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1 Proof of Lemma 2

For notational brevity, let

π(d) = Ev

[∑
i

Pi(v | d)vi

]
and

Ui(d) = EvPi(v | d)− ciei(d).

Because d is a probability measure over dynamic mechanisms, π(d) and the Ui(d)’s are
linear in d in the sense that

π(αd+ (1− α)d′) = απ(d) + (1− α)π(d′), ∀α ∈ [0, 1], d, d′ ∈ D.

Written this way, π(d) and the Ui(d)’s are convex and concave functions of d. This
is because convex combinations of mixed strategies induce convex combinations of the
distributions over outcomes.

So our problem is
max
d∈D

π(d)

subject to
Ui(d) ≥ 0, ∀i.

Let D∗ denote the set of d’s solving this constrained optimization problem. Since the
objective function is continuous and the feasible set nonempty and compact, we know
D∗ 6= ∅.
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Let D∗∗(λ) denote the set of d’s solving

max
d∈D

π(d) +
∑
i

λiUi(d)

and let D∗∗ denote the set of d’s such that there exists λ∗ ∈ RN
+ with d ∈ ∆∗(λ∗) such

that (a) Ui(d) ≥ 0 for all i and (b) λ∗iUi(d) = 0 for all i.

We now show that D∗ = D∗∗.

First, we show D∗∗ ⊆ D∗. Fix any d∗ ∈ D∗∗ and let λ∗ be the associated vector in
RN

+ . Suppose, contrary to our claim, that there exists d̂ with Ui(d̂) ≥ 0 for all i and

π(d̂) > π(d∗). By d∗ ∈ D∗∗(λ∗),

π(d∗) +
N∑
i=1

λ∗iUi(d
∗) ≥ π(d̂) +

N∑
i=1

λ∗iUi(d̂).

Because λ∗iUi(d
∗) = 0 for all i, this implies

π(d∗) ≥ π(d̂) +
N∑
i=1

λ∗iUi(d̂).

Because λ∗i ≥ 0 for all i and Ui(d̂) ≥ 0 for all i, this implies π(d∗) ≥ π(d̂), a contradiction.
Hence D∗∗ ⊆ D∗.

The proof of the converse is a simplification of the proof of Theorem 1, Section 8.3,
of Luenberger (1969). Fix any d∗ in D∗. Let

A = {u = (u0, u1, . . . , uN) ∈ RN+1 | ∃d ∈ D with u0 ≤ π(d) and ui ≤ Ui(d), ∀i = 1, . . . , N}

B = {u = (u0, u1, . . . , uN) ∈ RN+1 | u0 ≥ π(d∗) and ui ≥ 0, ∀i = 1, . . . , N}.

Obviously, both sets are nonempty as (π(d∗), 0, 0, . . . , 0) is in both sets.

Also, both sets are convex. The proof for B is trivial. For A, suppose u and u′ are
elements of A and fix any α ∈ (0, 1). Since u ∈ A, there exists d ∈ D satisfying

u0 ≤ π(d)

ui ≤ Ui(d), ∀i

and let d′ ∈ ∆ satisfy the analog for u′. Then we have

αu0 + (1− α)u′0 ≤ απ(d) + (1− α)π(d′) = π(αd+ (1− α)d′)
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and
αui + (1− α)u′i ≤ αUi(d) + (1− α)Ui(d

′) = Ui(αd+ (1− α)d′),

implying αu+ (1− α)u′ ∈ A.

Also, we have A ∩ int(B) = ∅. To see this, suppose to the contrary that there is
u ∈ int(B) with u ∈ A. Because u ∈ int(B), we have u0 > π(d∗) and ui > 0 for all i.
Because u ∈ A, there exists d ∈ D with π(d) ≥ u0 > π(d∗) and Ui(d) ≥ ui > 0 for all i.
But this contradicts d∗ ∈ D∗ as d satisfies the constraints and gives a higher payoff than
d∗.

By the Separating Hyperplane Theorem, there exists p ∈ RN+1, p 6= 0, such that

p0u0 +
N∑
i=1

piui ≤ p0û0 +
N∑
i=1

piûi, ∀u ∈ A, û ∈ B.

