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Abstract

We consider optimal mechanisms for inducing agents to acquire costly evidence in
a setting where a principal has a good to allocate that all agents want. We show that
optimal mechanisms are necessarily sequential in nature and have a threshold structure.
Agents with higher costs of obtaining evidence and/or worse distributions of value for
the principal are asked for evidence later, if at all. We derive these results in part
by exploiting the relationship between the Lagrangian for this problem and the classic
Weitzman (1979) “Pandora’s box” problem.



1 Introduction

A principal has a single unit of a good or other resource to allocate to one of N agents
under uncertainty regarding the value he would receive from allocating it to any given
one of them. Each agent wants the good, independently of the value her receiving it
would provide the principal. Each agent can obtain information which would reveal to
her the value she would provide the principal if she receives the good as well as evidence
which would prove this value to the principal. However, this information is costly to the
agent, so she would not be willing to get it without being promised a sufficiently high
chance that this will lead to her receiving the good. We characterize optimal mechanisms
for the principal in this setting.

As examples of this situation, consider the head of an organization with multiple
divisions, such as a university with multiple departments. The head of the organization
has discrete resources to allocate, such as prestigious projects or assignments, or, in the
case of a university, job slots. Some divisions would use this resource in ways that are
more productive for the organization than others, but all divisions prefer to receive it.
For a division to determine what value it would produce for the organization if it receives
the resource is costly in time and/or effort, so that the division may prefer not to make
a serious proposal to receive the resource.

We assume monetary transfers cannot be used. Intuitively, divisions of an organi-
zation have funds available to them to carry out actions on behalf of the organization.
So it would be counterproductive to the organization to have divisions “bid” for these
resources.

What, then, can the principal do? First, assume agents are symmetric both in their
costs of obtaining evidence and in the probability distribution over the value they would
provide the principal with the resource. Let c ∈ (0, 1) denote the cost, let vi denote a
typical realization of the value to the principal of giving the good to agent i where these
variables are iid across agents, and normalize the value of receiving the good to an agent
to 1.

A natural mechanism to consider is for the principal to ask all agents to provide
evidence, awarding the good to the agent who proves the highest value. If the number
of agents, N , is large, this will not induce all agents to seek evidence. Specifically,
if c > 1/N , the cost exceeds the expected benefit. Alternatively, the principal could
exclude some agents from the mechanism and only ask some smaller number, say n, such
that 1/n ≥ c. We will see that this can never be optimal.

In this symmetric problem, the optimal mechanism is easy to describe. The principal
chooses a random ordering of the agents where all orderings are equally likely. He goes to
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the first agent in the selected ordering and asks her to provide evidence. In equilibrium,
she will pay the cost c, learn her value, and prove this value to the principal. If her value
is above a certain threshold, v∗, he stops and gives her the good. Otherwise, he continues
to the next agent, applying the same threshold to decide whether to give her the good
or continue. If all agents have values below v∗, he will end up asking all of them for
evidence. In this case, he gives the good to the agent with the highest value.

An important point is that when the principal asks an agent for evidence, he does not
tell her where she is in the sequence. To see why this is valuable, consider for simplicity
the case of two agents. Suppose that when the agent is asked for evidence, she knows
that she is second in line. Then she knows that the other agent’s value is below the
threshold. Letting F denote the common cdf for v, her probability of getting the good
is then 1−F (v∗) + (1/2)F (v∗) > 1/2. This is because she certainly gets it if her value is
above v∗ and she is symmetric to the other agent conditional on her value being below v∗

and so gets the good with probability 1/2 in this event. On the other hand, if she knows
she is the first one to be asked, then her probability of getting the good must be strictly
smaller. More specifically, it is 1 − F (v∗) + (1/2)[F (v∗)]2. This is because she knows
that if she’s below the threshold, the second agent will be asked for evidence and she’ll
only have a chance of getting the good if the other agent is also below the threshold. In
short, the second agent has a larger incentive to pay for evidence than the first. Since
the agents are symmetric, it is optimal to equalize the incentives by randomizing 50–50
over which agent is asked first, rather than to distort the allocation differently for the
two.

