ1 both
improve 1’s payoff, while the first improves 2’s payoff and the second reduces it.

To see this, consider first a reduction in v∗. This helps 1 as she is more likely to
receive the good without competing with 2. It also helps 2 because the best types of
agent 1 that 2 had to compete with are now receiving the good without 2 being asked for
evidence. So conditional on being asked, 2’s chances of receiving the good are improved.

However, a reduction in λ2 − λ1 (for fixed v∗) hurts 2 but helps 1. This lowers 2’s
relative bonus in the competition with 1, so, all else equal, 2 loses to 1 more often.

Because we must maintain 2’s incentive constraint, we must move v∗ and λ2 − λ1 in
the same direction at magnitudes such that the net effect on 2’s payoff is zero. Clearly,
then, we must reduce both: increasing both could not compensate 1 for the increase in
c1.

While this explanation focuses on the case where 1 is asked for evidence first, essen-
tially the same argument applies to the situation where 2 is asked first.

By contrast, suppose e1 and e2 are both in (0, 1). In this case, the optimal mechanism
has a strictly interior probability of asking 1 for evidence first. Now the simple analysis
above falls apart and a wide range of things can happen. This is simply because the
principal now has another tool to compensate 1 for the increase in her costs. In addition
to the kind of changes discussed above, the principal could now respond by lowering e1
or, equivalently, lowering the probability that 1 is the first to be asked for evidence.

In this situation, the principal could, for example, lower the probability of starting
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Figure 2: How mechanism varies with c1 for c2 = .7, N = 2, v1, v2 ∼ U [0, 1]. q is the
probability 1 is asked for evidence first.

with 1, which lowers e1 and raises e2, lower the threshold v∗, and raise 2’s relative
advantage λ2−λ1. The change in the e’s helps 1 and hurts 2, the change in the threshold
helps both, and the change in the relative advantage hurts 1 and helps 2. Hence by
making these changes in the appropriate magnitudes, 2’s utility could remain unchanged
so that her incentive constraint continues to hold, while 1’s utility is improved to offset
the effect of the increase in c1.

In fact, it is not hard to show that when we start from symmetry, this is what must
happen. That is, if F1 = F2 and we start from the point c1 = c2, we know that we start
where each agent is first with probability 1/2. A small increase in c1 from this point
necessarily leads to an increase in λ2−λ1, exactly the opposite of what we see if we start
from parameters where a deterministic order is optimal. Not only can λ2 − λ1 increase
or decrease, one can also show that the threshold v∗ can increase or decrease, and e2 can
increase or decrease.12

The figure below illustrates. This shows v∗, λ2−λ1, and the probability the mechanism
asks 1 for evidence first (the curve labeled q) for a range of values of c1 assuming c2 = .7
and that v1, v2 ∼ U [0, 1]. As the figure shows, when q is either 1 or 0, so that the order is
deterministic, λ2−λ1 is decreasing in c1, but in the range where q ∈ (0, 1), it is increasing.

More broadly, with N agents and between 1 and N different tiers, the principal has
a range of tools which affect the agents in different directions. The value of these tools

12We conjecture that an increase in c1 must weakly reduce e1, but even this is not clear.
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to the principal vary in complex ways across the parameter space. As a result, there are
essentially no comparative statics that hold globally.

5 Extensions

5.1 High Costs/Reserve Value

In this section, we describe how the analysis changes if some agents have ci ≥ 1. Clearly,
the principal cannot get (useful) information from agent i if ci ≥ 1. If ci > 1, then i
strictly prefers not getting the good to getting it and providing evidence. If ci = 1, the
principal can induce i to obtain evidence, but only by promising to give i the good for
all vi. In this sense, the principal cannot get information he can actually use from i.

So if there are such agents, their only role is as a kind of reservation value for the
principal. In other words, we have assumed that the principal receives a payoff of 0 from
keeping the good. If there is some agent i with ci ≥ 1, then the principal has a better
outside option than keeping the good since he can give it to i for a “known” payoff of
E(vi). Hence adding such agent simply changes the principal’s reservation utility.