We now show that pi ≥ 0 for all i. Suppose to the contrary that some pi < 0. Given the
definition of B, we could make the corresponding component of û arbitrarily large and
violate this inequality, a contradiction.

Also, p0 > 0. To see this, suppose that p0 = 0. We know that (π(d∗), 0, . . . , 0) ∈ B,
so this implies

N∑
i=1

piui ≤ 0,

for all u ∈ A. But consider the d ∈ D where we randomize uniformly over which agent
to ask first and always give her the good. For this procedure, Ui(d) = (1− ci)/N > 0 for
all i. Hence there exists u ∈ A with ui > 0 for i = 1, . . . , N . Hence the only way this
inequality could hold is if pi = 0 for all i. But we know p 6= 0, a contradiction.

For i = 1, . . . , N , let λi = pi/p0. Then we have λ ∈ RN
+ with

u0 +
N∑
i=1

λiui ≤ û0 +
N∑
i=1

λiûi, ∀u ∈ A, û ∈ B.

Again, (π(d∗), 0, . . . , 0) ∈ B, so this implies

π(d∗) ≥ u0 +
N∑
i=1

λiui, ∀u ∈ A.

For every d ∈ D, (π(d), U1(d), . . . , UN(d)) ∈ A, so this implies

π(d∗) ≥ π(d) +
N∑
i=1

λiUi(d), ∀d ∈ D.
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In particular, d∗ ∈ D, so this implies

π(d∗) ≥ π(d∗) +
∑
i

λiUi(d
∗).

Because λi ≥ 0 for all i and Ui(d
∗) ≥ 0 for all i, we have λiUi(d

∗) = 0 for all i. Hence

π(d∗) = max
d∈D

[
π(d) +

N∑
i=1

λiUi(d)

]
.

Rephrasing, this shows that there exists λ ∈ RN
+ with d∗ ∈ D∗∗(λ) with Ui(d

∗) ≥ 0
and λiUi(d

∗) = 0 for all i. Hence d∗ ∈ D∗∗, completing the proof.

2 Border

In this section, we state and prove a version of a result in Border (1991). Lemma 1 below
is essentially Border’s Lemma 5.1 and Theorem 1 is essentially his Lemma 6.1.

First, we introduce some notation and terminology. In this section only, we denote
the set of types for agent i by Ti and assume Ti is finite and not a singleton for each i.
We consider allocations P = (P1, . . . , PN) with Pi : T → [0, 1] with

∑
i Pi(t) ≤ 1 for all

t ∈ T . Given P , we let p = (p1, . . . , pN) denote the interim probabilities where

pi(ti) =
∑

t−i∈T−i

µ−i(t−i)Pi(ti, t−i),

where µj(tj) is the prior over Tj and we assume type distributions are independent across
agents. When p and P are related in this fashion, we say P generates p.

Lemma 1. Any interim allocation p satisfies the following for every (T̂1, . . . , T̂N) with
T̂i ⊆ Ti for all i: ∑

i

∑
ti∈T̂i

pi(ti)µi(ti) ≤ 1−
∏
i

[1− µi(Ti)] .

Proof. The left–hand side is the probability that the good is allocated to some type in
∪iT̂i. The right–hand side is the probability that at least one agent’s type is in her T̂i
set.

A hierarchical allocation is an allocation P that can be constructed as follows. We
have a ranking function R which maps ∪iTi to {1, . . . , K} for some positive integer K.
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We assume that for every k < K, there is exactly one i such that R(ti) = k for some
ti ∈ Ti. Note that this restriction does not apply to rank K — there may be no or many
agents with types at rank K.

Then given a type profile t = (t1, . . . , tN), either all agents have rank K or there is
a unique i with R(ti) < R(tj) for all j 6= i. If all agents have rank K, then Pj(t) = 0
for all j. If there is a unique i with R(ti) < R(tj) for all j 6= i, then Pi(t) = 1. In other
words, unless all agents are in the lowest rank, the agent who has the highest ranked
type receives the good (where higher ranks have lower numbers).