When the agents are not symmetric, several new considerations arise. First, because
the principal has to give the good with a certain probability to any agent he asks for
evidence, agents with higher probabilities on high values are better to ask earlier. Second,
agents with higher costs have to be given more incentive to induce them to obtain evidence
and hence he may wish to ask them later.

The optimal mechanism changes in three ways. First, instead of comparing the agent’s
values to the threshold or to one another, we compare virtual values. Specifically, for each
agent i, instead of comparing vi to the threshold or another agent’s value, we compare
vi + λi where λi reflects the severity of i’s incentive compatibility constraint. In fact, λi
is the Lagrange multiplier on this constraint: agents who are harder to incentivize are
given a constant “advantage” in the form of “extra points” added to their values.

Second, not surprisingly, the randomization over orders is no longer uniform. Indeed,
in some cases, the asymmetries across agents will lead to some or all aspects of the
ordering being deterministic. Intuitively, if one agent has much lower costs than another,
then that agent can more easily bear the burden of being asked for evidence first.

Finally, if the asymmetries are significant enough, the mechanism exhibits a more
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extreme form of ordering which we refer to as the use of tiers. More specifically, the
agents are partitioned into tiers. The principal starts with the highest tier, asking agents
in some random order for evidence. In each case, he compares the agent’s virtual value
to the tier 1 threshold, stopping and giving the good to the agent if her virtual value
is above the threshold, continuing otherwise. If all the tier 1 agents have virtual values
below the tier 1 threshold, the principal will learn all of their values. At this point,
he then lowers the threshold. If any of the agents have virtual values above this lower
threshold, he gives the good to the one with the highest virtual value. If not, he continues
to the tier 2 agents now using this lower threshold for the tier 2 threshold. In the most
extreme case, each agent is in her own tier and the order in which agents are asked for
evidence is deterministic.

Intuitively, the use of tiers is valuable to the principal if the agents are extremely
asymmetric. Suppose, for example, that the agents all have the same distribution of
values and all but one have the same costs, with the remaining agent having a much
higher cost than the others. Suppose the principal uses a mechanism with only one tier,
with threshold v∗. Then even if the agent with the very high costs is last, we may need
to make the threshold v∗ very low and/or make her λi very high to give her an incentive
to get evidence. Either is very costly in terms of the other agents. If we make v∗ very
low, then we are more likely to stop before getting to this agent and give the good to a
relatively low type of another agent. If we make λi very large, then if none of the agents
have virtual values above the threshold, the high–cost agent has such a large advantage
that she is likely to get the good even when there is an agent with a significantly higher
value. With the use of tiers, the principal can keep the threshold for the first N−1 agents
at v∗ and only bring it down if none of these agents has a high enough value. This way,
the principal gets the value of the lower threshold in incentivizing the high–cost agent
but loses less on the first N − 1 agents than he would with a single threshold.

In principle, an optimal mechanism could also differ from the description above in
one more way. Specifically, it could be that the randomization over the next agent to ask
for evidence depends nontrivially on the result of evidence received from previous agents.
We call such a mechanism a generalized tiered threshold mechanism, or a generalized
mechanism for short. We use the term tiered threshold mechanism or, more briefly, a
simple mechanism for the class of mechanisms described above where the random order
is not conditional in this way. We show that if a generalized mechanism is optimal, then
there is a simple mechanism which is incentive compatible and yields the principal and
every type of every agent the same expected payoff. In this sense, there is no loss in
restricting attention to simple mechanisms.

A key step in proving that the optimal mechanism takes this form is the exploitation
of a formal connection to Weitzman’s (1979) Pandora box problem. As we explain in
more detail below, the Lagrangian for our problem takes exactly the form of Weitzman’s
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problem if we treat the Lagrange multipliers as exogenous “preference parameters.” This
allows us to easily use Weitzman’s characterization to show that every optimal mechanism
is a generalized tiered threshold mechanism. Characterizing the multipliers and showing
that we can restrict attention to simple mechanisms then completes the characterization
of optimal mechanisms.