This has the same effect as adding an agent i with ci = 0 and a known value. The
optimal mechanism can be thought of as asking this agent for evidence first with λi = 0
and v̂i = 1. In other words, this agent is asked first but the principal continues after
learning her type unless it is above maxj ̸=i(v̂j +λj). Then this agent’s value is compared
to thresholds and other agents’ types as above.

Note that if we assume paying the cost is necessary to consume the good, then an agent
with ci > 1 does not want the good. In this case, such agents are completely irrelevant
to the problem and the solution is the same as above with these agents removed.13

5.2 Varying Value to Agent from Receiving Good

The use of Weitzman’s results to characterize the structure of the optimal mechanism
enables us to extend the analysis to the case where the agent’s value of receiving the
good varies and may be correlated with the value to the principal of giving it to her.

Suppose that if the value to the principal of giving the good to the agent is vi, then the

13The results in this subsection are the only ones in the paper which would change if we assumed that
agent cannot consume the good without paying the information cost ci.
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value to agent i of receiving it is φi(vi). Assume φi(·) is continuous. We can normalize
the agents’ payoffs so that Eviφi(vi) = 1 and assume, as above, that ci ∈ (0, 1) given this
normalization. Then it is not hard to show that our result that every optimal mechanism
satisfies no–free-lunch continues to hold. Now the Lagrangian takes the form

Ev

[∑
i

Pi(v | d)vi +
∑
i

λi (Pi(v | d)φi(vi)− ei(d)ci)

]
or

Ev

[∑
i

Pi(v | d)(vi + λiφi(vi))−
∑
i

λiciei(d)

]
.

As above, we can view the λ’s as fixed parameters and characterize the solution to this
maximization problem using the Weitzman solution for the case where the prize in box
i is vi + λiφi(vi). It is not hard to generalize the arguments above to show that there is
an optimal mechanism which is a simple tiered threshold mechanism.

The function φi(vi) captures correlation between the value of the object to agent i
and the value to the principal of giving her the object. For example, if we think of the
principal as the dean of a college, the agents as departments, and the good as a job slot,
it could be that the dean cares only about teaching, the departments only about research,
and that these are negatively correlated. If so, φi would be a decreasing function. In this
case, we see the intuitive result that it is possible that agent i is more likely to receive
the good for some low values of vi than for some higher values.

5.3 Costs

If we change the principal’s objective so that he dislikes imposing costs on the agents,
then with no other changes in the model, we lose the no–free–lunch property and hence
the ability to appeal to Weitzman (1979). On the other hand, we can still use Weitzman’s
result and apply our analysis for a variation of our model.

To be specific, recall from the introduction that in some settings, it is natural to
assume that the agent cannot consume the good without paying the cost. Consider this
case and assume the principal’s payoff if he allocates the good to agent i is vi plus αj

times the utility of agent j, summed over the agents.

In this case, the principal can give the good to an agent without seeing evidence from
her, but he factors in that the agent he gives it to will pay the cost. Hence it is as if the
principal had to restrict attention to mechanisms satisfying no–free–lunch. In this case,
given the λi’s, the Lagrangian reduces to the Weitzman problem where the prize in box
i is vi + λi + αi and the cost of opening box i is (λi + αi)ci. The incentive constraints
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are unaffected by this change, so the analysis is similar to the above. Again, there is a
simple tiered threshold mechanism which is an optimal mechanism.
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A Completion of Proof for Lemma 5

The completion of the proof of Lemma 5 uses a result in Border (1991). For the reader’s
convenience, the Supplemental Appendix contains a proof of the version of Border’s result
we use. For this section of the Appendix and the related Supplemental Appendix, we
consider a different allocation problem with M agents where agent i has a finite set of
types Ti. Types are independent across agents and µi is the distribution over Ti. We
consider allocations P = (P1, . . . , PN) with Pi : T → [0, 1] with

∑
i Pi(t) ≤ 1 for all

t ∈ T . Given P , p = (p1, . . . , pN) denotes the interim allocation generated by P in the
sense that

pi(ti) =
∑

t−i∈T−i

µ−i(t−i)Pi(ti, t−i).