We say that p is a hierarchical interim probability if it is generated by a hierarchical
allocation P . Of course, the collection of hierarchical interim probabilities is a subset of
the interim probabilities.

Theorem 1. The set of hierarchical interim probabilities is the set of extreme points of
the set of interim probabilities. That is, a function p is an interim probability if and only
if it is a convex combination of hierarchical interim probabilities.

Proof. We first show that any hierarchical interim probability p is an extreme point of
the set of interim probabilities.

Fix a hierarchical interim allocation p and the ranking function R corresponding to
the P that generates it. Given any rank k < K, let i(k) denote the unique agent i with
a type ti satisfying R(ti) = k and let T̂ (k) denote the set of ti ∈ Ti(k) with R(ti) = k.

Suppose, contrary to what we wish to show, that p is not an extreme point of the set
of interim probabilities. Then there exist interim probabilities q1 and q2, neither equal
to p, and λ ∈ (0, 1) such that λq1 + (1−λ)q2 = p. We obtain a contradiction by showing
that we must have q1 = q2 = p.

Clearly, if K = 1, there is only one rank and all types of all agents have rank K.
In this case, p is the zero vector, so the only interim probabilities q1 and q2 that could
satisfy λq1 + (1− λ)q2 = p for λ ∈ (0, 1) are also the zero vector, establishing our claim.

So assume K ≥ 2. Fix any ti(1) ∈ T̂ (1). Then pi(1)(ti(1)) = 1, so λq1 + (1− λ)q2 = p

implies qji(1)(ti(1)) = 1 for j = 1, 2.

This initiates an induction. Let K be the number of ranks. Suppose we have shown
that for all k ≤ k̄ < K, we have

q1
i(k)(ti(k)) = q2

i(k)(ti(k)) = pi(k)(ti(k)), ∀ti(k) ∈ T̂ (k).

We now show the same is true for rank k = k̄ + 1. This is obvious if k̄ + 1 = K since
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pi(ti) = 0 for any ti with rank K. So suppose k̄ + 1 < K. Let i = i(k̄ + 1) and fix any
t∗i ∈ T̂ (k̄ + 1).

We have
pi(k)(ti(k)) = Pr

Ä
ti(j) /∈ T̂ (j), j = 1, . . . , k − 1

ä
and

pi(t
∗
i ) = Pr

Ä
ti(k) /∈ T̂ (k), k = 1, . . . , k̄

ä
.

Consider the inequality stated in Lemma 1 for the sets T̂ (k), k = 1, . . . , k̄, and {t∗i }.
(If some agent j has no type in one of these sets, then T̂j = ∅.) The left–hand side is

k̄∑
k=1

∑
ti(k)∈T̂ (k)

p̂i(k)(ti(k))µi(k)(ti(k)) + p̂i(t
∗
i )µi(t

∗
i )

or

k̄∑
k=1

µi(k)(T̂ (k)) Pr
Ä
ti(j) /∈ T̂ (j), j = 1, . . . , k − 1

ä
+µi(t

∗
i ) Pr

Ä
ti(k) /∈ T̂ (k), k = 1, . . . , k̄

ä
.

The first term is exactly the probability that one of the agents has a rank of k̄ or higher.
So the total probability is the probability that either one of the agents has a rank of k̄
or higher or else i is type t∗i .

The right–hand side of the inequality is 1 minus the probability that no type is in
one of these sets. That is, the right–hand side is

≤ 1− Pr(ti(k) /∈ T̂ (k), k ≤ k̄, and ti 6= t∗i ).

This must hold with equality. The first expression is exactly the probability that one of
these types materializes, while the second is 1 minus the probability that none of them
do.

Because the inequality holds with equality, we see that given the way we specified qj

on the types ranked above k̄, we cannot set qji (t
∗
i ) > pi(t

∗
i ) for either j since doing so would

give an interim probability that violates Lemma 1. Hence we again have qj(t∗i ) = pi(t
∗
i )

for j = 1, 2, completing the induction.