In Section 2, we lay out the details of the model. In Section 3, we characterize the
optimal mechanism. In Section 4, we analyze the properties of the optimal mechanism,
characterizing, in particular, the optimal random ordering of the agents. This section
also provides some comparative statics results. We discuss some extensions of the model
in Section 5. Finally, we offer brief concluding remarks in Section 6.

In the remainder of this section, we discuss the related literature. In addition to
Weitzman (1979), there are three distinct branches of the related literature. First, our
work is connected to the literature on mechanism design with evidence. Starting with
Green and Laffont (1986), a number of papers consider properties of optimal mechanisms
in settings where agents have access to hard information or evidence. See, for example,
Glazer and Rubinstein (2004, 2006), Bull and Watson (2007), Deneckere and Severinov
(2008), Hart, Kremer, and Perry (2017), and Ben Porath, Dekel, and Lipman (2019). In
these papers, evidence is entirely exogenous: the agent simply has certain evidence as a
function of her type. By contrast, here, no agent has evidence unless she pays a cost to
obtain it.

A second literature considers mechanism design or games where agents can choose
whether to acquire evidence. For example, Che and Kartik (2009) and DeMarzo, Kremer,
and Skrzypacz (2019) consider game–theoretic models where an agent may choose a test
which can generate an informative random signal. If obtained, this signal realization can
be shown to another party, thus proving the realization and providing evidence. These
papers do not consider mechanism design. By contrast, Ball and Kattwinkel (2022) and
Ben Porath, Dekel, and Lipman (2022) do consider mechanism design when evidence
can be acquired. These papers give some broad characterizations related to optimal
mechanisms in these settings, but do not characterize optimal mechanisms for specific
settings, as we do here.

Finally, there is a literature on mechanism design with information acquisition — see,
for example, the survey of Bergemann and Välimäki (2006). In our model, the agent does
not know her value until she acquires evidence, so evidence acquisition and information
acquisition go hand–in–hand. The key difference between our work and these models,
then, is exactly that the nature of the incentives to reveal the information acquired differ.
With evidence, an agent is restricted in the misreports she can potentially get away with,
so the honest–reporting constraints are different than in a model without evidence.

Perhaps the most closely related papers to ours are two papers in this literature,
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namely, Gershkov and Szentes (2009) and Crémer, Spiegel, and Zhang (2009). Both can
be described as settings with a principal and multiple agents. Gershkov–Szentes differs
from our model in that they consider a public decision rather than a private allocation.
The principal chooses a decision in {0, 1} where all agents have the same state–dependent
preferences between these options. In the optimal mechanism, the principal approaches
agents in a random order to ask them to obtain information and provide it to him. Agents
bear a private cost of obtaining information, as in our model. Because signals constitute
evidence in our model but not in theirs, they need to impose truth–telling constraints in
addition to the obedience constraints in both models. They consider only the case where
agents are symmetric and restrict attention to mechanisms that are ex post efficient. We
do not need either of these restrictions.

Crémer, Spiegel, and Zhang, like us, consider a model where the principal is, in effect,
allocating a single unit of a good. Unlike us, however, they do allow monetary transfers,
which are critical to the model. Also unlike us, the principal does not inherently care
which agent he gives the good to — instead, the principal is interpreted as a seller who
maximizes the revenue he receives. In their model, the information acquisition by an
agent is how the agent learns her valuation for the good. Crémer, Spiegel, and Zhang
assume that the principal controls the information acquisition and so can block an agent
from getting information before the principal is ready for her to do so. Essentially, they
construct a VCG mechanism which extracts the entire ex ante surplus from the agents.
Since agents can’t get information before the principal is willing to let them, this is
feasible. Then the principal pays the agents their information cost when he is ready for
them to get information. In effect, the mechanism turns into a search problem where
the principal seeks the most efficient way to find a high–value buyer to sell the good to.
Because of this, they can also use Weitzman’s (1979) results to characterize the optimal
mechanism.