A hierarchical allocation is an allocation P that can be constructed as follows. We
have a ranking function R which maps ∪iTi to {1, . . . , K} for some K. We assume that
for every k < K, there is exactly one i such that R(ti) = k for some ti ∈ Ti. Note that
this restriction does not apply to rank K — there may be no or many agents with types
at rank K.

Then given a type profile t = (t1, . . . , tN), either all agents have rank K or there is
a unique i with R(ti) < R(tj) for all j ̸= i. If all agents have rank K, then Pj(t) = 0
for all j. If there is a unique i with R(ti) < R(tj) for all j ̸= i, then Pi(t) = 1. In other
words, unless all agents are in the lowest rank, the agent who has the highest ranked
type receives the good (where higher ranks have lower numbers).

Say that p is a hierarchical interim allocation if it is generated by a hierarchical allo-
cation P . (The hierarchical interim allocations form a subset of the interim allocations.)
The following is essentially Border’s Lemma 6.1 and is proved in the Supplemental Ap-
pendix.

Theorem 5. Every interim allocation function p is a convex combination of hierarchical
interim allocations.

We also use the following finite type version of Border’s theorem (Border (2007)):

Theorem 6. p is an interim allocation function if and only if for every collection T̂i ⊆ Ti

for i = 1, . . . ,M , we have∑
i

∑
ti∈T̂i

pi(ti)µi(ti) ≤ 1−
∏
i

[1− µi(T̂i)].

To complete the proof of Lemma 5, fix (e1, . . . , eN) satisfying the Border conditions.
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We show there exist randomizations over the orderings generating these evidence proba-
bilities.

First, consider tier 1, I1. The two Border conditions for tier 1 imply∑
i∈I1

ei[1− Fi(v̂i)] = 1−
∏
i∈I1

Fi(v̂i) (3)

and ∑
i∈I

ei[1− Fi(v̂i)] ≤ 1−
∏
i∈I

Fi(v̂i), ∀I ⊆ I1. (4)

We now construct an auxiliary allocation problem, the solution of which will provide
the next step of the proof. Let the set of agents be I1. Each agent i ∈ I1 has two types,
denoted ℓi and hi, where µi(ℓi) = Fi(v̂i). Define functions p̂i : Ti → [0, 1] for i ∈ I1 by

p̂i(ti) =

ß
0, if ti = ℓi;
ei, if ti = hi.

Equations (3) and (4) and Theorem 6 imply that p̂ is an interim allocation function.

By Theorem 5, p̂ is a convex combination of hierarchical interim allocations. I.e., there
are hierarchical interim allocations q1, . . . , qS and weights αs ∈ (0, 1) with

∑
s α

s = 1 with
p̂ =

∑
s α

sqs. Clearly, p̂i(ℓi) = 0 for all i implies qsi (ℓi) = 0 for all i and all s. By Theorem
6, we have ∑

i∈I1

qsi (hi)[1− Fi(v̂i)] ≤ 1−
∏
i∈I1

Fi(v̂i), ∀s.

But ∑
s

αs

{∑
i∈I1

qsi (hi)[1− Fi(v̂i)]

}
=

∑
i∈I1

ei[1− Fi(v̂i)] = 1−
∏
i∈I1

Fi(v̂i).

Hence ∑
i∈I1

qsi (hi)[1− Fi(v̂i)] = 1−
∏
i∈I1

Fi(v̂i), ∀s.

The left–hand side is the probability that some agent i is type hi and receives the good,
while the right–hand side is the probability at least one agent is type hi. So this equality
says that for every s, if at least one agent is type hi, the good is allocated to such an
agent.

