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Revelation Principle

Revelation Principle

Literature contains various versions of the Revelation Principle for
evidence.

Basic result: With normal evidence, can restrict attention to
simple, truth–telling, maximal evidence mechanisms.

More formal: Any outcome that can be implemented with normal
evidence can be implemented in a simple mechanism that induces
truth–telling and presentation of maximal evidence.
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Revelation Principle

Simple: Agents simultaneously report types and present evidence,
followed by mechanism giving outcome.

Normality clearly necessary for this as Lipman–Seppi example
shows.

Truth telling and maximal evidence: Mechanism induces ti to
report ti and to provide maximal evidence.

Normality clearly necessary for this too: maximal evidence not
feasible otherwise.
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Revelation Principle

Intuition clear: Simplicity for usual reasons plus normality; truth
telling for usual reasons; maximal evidence because why not?

See Green and Laffont (RES, 1986), Bull and Watson (GEB,
2007), Deneckere and Severinov (GEB, 2008), and Forges and
Koessler (JMathEcon, 2005).

More general model treated in Ben-Porath, Dekel, and Lipman
(2021).
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Revelation Principle

Implication: The mechanism design problem to solve is

max
γ

Et

[∑
a∈A

γ(a | t,M(t))v(a, t)

]

subject to∑
a∈A

γ(a | t,M(t))u(a, t) ≥
∑
a∈A

γ(a | t ′,E )u(a, t), ∀t, t ′, ∀E ∈ E(t).

Explanation: γ : T × E → ∆(A).

Treating A as finite and ignoring IR for simplicity.
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Revelation Principle

Often, principal can punish “obvious deviations” — e.g., claim of
type t ′ but evidence 6= M(t ′).

In such models, these constraints don’t bind so IC becomes∑
a∈A

γ(a | t,M(t))u(a, t) ≥
∑
a∈A

γ(a | t ′,M(t ′))u(a, t),

∀t, ∀t ′ with M(t ′) ∈ E(t).

Here evidence determines which types t can imitate. This is how
Green and Laffont (RES, 1986) defined the evidence model.

See Sher and Vohra (TE, 2015) for an application with this
structure.
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Value of Commitment in Single–Agent Mechanisms

Value of Commitment

In usual mechanism design, rare to see cases where commitment
isn’t helpful.

Typically, principal commits to some ex post inefficient response to
better induce truth–telling.

With evidence, many settings with no value to commitment.

Evidence is not magic, but it makes us think about different
models.
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Value of Commitment in Single–Agent Mechanisms

Example. T = {1, . . . , 1000}.

Prior: µ(1000) = 2/1001, µ(t) = 1/1001 for t 6= 1000.

Evidence: E(1000) = {T}, E(t) = {{t},T} for t 6= 1000.

Actions: A = R+.

Utility for agent/sender: a.
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Value of Commitment in Single–Agent Mechanisms

Case 1:

v(a, t) =

ß
1, if a = t
0, otherwise.

Claim: In every equilibrium without commitment, after observing
no evidence, principal chooses a = 1000.

So no type presents evidence and the principal’s expected payoff is
µ(1000) = 2/1001.
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Value of Commitment in Single–Agent Mechanisms

If principal can commit, she can do better.

Suppose principal commits to choosing a = 0 if no evidence is
presented.

Every type with evidence presents it, so principal sets a = t for all
t 6= 1000. Expected payoff is 999/1001.
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Value of Commitment in Single–Agent Mechanisms

Case 2:
v(a, t) = −(t − a)2.

Now commitment has no value.

Why doesn’t the same commitment as above help?
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Value of Commitment in Single–Agent Mechanisms
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Value of Commitment in Single–Agent Mechanisms
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Value of Commitment in Single–Agent Mechanisms

t

x

1000

1000

2

12



Hotelling Lectures: Evidence in Games and Mechanisms Part 2: Mechanism Design

Value of Commitment in Single–Agent Mechanisms
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Value of Commitment in Single–Agent Mechanisms
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Value of Commitment in Single–Agent Mechanisms

Continues to action equal to pooled group’s mean and below the
lowest type outside the pool.