2 Model

There are N ≥ 2 agents and a principal. The principal has one unit of a good to allocate
to an agent. The value to the principal of allocating the good to agent i is vi. However,
vi is unknown to the principal or any agent at the outset. We assume that the common
prior over vi is given by cdf Fi with strictly positive density fi over the support [0, 1]. We
assume vi’s are independently distributed across agents. Aside from the assumption that
the supports are the same, we impose no symmetry conditions on the distributions across
agents. We sometimes let Vi = [0, 1] denote the support of vi and V = [0, 1]N =

∏
i Vi.

Agent i can learn her value vi at a cost ci ∈ (0, 1).1 If she pays this cost, she not only

1It is not difficult to extend our results to allow some agents to have costs above 1. See Section 5.
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learns the realization of vi but also obtains evidence enabling her to prove this realization
to the principal. One can interpret “learning vi” as observing a verifiable signal which
generates a certain conditional expectation of vi. Agent i can then prove this conditional
expectation by showing this signal to the principal. Since all agents are risk neutral,
replacing vi with this conditional expectation changes nothing.

We assume all agents wish to obtain the good. Not including the cost of evidence
acquisition, the agent’s payoff is 1 if she receives the good, 0 otherwise. Her final payoff
then is the payoff from the allocation of the good minus ci if she acquired evidence. The
principal’s payoff is independent of whether/which agents incur evidence costs and is
equal to 0 if he keeps the good and vi if he gives the good to agent i.

In some examples, it is natural to assume that agent i cannot “consume” the good
without paying cost ci. For example, if we think of departments in a University compet-
ing for a job slot, then each department presumably must incur costs to identify their
preferred candidate even if they are simply given the slot without needing information to
compete for it. We assume that paying the cost is not necessary for consumption in this
sense, but only because this is the more difficult case. As we explain in Section 5, one
of our lemmas holds trivially if we assume it is necessary to pay this cost and no other
results are affected.

The set of dynamic mechanisms available to the principal is quite complex. At each
step, the principal can decide which agent or agents to ask for evidence, what (if anything)
to tell them about what has happened so far, and how to react to the evidence they
provide, if they do so. To keep the notation relatively simple, we restrict the class of
mechanisms in a few ways that are clearly without loss of optimality for the principal.

First, we assume that the principal never asks more than one agent for evidence at a
time. Because there is no discounting in our model, this is without loss for the principal
as he can always ask one agent, then immediately afterward ask another.

Second, we assume that if an agent is asked to get evidence and refuses, then she
is not given the good. By the Revelation Principle, we know that it is without loss of
generality to consider mechanisms which induce agents to obey. Hence we may as well
focus attention on mechanisms where agents are punished as severely as possible if they
refuse to obey. In our model, the most severe possible punishment for an agent is not
giving her the good.

Third, we assume no agent is asked for evidence more than once. As noted above, the
Revelation Principle tells us we can focus on mechanisms in which agents always obey.
Since the principal cannot gain by getting evidence from an agent twice, he will never
ask any agent more than once.
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Finally, we assume that the principal never provides any information for an agent upon
asking her to obtain evidence. Put differently, each agent has (at most) one information
set in the game the principal induces. To see that this is without loss for the principal,
suppose instead that there are two different information sets for the agent. Then incentive
compatibility requires that the agent’s expected utility to obeying the principal is higher
than her expected payoff to disobeying conditional on each information set. This implies
but is not implied by the statement that the agent’s expected utility to obeying is higher
than her expected utility to disobeying unconditionally. Hence the principal weakly
improves incentives by pooling these histories together.

Intuitively, a dynamic mechanism specifies one of the following decisions by the prin-
cipal after every history. Either (a) the principal ends the process and keeps the good,
(b) the principal ends the process and gives the good to one of the agents, or (c) the
principal asks some agent to obtain and provide evidence.

More formally, a history is a sequence of agents and their responses to being asked for
evidence. To be specific, a length n history is a sequence ((i1, x1), (i2, x2), . . . , (in, xn))
with the following properties. First, in ∈ {1, . . . , N} for all n. That is, in is the agent
who is the nth agent asked for evidence. Second, xn ∈ [0, 1]∪{R}. Here xn = R denotes
the response of agent in to refuse to provide evidence. If xn ∈ [0, 1], then xn is the value
proved by agent in. Finally, ik = i`, then k = ` — that is, no agent can be asked for
evidence twice.