Hence every hierarchical interim probability is an extreme point of the set of hier-
archical probabilities. Next, we show the converse: every extreme point of the set of
interim probabilities is a hierarchical interim probability.

To show this, suppose not. Then there must be some interim probability, say p, which
is not in the convex hull of the set of hierarchical interim probabilities. Let W denote
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this convex hull. Since W is convex, there is a separating hyperplane f ∗. In other words,
viewing p and the elements of W as vectors, there exists a vector f ∗ such that f ∗ ·p̂ > f ∗ ·q
for all q ∈ W . Define f to be the vector with nth element f ∗n/µ(n) where f ∗n is the nth
element of f ∗ and µ(n) is the probability of the type in the nth position in these vectors.

Without loss of generality, we can assume that the fn’s are all distinct. That is, we
have fn 6= fm for n 6= m. (If not, we can perturb f ∗ slightly to achieve this property.)
Recall that the allocation that never gives the good to any agent is hierarchical. Hence
the zero vector is contained in W . Hence f ∗ · p̂ > 0 so f ∗n > 0 for some n and hence
fn > 0 for some n.

Without loss of generality, order the components of vectors so that f1 > f2 > . . . > fN ,
so we know that f1 > 0. Hence there is some n∗ with fn > 0 for n ≤ n∗ and fn ≤ 0 for
n ≥ n∗ + 1 where n∗ is the length of f if all components are positive.

We construct a hierarchical allocation and the associated q ∈ W as follows. Define
the ranking R as follows. For n ≤ n∗, assign rank n to the type in the nth component
of these vectors. For every n ≥ n∗ + 1, assign rank K to the type in the nth component.
Define functions i(k) and T̂ (k) for this ranking as above.

The corresponding q has 1 in the first component, Pr(ti(1) /∈ T̂ (1)) in the second,
etc., and has 0 in all components from n∗ + 1 onward. We now show a contradiction to
f ∗ · p > f ∗ · q.

We can write f ∗ · p > f ∗ · q as

N∑
n=1

fnµ(n)p(n) >
N∑

n=1

fnµ(n)q(n) =
n∗∑
n=1

fnµ(n)q(n)

where p(n) is the nth component of the vector p and other terms are defined analogously.
Equivalently,

N∑
n=1

fnµ(n)(p(n)− q(n)) > 0.

Since f1 > 0, this implies

N∑
n=2

fn
f1

µ(n)(p(n)− q(n)) > µ(1)(q(1)− p(1)).

But q(1) = 1 ≥ p(1), so this implies

N∑
n=2

fn
f1

µ(n)(p(n)− q(n)) > 0.
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If f2 ≤ 0, this is a contradiction, since we would then have p(n) ≥ 0 = q(n) and fn ≤ 0
for all n ≥ 2. So assume f2 > 0.

By assumption, f1/f2 > 1. Hence

f1

f2

N∑
n=2

fn
f1

µ(n)(p(n)− q(n)) >
N∑

n=2

fn
f1

µ(n)(p(n)− q(n)) > µ(1)(q(1)− p(1)).

That is,
N∑

n=2

fn
f2

µ(n)(p(n)− q(n)) > µ(1)(q(1)− p(1)),

so
N∑

n=3

fn
f2

µ(n)(p(n)− q(n)) > µ(2)(q(2)− p(2)) + µ(1)(q(1)− p(1)).

It is not hard to see that the right–hand side must be non–negative. This follows
from the fact that the inequality in Lemma 1 implies that µ(1)q(1) + µ(2)q(2) equals
the maximum possible value for this sum. Hence µ(1)p(1) + µ(2)p(2) must be weakly
smaller. Hence

N∑
n=3

fn
f2

µ(n)(p(n)− q(n)) > 0.

Clearly, iterating, we obtain a contradiction.

Remark 1. Theorem 1 is slightly stronger than what we use. We only need the fact that
every extreme point of the set of interim probabilities is a hierarchical interim probability,
not the converse. We include the converse for the sake of completeness.
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