Given this, consider any qs. Since qs is a hierarchical interim allocation, there is a
hierarchical allocation, Qs, and a ranking function, Rs, associated with it. From the
above, we know that for any type profile such that some i is type hi, the good is allo-
cated to such an i. Because the allocation is hierarchical, there is a unique such i who
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gets the good with probability 1. Consider the allocation on type profile (h1, . . . , h#I1).
Whichever agent i receives the good on this profile must have Rs(hi) = 1. Let i1 denote
this agent.

Consider the profile of types where agent i1 is type ℓi1 and every other agent i is
type hi. Again, there must be an agent, say i2, who receives the good with probability
1 and hence we have Rs(hi2) = 2. Continuing this way, we construct the ranking Rs

which orders the hi types of all agents. Define an ordering over i ∈ I1, ≻s, by i ≺s j iff
Rs(hi) < Rs(hj).

By construction,

ei = p̂i(hi) =
∑
s

αsqsi (hi) =
∑
s

αs
∏
j≺si

µj(ℓj) =
∑
s

αs
∏
j≺si

Fj(v̂j).

So the randomization over orderings of I1 given by O1(≻s) = αs generates the ei’s for I1.

Next consider tier 2, I2. By assumption, we know that the evidence probabilities for
agents in this tier satisfy

∑
i∈I2

ei[1− Fi(v̂i)] =

[∏
i∈I1

Fi(v
∗
2 − λi)

][
1−

∏
i∈I2

Fi(v̂i)

]
. (5)

Also, we must have

∑
i∈I

ei[1− Fi(v̂i)] ≤

[∏
i∈I1

Fi(v
∗
2 − λi)

][
1−

∏
i∈I

Fi(v̂i)

]
, ∀I ⊆ I2. (6)

To see this, note that the left–hand side is the probability that an agent i ∈ I ⊆ I2 has
vi ≥ v̂i and receives the good, while the right–hand side is the probability that an agent
i ∈ I has vi ≥ v̂i and that all the tier 1 agents have virtual values below v∗2. Because an
agent in tier 2 cannot get the good unless all tier 1 agents have virtual values below v∗2,
the left–hand side must be smaller than the right.

For i ∈ I2, let

êi =
ei∏

j∈I1 Fj(v∗2 − λi)
.

Then equations (3) and (4) hold for tier 2 and the ê’s. That is, equations (5) and (6) can
be rewritten as ∑

i∈I2

êi[1− Fi(v̂i)] = 1−
∏
i∈I2

Fi(v̂i)

∑
i∈I

êi[1− Fi(v̂i)] ≤ 1−
∏
i∈I

Fi(v̂i), ∀I ⊆ I2.
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Hence the same argument as above shows that we can construct a probability distribution
O2 over orderings ≻s over I2 such that for all i ∈ I2,

êi =
∑
s

O2(≻s)
∏
j≺si

Fj(v̂j)

or, equivalently,

ei =

[∏
j∈I1

Fj(v
∗
2 − λi)

]∑
s

O2(≻s)
∏
j≺si

Fj(v̂j).

Iterating this argument for the remaining tiers completes the proof.

B Proof of Theorem 3

The proof is by contradiction. So suppose ci = cj and Fi = Fj, but we have an optimal
mechanism d1 with ei(d

1) = e1i = 0 and ej(d
1) = e1j > 0. By no–free–lunch, we have

Pi(v | d1) = 0 for (almost) all v. Given this, we must have at least three agents.
Otherwise, the best outcome of this form is to simply give the good to j with probability
1. Essentially the same argument as the proof of Lemma 1 gives a contradiction to this
being optimal.

We write v̂1k, λ
1
k, etc., to denote the relevant variables for this outcome. We write P 1

for P (d1) and e1 for e(d1).

Let d2 denote the mechanism which flips the roles of i and j, so j is never asked
for evidence and i is asked in the situations in which j had been in d1. Let d∗ =
(1/2)d1 + (1/2)d2, the 50–50 randomization between these mechanisms. We write P ∗ for
P (d∗), etc.

Hence e∗i = e∗j = (1/2)e1j > 0, so v̂∗i +λ∗
i = v̂∗j +λ∗

j . Because these are defined from the
same function which is strictly decreasing in λ in the relevant range, this implies λ∗

i = λ∗
j

and v̂∗i = v̂∗j .