Let Hn denote the set of all length n histories and let H = ∪Nn=0Hn where we define
H0 = {e}, so that e is the empty history. Note that there cannot be a history of length
more than N .

A (pure) dynamic mechanism is a measurable function d : H → ({0}×{0, 1, . . . , N})∪
({1} × {1, . . . , N}) satisfying the properties stated below. If d(h) = (0, i), this means
the principal ends the process on history h and gives the good to agent i (where i = 0
— that is, keeping the good — is possible). If d(h) = (1, i), this means the principal
continues the process on history h and asks agent i for evidence. Note that d(h) cannot
equal (1, 0) — that is, the principal cannot ask himself for evidence.

The properties we require d to satisfy are as follows. First, we require

d((i1, x1), (i2, x2), . . . , (in, xn)) 6= (0, ik)

if xk = R for any k = 1, . . . , n. That is, if ik was asked for evidence and refused, she
cannot get the good.

Second, we require that

d((i1, x1), (i2, x2), . . . , (in, xn)) 6= (1, ik)
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for any k = 1, . . . , n. That is, the principal cannot ask any agent for evidence who has
already been asked.

Let D̂p denote the set of pure dynamic mechanisms and let D̂ denote the set of

probability mixtures over D̂p — that is, the set of random mechanisms.

The following lemma shows that we can restrict the set of dynamic mechanisms
further. We will restrict attention to mechanisms that satisfy a property we call no free
lunch. We say a mechanism satisfies no free lunch if it never gives the good to an agent
who has not provided evidence. It is easy to see that the principal may as well choose a
mechanism satisfying this property as he does not pay the costs. The following lemma
establishes the more substantial point that every optimal dynamic mechanism satisfies
this property.

Lemma 1. Fix any incentive compatible dynamic mechanism violating no free lunch
on a set of histories with strictly positive probability. Then there is another incentive
compatible mechanism which gives the principal a strictly higher expected payoff. Hence
any optimal incentive compatible mechanism must satisfy no free lunch up to sets of
measure zero.

Proof. Fix a set of histories H∗ with positive probability on which the principal gives the
good to agent i with positive probability even though i has not provided evidence. There
are two cases to consider. First, suppose that every history in H∗ has the property that
the principal has previously received evidence from at least one agent. (If H∗ does not
have this property but some positive measure subset does, we can replace H∗ with this
subset.) For each history h ∈ H∗, let v̄(h) denote the highest value which some other
agent has previously proven to the principal. Because this set of histories has positive
measure, the set of values of v̄(h) for this set of histories must be uncountable. Hence
the probability that vi and h have the property that vi < v̄(h) must be strictly positive.

Let v̄i be defined by 1 − Fi(v̄i) = ci. Because ci < 1 for all i and because Fi is
continuous for all i, we know that v̄i > 0. Fix some ε ∈ (0, v̄i).

Change the mechanism only on histories in H∗ as follows. With whatever probability
the original mechanism gave the good to agent i, the principal instead asks agent i to
provide evidence. If i does not provide evidence, the principal keeps the good. If i does
provide evidence and shows either that vi ≥ v̄i − ε or that vi ≥ v̄(h), the principal gives
the good to i. If the agent’s evidence shows that vi < v̄i − ε and vi < v̄(h), the principal
gives the good to the agent who has proven value v̄(h).

It is easy to see that i’s probability of receiving the good if she provides evidence is
strictly larger than her cost, so it is strictly optimal for her to provide evidence.2 Also,

2Note that it is optimal for this agent to get evidence whether the principal informs her that she is
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every other agent’s incentive to provide evidence is at least as large as before since any
agent who obtains evidence now gets rewarded with the good more often. Hence the
new mechanism is incentive compatible. Clearly, the probability that the principal gains
by giving the good to an agent with a value higher than vi is strictly positive, so the
principal’s expected payoff to the alternative mechanism is strictly larger. Hence the
original mechanism was not optimal.