This is the Dye equilibrium.
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Value of Commitment in Single–Agent Mechanisms

A General But Weird Result

From Ben-Porath, Dekel, and Lipman (2021).

T = set of types of agent.

A = set of actions for principal.

u(a, t) = utility function of agent, v(a, t) = utility function of
principal.

Fix any communication protocol. I.e., stages of cheap talk,
evidence presentation, ultimately choice of a.
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Value of Commitment in Single–Agent Mechanisms

B = pure strategies for agent, ∆(B) mixed strategies, β typical
mixed strategy.

G = pure strategies for principal, ∆(G ) mixed strategies, γ typical
mixed strategy.

U(β, γ) = expected utility for agent, V (β, γ) = expected utility for
principal.

Let
BRu(γ) = Best replies for agent to γ.
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Value of Commitment in Single–Agent Mechanisms

Payoff to principal under commitment:

V ∗ ≡ max
γ∈∆(G)

ï
max

β∈BRu(γ)
V (β, γ)

ò
.

Assumptions:
1. Set of pure strategies for agent and for principal finite.

2. There exists γ∗ such that for every β ∈ BRu(γ∗),

V (β, γ∗) = V ∗.

Changes in agent’s best response don’t affect principal’s payoff.

Weird because it’s not directly a condition on primitives of the
model.
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Value of Commitment in Single–Agent Mechanisms

Theorem. [No value to commitment.] Under assumptions 1
and 2, there is a Nash equilibrium in game without commitment
giving the principal payoff V ∗.

Can extend to perfect Bayesian given additional structure on
protocol.
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Value of Commitment in Single–Agent Mechanisms

Rough intuition: Need for commitment in usual models is that γ∗

is not a best reply to β∗.

Instead, it’s chosen to “push” the agent in a certain way.

The “weird condition” limits the effects of changes in the agent’s
strategy and hence in principal’s incentive to move away from best
reply.

Jump
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Value of Commitment in Single–Agent Mechanisms

Partial proof. Fix γ∗ and β∗ ∈ BRu(γ∗) with V (β∗, γ∗) = V ∗.

By assumption β∗ ∈ BRu(γ∗), so if γ∗ is best reply to β∗, we’re
done.

By our assumption, we can change β∗ to any other best reply to
γ∗ without changing principal’s payoff.

So if we can find any β̂ ∈ BRu(γ∗) with the property that γ∗ is
best reply to β̂, we’re done.
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Value of Commitment in Single–Agent Mechanisms

Consider restricted game where agent can only pick β ∈ BRu(γ∗)
and principal can pick any γ.

Let (β̂, γ̂) be NE of this restricted game.

As noted, if γ∗ is a best reply to β̂, we’re done, so suppose not.

Then V (β̂, γ̂) > V (β̂, γ∗).
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Value of Commitment in Single–Agent Mechanisms

Consider the mixed strategy γε = εγ̂ + (1− ε)γ∗.

Claim: For some very small ε > 0, β̂ is a best reply to γε.

Why? For ε small enough, it’s like a lexicographic problem where
first you maximize against γ∗ and then break indifferences by
maximizing against γ̂. (Uses finiteness.)

By construction, within set of best replies to γ∗, β̂ is best reply to
γ̂.
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Value of Commitment in Single–Agent Mechanisms

γε = εγ̂ + (1− ε)γ∗.

So if principal commits to γε and picks β̂ as the agent’s best reply,
her payoff is

V (β̂, γε) = εV (β̂, γ̂) + (1− ε)V (β̂, γ∗)

> V (β̂, γ∗) = V ∗

This contradicts V ∗ being principal’s payoff under best
commitment.
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Value of Commitment in Single–Agent Mechanisms

Special Cases

1. A = {a1, a2}.

Reason: Best strategy for agent must give highest possible
probability of a1 for types who prefer it and lowest for types who
prefer a2.