The mechanism d∗ has a certain set of histories on which either i or j is next asked
for evidence, each with probability 1/2. (By history here, we include the randomization
over the order if i and j are in a tier with one or more other agents.) But if, say, i is
chosen, the mechanism never continues to j. Because we only get to i if all previously
observed virtual values are below v̂∗i + λ∗

i = v̂∗j + λ∗
j , the only way this can be true is if

the good is given to i or some other agent in the same tier as i and j with probability 1.
In other words, we must have at least one agent k in this tier with v̂∗k ≤ 0. If not, there is
a positive probability that all agents in the tier have virtual values below the threshold
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and must get to j. But this implies this agent k receives the good iff she is asked for
evidence. Hence her expected utility in the mechanism is e∗k − cke

∗
k = (1− ck)e

∗
k. To be

relevant, we must have e∗k > 0 so the assumption ck < 1 implies k’s expected payoff is
strictly positive, so her incentive constraint is not binding. Hence λ∗

k = 0, so v̂∗k satisfies

0 =

∫ 1

v̂∗k

(v − v̂∗k)fk(v) dv

requiring v̂∗k = 1, a contradiction.

C Proof of Theorem 4

We first characterize the treatment of agents whose incentive constraints are not binding.
Recall (footnote 7) that we define a constraint as binding if the principal would obtain a
strictly higher payoff in its absence and that this definition implies a constraint is binding
iff its Lagrange multiplier is strictly positive.

Lemma 6. If i’s incentive constraint is not binding, then λi = 0, v̂i = 1, and ei = 1. If
i’s incentive constraint is binding, then v̂i + λi < 1.

Proof. If i’s incentive constraint does not bind, then λi = 0. Since v̂i is defined by

λici =

∫ 1

v̂i

(v − v̂i)fi(v) dv,

λi = 0 implies v̂i = 1. Hence i’s index, v̂i + λi, equals 1.

Next we show that ei = 1. Consider any j ̸= i for whom λj > 0 and ej > 0. The
same reasoning as above shows that we must have v̂j < 1. Also, j’s index satisfies

v̂j + λj = v̂j +
1

cj

∫ 1

v̂j

(v − v̂j)fj(v) dv.

With this in mind, consider the function

Φj(v̂) ≡ v̂ +
1

cj

∫ 1

v̂

(v − v̂)fj(v) dv.

Clearly,

Φ′
j(v̂) = 1− 1− Fj(v̂)

cj
.
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We claim that this is positive for all v̂ ≥ v̂j, strictly so for v̂ > v̂j. To see this, recall
that j’s incentive constraint is binding, so her utility in the mechanism is zero. Hence
ej[1− Fj(v̂j)− cj] ≤ 0 as agent j certainly gets the good if asked for evidence when her
value is above v̂j and might get the good even when her value is below v̂j. By assumption,
ej > 0, so 1− Fj(v̂j) ≤ cj, implying 1− Fj(v̂) ≤ cj for all v̂ ≥ v̂j, strictly if v̂ > v̂j.

This implies v̂j + λj < Φ(1) = 1 for any j with λj > 0 and ej > 0.

For any j ̸= i with ej = 0, we cannot have v̂j + λj > 1. If so, the j with the largest
value of v̂j + λj would be in the top tier, above any agent k with λk = 0 or λk > 0 and
ek > 0. But then we cannot have ej = 0, a contradiction. Similarly, we cannot have
v̂j + λj = 1. In this case, j and any agent k with λk = 0 are in the highest tier. Since
v̂k = 1 for any k with λk = 0, all of these agents will be asked for evidence and the
mechanism will continue to another agent with probability 1. Hence, again, it would be
impossible to have ej = 0. Summarizing, if λj > 0, we must have v̂j + λj < 1.

Hence i is in the highest tier and any agent j ̸= i in the same tier also has λj = 0
and v̂j = 1. So all of the agents in this tier will be asked for evidence and ei = 1.