Second, suppose that the set of histories for which the principal gives the good to i
with positive probability without obtaining evidence from i has positive probability, but
the subset of these histories on which some other agent has previously provided evidence
has probability zero. By incentive compatibility, this means that on these histories, no
other agent has been asked for evidence. In this case, fix any agent j 6= i and replace v̄(h)
in the argument above with E(vj). The change in the mechanism now has no effect on
the incentives of other agents to obtain evidence since the change only takes place when
none of them have been asked to do so. Hence the new mechanism is again incentive
compatible and improves the principal’s payoff, implying that the original mechanism
was not optimal.

Let Dp denote the set of pure dynamic mechanisms d ∈ D̂p satisfying no free lunch —
i.e., those such that d(h) = (1, i) only if h = ((i1, x1), (i2, x2), . . . , (in, xn)) where i = ik
for some k. Let D denote the set of probability mixtures over DP .

By the Revelation Principle, it is without loss of generality to focus attention on
mechanisms in which agents find it optimal to obey the principal. That is, once we
restrict to incentive compatible mechanisms, we know that the relevant histories will
be ones where agents who are asked for evidence do, in fact, provide it. Given such
a dynamic mechanism, we can then compute the outcome under the mechanism as a
function of the profile of types v.3

Let P (d) = (P1(d), . . . , PN(d)) denote the allocation probabilities induced by dynamic
mechanism d. That is, for each d, Pi(d) is a measurable function mapping V to [0, 1]
where ∑

i

Pi(v | d) ≤ 1, ∀v ∈ V.

Let ei(d) denote the probability agent i is asked for evidence in mechanism d.

on one of these histories or if the principal pools this set of histories with any other histories on which
she would be asked for evidence in the original mechanism. In the latter case, we are pooling two sets
of histories, where it is optimal for the agent to get evidence conditional on either separately and hence
conditional on the union.

3We omit the precise definition as it will not be needed. Briefly, one can iteratively define the
probability distribution over realized histories given d as a function of the profile v. This then determines
the probability distribution over outcomes.
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We can now state the principal’s maximization problem. The principal’s objective
function is

Ev

[∑
i

Pi(v | d)vi

]
.

The constraints are the N incentive compatibility constraints. One might expect
these constraints to be very complex since they say that conditional on being asked for
evidence, an agent finds it optimal to obey. This conditioning depends in a complex way
on the dynamic mechanism since we have to identify the set of histories on which this
agent might be asked for evidence. Fortunately, we are able to bypass this complexity
by expressing the incentive compatibility constraint at the ex ante stage. Recall that
each agent has (at most) one information set in the mechanism. Hence we can write the
incentive compatibility constraint as requiring that the ex ante optimal strategy for the
agent is to obtain evidence and provide it if asked for it. Note that if the agent obeys
the principal, then her expected payoff in mechanism d must be

EvPi(v | d)− ciei(d).

To compare this to the agent’s expected payoff to any ex ante strategy which disobeys,
note first that if the agent is not asked for evidence, then, by the no–free–lunch restriction,
she will not get the good. Hence regardless of her deviation strategy, her payoff if not
asked for evidence is 0.

To pin down the agent’s deviation payoff more precisely, first, consider the deviation
strategy where the agent does get evidence when asked but does not always report it. In
this case, her expected costs of evidence acquisition are still ciei(d), but she must receive
the good weakly less often. Hence obeying the principal must give a weakly higher payoff
than this. Second, consider the deviation strategy of not getting evidence. In this case,
she gets a payoff of 0 whether she is asked for evidence or not and hence her expected
payoff is 0. Therefore, we can write the incentive compatibility constraint for agent i as

EvPi(v | d) ≥ ciei(d).

Hence we can state the principal’s optimization problem as follows. We say that
d ∈ D∗ is optimal if it solves the problem

max
d∈D

Ev

[∑
i

Pi(v | d)vi

]
subject to

Ev[Pi(v | d)]− ciei(d) ≥ 0, ∀i.