So any other best reply must have same probability over actions
for every type.

But then the principal’s payoff same.

Includes all accept/reject problems; generalizes Glazer–Rubinstein
(Econometrica, 2004, TE, 2006).
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Value of Commitment in Single–Agent Mechanisms

2. Optimal mechanism deterministic. Agent’s utility either strictly
increasing or strictly decreasing in a, can vary by t

Best strategy for agent (given no randomization) has each type t
getting largest/smallest a she can, say at .

So any other best reply has to also give type t action at for all t.

So principal indifferent.

Includes square–error loss settings. Generalizes Sher (GEB, 2011)
and Hart, Kremer, and Perry (AER, 2017).
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Multi–Agent Mechanisms

Multi–Agent Mechanisms

Ben-Porath, Dekel, and Lipman (Econometrica, 2019) has the only
multi–agent result on commitment that I know.

Has other interesting features as well.
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Multi–Agent Mechanisms

Problem 1: Simple allocation problem.

Principal has one indivisible good to allocate to one of N agents.

Each agent cares only about getting good and prefers getting it to
not getting it.

Value to principal of giving good to i is vi (ti ) where ti is known
only to agent i .

No monetary transfers possible.
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Multi–Agent Mechanisms

Examples:

1 Dean has one job slot for a department in College;
departments know who they’d hire and how this would
contribute to dean’s payoff.

2 Divisions of an organization all want to head up a prestigious
project for the firm; they know more about their capabilities
than senior management.

3 Regional government will build hospital in one city in the
region; cities all want the hospital and have private
information about health issues in their cities.
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Multi–Agent Mechanisms

Variations:

1 Multiple identical units.

2 Task assignment: No agent wants the good.

3 Task assignment: Some agents want the good and this is
private information which may be correlated with ability.
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Multi–Agent Mechanisms

Problem 2: Public good problem.

Principal must decide whether to provide public good or not.

If so, each of N agents pays 1/N of cost.

Net value to i of public good is vi (ti ) where ti is known only to
agent i .

Principal’s objective function is sum of agents’ utilities.



Hotelling Lectures: Evidence in Games and Mechanisms Part 2: Mechanism Design

Multi–Agent Mechanisms

Results

For a broad class of mechanism design problems, including these:

Randomization has no value for the principal. Not exciting but
plays a role in the commitment discussion.

Requiring robust IC (instead of Bayesian IC) has no cost for
the principal.

Commitment has no value for the principal. There is an
equilibrium in game without commitment giving principal
same payoff as optimal mechanism.

This equilibrium has a simple form and is also robust.
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Multi–Agent Mechanisms

Model.

N agents. Ti = set of types of agent i . Assumed finite.

A = set of actions for principal. Assumed finite.

Agents’ utility: Simple type dependence.

ui (a, ti ) =

ß
ui (a); if ti ∈ T+

i ;
−ui (a); otherwise.

T+
i = positive types.

T−i = Ti \ T+
i = negative types.

Utility can depend on type, but indifference curves same for every
type.



Hotelling Lectures: Evidence in Games and Mechanisms Part 2: Mechanism Design

Multi–Agent Mechanisms

Principal’s utility:

v(a, t) = u0(a) +
N∑
i=1

ui (a)vi (ti ).

If ti positive type and vi (ti ) > 0, principal is putting positive
weight on ti ’s utility. Similar if ti is negative type and vi (ti ) < 0.

Can think of vi (ti ) as measuring how much principal “cares” about
ti ’s utility or as how much what principal likes lines up with ti ’s
utility.

All examples given earlier are special cases.
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Multi–Agent Mechanisms

Model evidence through proving events. ti can prove something
about her type, not types of others.

So Ei (ti ) is collection of subsets of Ti that ti can prove.

Assume normality.
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Multi–Agent Mechanisms

Mechanism is P : T × E → ∆(A). Objective function is

Et

[∑
a∈A

P(a | t,M(t))
N∑
i=0

ui (a)vi (ti )

]
.