Finally, if i’s incentive constraint is binding, we have λi > 0 and hence v̂i < 1. From
the argument regarding j ̸= i above, we see that this implies v̂i + λi < 1.

We prove Theorem 4 by contradiction. So fix an optimal mechanism d. Suppose i is
stronger than j but ei < ej. By Lemma 6, ei < ej ≤ 1 implies λi > 0.

Case 1. 0 = ei < ej.

By Theorem 3, we cannot have ci = cj and Fi = Fj, so either ci < cj or Fi strictly
FOSD Fj or both. By the no–free–lunch property, ei = 0 implies that i never receives
the good.

We construct an alternative mechanism d̄ as follows. Define a function φ : Vi → Vj by
φ(vi) = F−1

j (Fi(vi)). Note that the distribution of φ(vi) is the same as the distribution
of vj. That is, for any z, we have Pr[φ(vi) ≤ z] = Fj(z).

Define d̄ to be the same as d except as follows. First, on any history where d asks j for
evidence with positive probability, d̄ asks i instead with this same probability. Second, if
i is asked for evidence and proves value vi, d̄ treats this the same way mechanism d treats
proof by j of value φ(vi). In the supplemental appendix, we show that d̄ is incentive
compatible and strictly increases the principal’s expected payoff if Fi ̸= Fj.

So suppose Fi = Fj. Then we must have ci < cj by Theorem 3. If j’s incentive
constraint in (P, e) was binding, then again it must be possible to make the principal
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strictly better off than at d. This is because we have replaced j with an agent with a lower
cost and the same distribution of values, turning a binding constraint for j into a relaxed
constraint for j’s replacement. It is easy to show this implies that an improvement is
possible. Hence if d was optimal, j’s incentive constraint was not binding.

In this case, i and j are effectively identical from the point of view of the principal.
Even though ci < cj, the fact that j’s incentive constraint does not bind implies that
reductions in j’s cost have no effect on the optimal mechanism. Hence we can analyze
this case as if ci = cj. By Theorem 3, then, we have the needed contradiction.

Case 2. 0 < ei < ej.

Lemma 7. If i is stronger than j and 0 < ei < ej, then v̂j + λj ≥ v̂i + λi, v̂j ≥ v̂i, and
λj ≤ λi.

Proof of Lemma. Clearly, if ej > ei, we cannot have j in a lower tier than i. Any agent
is only asked for evidence after all agents in higher tiers are asked, so ej > ei implies j is
in a weakly higher tier than i. Hence v̂j + λj ≥ v̂i + λi, establishing the first claim.

Define

Λi(v̂) =
1

ci

∫ 1

v̂

(v − v̂)fi(v) dv (7)

The index v̂i+λi satisfies v̂i+λi = v̂i+Λi(v̂i). Also, in the proof of Lemma 6, we defined
Φi(v̂) = v̂+Λi(v̂) and showed that Φi(v̂) is strictly increasing in v̂ for all v̂ > v̂i if ei > 0.

Next, we show that if i is stronger than j, then for all v̂, we have Λi(v̂) ≥ Λj(v̂),
This holds with equality if ci = cj and Fi = Fj since the functions are then the same.
If Fi = Fj but ci < cj, the Λi function must be larger at every v̂ < 1 as it’s defined by
dividing by a strictly smaller number. Alternatively, suppose ci = cj but Fi FOSD Fj.
Because the function max{0, v − v̂} is increasing in v, Fi FOSD Fj implies∫ 1

v̂

(v − v̂)fi(v) dv ≥
∫ 1

v̂

(v − v̂)fj(v) dv,

again implying Λi(v̂) ≥ Λj(v̂).