Let

Ui (si ,Ei , t−i ,E−i | P, ti ) =
∑
a∈A

P(a | si , t−i ,E )ui (a, ti ).

Type ti ’s expected payoff in P given she reports (si ,Ei ) and others
say (t−i ,E−i ).



Hotelling Lectures: Evidence in Games and Mechanisms Part 2: Mechanism Design

Multi–Agent Mechanisms

Robust IC

Usual incentive compatibility constraint:

Et−iUi (ti ,Mi (ti ), t−i ,M−i (t−i ) | P, ti )
≥ Et−iUi (si ,Ei , t−i ,M−i (t−i ) | P, ti ),

for all ti , si ∈ Ti , all Ei ∈ Ei (ti ), for all i .

Honesty is optimal in expectation given honesty by others.
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Multi–Agent Mechanisms

Robust incentive compatibility:

Ui (ti ,Mi (ti ), t−i ,E−i | P, ti ) ≥ Ui (si ,Ei , t−i ,E−i | P, ti ),

for all ti , si ∈ Ti , all Ei ∈ Ei (ti ), all t−i ∈ T−i , all E−i ∈ E−i , for all
i .

Honesty is optimal no matter what other agents’ type reports and
evidence are. Same idea as dominant strategy incentive
compatibility, but stronger in this setting.
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Multi–Agent Mechanisms

Robust Equilibrium

Analog to robust IC: Each agent’s strategy is optimal given any
actions by the other agents.

Important point: Robustness is only wrt the other agents, not wrt
the principal’s strategy.
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Multi–Agent Mechanisms

Simple Equilibrium

For remainder of explanation, focus on simple allocation problem.

“Simplicity”: Can construct the equilibrium without commitment
via equilibria of a family of auxiliary games.

For each i , define auxiliary game between i and the principal where

i sends cheap talk report and evidence

principal responds with v̂ ∈ R

principal’s payoff is −(vi (ti )− v̂)2

i ’s payoff is v̂
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Multi–Agent Mechanisms

To get equilibrium for game without commitment:

For each agent i , i ’s strategy = her strategy in the auxiliary game.

Principal’s strategy is best reply to these strategies for agents.

So result is that this will be an equilibrium and give principal same
payoff as in optimal mechanism.
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Multi–Agent Mechanisms

Intuition

In auxiliary game, i just wants to make the principal believe vi is
large.

In game without commitment, principal allocates good to agent for
whom his expectation of vi is largest.

i still just wants to make the principal believe vi is large. So she
follows the same strategy.

PBE robust: i ’s strategy optimal regardless of what other agents
are doing.

This gives robust incentive compatibility.
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Multi–Agent Mechanisms

This doesn’t explain why principal can’t do better with
commitment.

Very rough intuition: The robustness property makes it like N
separate one–agent problems.

Then a version of one–agent proof works.
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Multi–Agent Mechanisms

Illustrate with Dye evidence.

Equilibrium of the auxiliary game: There exists unique v∗i such that

v∗i = E [vi (ti ) | ti has no evidence or vi (ti ) ≤ v∗i ] .

If agent i has evidence and vi (ti ) > v∗i , i discloses.

Evidence types with vi (ti ) ≤ v∗i pool with no–evidence types.

Principal’s expectation of vi given nondisclosure is v∗i .

Our result says these strategies are used in the equilibrium of the
game without commitment and give optimal mechanism.
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Multi–Agent Mechanisms

Assume v∗1 > v∗2 , . . . , v
∗
N .

1 either proves she’s better than v∗1 or proves nothing and
principal’s expectation = v∗1 .

If no agent i 6= 1 proves vi (ti ) > v∗1 , principal gives good to 1.

If some agent i 6= 1 proves vi (ti ) > v∗1 , good goes to agent who
proves highest value.

Mechanism: 1 is favored agent and v∗1 is threshold. If no
non–favored agent proves value above threshold, favored agent
gets good. Otherwise, good goes to whoever proves highest value.

Can get optimal mechanisms in other examples similarly.

End of Part 2.
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