Suppose, contrary to our claim, that v̂i > v̂j. Note that ej > 0, so v̂+Λj(v̂) is strictly
increasing in v̂ for all v̂ ∈ (v̂j, v̂i), implying v̂j + Λj(v̂j) < v̂i + Λj(v̂i). Then i stronger
than j implies v̂j + Λj(v̂j) < v̂i + Λj(v̂i) ≤ v̂i + Λi(v̂i). From equation (7), we have
v̂j + λj = v̂j +Λj(v̂j) < v̂i +Λj(v̂i) ≤ v̂i +Λi(v̂i) = v̂i + λi. This contradicts j being in a
weakly higher tier than i, so v̂j ≥ v̂i, proving the second claim.

Finally, the Λn(·) functions are decreasing, so (7) implies λi = Λi(v̂i) ≥ Λi(v̂j). By i
stronger than j, we have Λi(v̂j) ≥ Λj(v̂j) = λj. Hence λi ≥ λj, showing the third claim.
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We derive a contradiction from this lemma and ei, λi > 0. From the proof of Lemma
4,

pi(vi | d) =
®

ei, if vi ≥ v̂i;∏
j ̸=i|v̂j+λj≥vi+λi

Fj(vi + λi − λj), otherwise,

so we can write the expected payoff to any agent k as

Uk = ek[1− Fk(v̂k)]− ekck +

∫ v̂k

0

 ∏
j ̸=k|v̂j+λj≥vk+λk

Fj(v + λk − λj)

 fk(v) dv.

Because i’s incentive constraint binds, we must have Ui = 0 ≤ Uj.

For vj < v̂j, we have

pj(vj | d) =
∏

k ̸=j|v̂k+λk≥vj+λj

Fk(vj + λj − λk).

Let w = vj + λj. Then for w ∈ [λi, v̂j + λj), we have

pj(w − λj | d) =
∏

k ̸=j|v̂k+λk≥w

Fk(w − λk)

= Fi(w − λi)
∏

k ̸=i,j|v̂k+λk≥w

Fk(w − λk)

≤ Fj(w − λj)
∏

k ̸=i,j|v̂k+λk≥w

Fk(w − λk) =
∏

k ̸=i|v̂k+λk≥w

Fk(w − λk)

= pi(w − λi | d), ∀w − λi < v̂i

where the inequality in the third line comes from Fi FOSD Fj and λi ≥ λj. To understand
the last line, note that w− λi < v̂i means that vi = wi − λi < v̂i, so the formula given in
the proof of Lemma 4 for pi(vi | d) applies.

Summarizing, we have

pj(vj | d) ≤ pi(vj + λj − λi | d), ∀vj < v̂i + λi − λj.

No agent gets the good without being asked for evidence, so pi(v
′
i | d) ≤ ei for all v

′
i and

pj(vj | d) ≤ ei, ∀vj < v̂i + λi − λj ≤ v̂j.

Next, pi(vi | d) increasing in vi and Fi FOSD Fj implies∫ 1

0

pi(vi | d)fi(vi) dvi ≥
∫ 1

0

pi(vi | d)fj(vi) dvi.

38



Rewriting the right–hand side, we have

∫ 1

0

pi(vi | d)fj(vi) dvi =
∫ v̂i

0

 ∏
k ̸=i|v̂k+λk≥vi+λi

Fk(vi + λi − λk)

 fj(vi) dvi + [1− Fj(v̂i)]ei.

Change variables in the integral on the right–side side by defining w = vi + λi, so it is

∫ v̂i+λi

λi

 ∏
k ̸=i|v̂k+λk≥w

Fk(w − λk)

 fj(w − λi) dw.

The same reasoning as above shows that this is weakly larger than what we get if we
take the product over k ̸= j instead of k ̸= i — that is, is weakly larger than

∫ v̂i+λi

λi

 ∏
k ̸=j|v̂k+λk≥w

Fk(w − λk)

 fj(w − λi) dw.

Change variables in the integral again, replacing w with vj + λi to write this as

∫ v̂i

0

 ∏
k ̸=j|v̂k+λk≥vj+λi

Fk(vj + λi − λk)

 fj(vj) dvj.

The fact that λi ≥ λj implies Fk(vj +λi−λk) ≥ Fk(vj +λj −λk) for all k and vj. Also, if
we change the index on the product from k ̸= j such that v̂k +λk ≥ vj +λi to k ̸= j such
that v̂k + λk ≥ vj + λj, λi ≥ λj implies we will be taking the product over weakly more
k’s. Since each term in the product is weakly less than 1, this must reduce the product.
Hence the expression above is weakly larger than

∫ v̂i

0

 ∏
k ̸=j|v̂k+λk≥vj+λj

Fk(vj + λj − λk)

 fj(vj) dvj =

∫ v̂i

0

pj(vj | d)fj(vj) dvj.

The fact that i’s incentive constraint binds implies

ciei =

∫ 1

0

pi(vi | d)fi(vi) dvi ≥
∫ v̂i

0

pj(vj | d)fj(vj) dvj + [1− Fj(v̂i)]ei,

while j’s incentive constraint implies∫ 1

0

pj(vj | d)fj(vj) dvj + (1− Fj(v̂j))ej ≥ cjej.
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For vj ∈ [v̂i, v̂i+λi−λj], we know that pj(vj | d) ≤ ei. For vj ∈ [v̂i+λi−λj, v̂j], we have
pj(vj | d) ≤ ej. Hence∫ v̂i

0

pj(vj | d)fj(vj) dvj + [Fj(v̂i + λi − λj)− Fj(v̂i)]ei + [1− Fj(v̂i + λi − λj)]ej ≥ cjej.

Summarizing, we have

ciei ≥
∫ v̂i

0

pj(vj | d)fj(vj) dvj + [1− Fj(v̂i)]ei

≥ [1− Fj(v̂i)]ei + cjej − [Fj(v̂i + λi − λj)− Fj(v̂i)]ei − [1− Fj(v̂i + λi − λj)]ej

= cjej + [1− Fj(v̂i + λi − λj)]ei − [1− Fj(v̂i + λi − λj)]ej.

So
[ci − (1− Fj(v̂i + λi − λj))]ei ≥ [cj − (1− Fj(v̂i + λi − λj))]ej. (8)

Recall that

Ui = 0 = (1− Fi(v̂i)− ci)ei +

∫ v̂i

0

 ∏
k ̸=i|v̂k+λk≥vi+λi

Fk(vi + λi − λk)

 fi(vi) dvi.

Obviously, the integral is non–negative as it is a probability. We now show that ei > 0
implies that the integral must be strictly positive. Recall that the mechanism does not
ask i for evidence until every agent k with v̂k + λk > v̂i + λi has already been asked for
evidence and has been found to have a virtual value strictly below v̂i + λi. Hence the
fact that ei > 0 implies that this event must have positive probability.

Furthermore, any other agent k in the same tier as i must have a positive probability
of having a virtual value below the tier threshold. If this were not true, we must have
v̂k ≤ 0. But if v̂k ≤ 0, agent k receives the good if and only if she is asked for evidence,
so her probability of getting the good ex ante is ek. But then her expected payoff is
ek(1 − ck) > 0 as we assume ck < 1 for all k. This implies that k’s incentive constraint
is not binding, which by Lemma 6 implies v̂k = 1, not zero, a contradiction.

Hence Ui = 0 implies

0 <

∫ v̂i

0

 ∏
k ̸=i|v̂k+λk≥vi+λi

Fk(vi + λi − λk)

 fi(vi) dvi = [ci − (1− Fi(v̂i))]ei.

So we have

ci > 1− Fi(v̂i) ≥ 1− Fi(v̂i + λi − λj) ≥ 1− Fj(v̂i + λi − λj),
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where the second inequality is implied by λi ≥ λj and the second from Fi FOSD Fj.

Hence ci − [1− Fj(v̂i + λi − λj)] > 0, so ej > ei implies

[ci−(1−Fj(v̂i+λi−λj))]ei < [ci−(1−Fj(v̂i+λi−λj))]ej ≤ [cj−(1−Fj(v̂i+λi−λj))]ej,

where the second inequality follows from cj ≥ ci. But this contradicts equation (8).
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