Let D∗ denote the set of optimal d’s. In the next section, we characterize this set.
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3 Characterizing the Optimal Mechanism

We show that without loss of utility for the principal, we can focus on a class of mech-
anisms we call tiered threshold mechanisms or sometimes simple mechanisms for short.
A tiered threshold mechanism consists of the following. We have a partition of the set
of agents into K tiers, denoted I1, . . . , IK . For each tier Ik, we have two additional
objects. First, we have a random ordering of the agents in that tier. More specifically,
there is a probability distribution, denoted Ok over the set of linear orders over Ik where
we interpret a typical such order, �k, by saying that if i ≺k j, then i goes before j.
Second, for each tier Ik, we have a threshold v∗k ∈ R+. Finally, for each agent i, we have
a non–negative number λi. We refer to vi + λi as i’s virtual value.

Given these objects, the tiered threshold mechanism works as follows. First, we draw
random orders over the sets of agents in each tier. Let �k be the ordering drawn for tier
k. We then ask the first agent according to �1 for evidence. (In equilibrium, all agents
obey requests for evidence.) If vi + λi > v∗1 so that her virtual value is above the tier 1
threshold, the mechanism stops and gives her the good. Otherwise, we continue to the
next agent according to �1. If all the tier 1 agents have virtual values below v∗1, then all
will be asked for evidence. At this point, if any of these agents has a virtual value above
the tier 2 threshold, v∗2, the mechanism stops and gives the good to that agent with the
highest virtual value. If not, we continue to the first agent in tier 2 according to �2.
Again, the mechanism stops and gives the good to this agent if her virtual value is above
the tier 2 threshold and continues otherwise. If none of the tier 2 agents has a virtual
value in this range, we compare the virtual values of all tier 1 and tier 2 agents to the
tier 3 threshold v∗3, etc.

If all agents have virtual values below the tier K threshold, then the mechanism will
end up asking all of them for evidence. In this case, the good is allocated to that agent
with the highest virtual value.

We also show that the class of all optimal mechanisms is the set of what we call
generalized tiered threshold mechanisms or generalized mechanisms for brevity. The only
difference between a generalized mechanism and a simple mechanism is in the distribution
over orders within a tier. In a simple mechanism, there is a single random choice of an
order associated with each tier. In a generalized mechanism, which agent within a tier is
chosen at any ponit can depend on all past observations by the principal.

Our proofs connect the dynamic mechanism design problem to Weitzman’s (1979)
“Pandora’s box” problem. First, we briefly summarize Weitzman’s results.

Weitzman considers the following problem, simplified here to more easily line up with
our problem. There is a searcher who faces N “boxes.” Box i has a certain monetary prize
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xi in it where xi is distributed according to a distribution F̂i. Prizes are independently
distributed across boxes. There is a cost, ĉi, to opening box i. At each point in the
search process, the searcher decides between quitting and taking no box, quitting and
taking some box she has previously opened, or opening a box she has not yet opened.
The searcher’s payoff is the prize in the box she takes (or 0 if she takes no box) minus
the accumulated costs of the boxes she has opened.

Weitzman characterizes the set of optimal search procedures as follows. For each box
i, associate an index, ri, defined by

ĉi = Exi max{xi − ri, 0}.

Intuitively, ri is that value such that if the searcher could quit and take ri or open box
i and then quit taking the better of ri and the prize in box i, she would be indifferent
between these options. For simplicity, we assume ri > 0 for all i, as the analog of this
property will necessarily hold for our use of Weitzman’s result. Given this, a search
procedure is optimal iff it takes the following form. First, the searcher opens any box i1
with the highest index — i.e., such that ri1 = maxj rj. If there is more than one such
box, any randomization is optimal. If the prize in box i1, xi1 , satisfies xi1 > maxj 6=i1 rj,
then the searcher stops and takes box i1. In our problem, the analog of the xi’s will be
continuously distributed, so we do not need to consider what happens if xi1 = maxj 6=i1 rj.
If xi1 < maxj 6=i1 rj, the searcher opens any box i2 with the highest index of the remaining
boxes — i.e., such that ri2 = maxj 6=i1 rj. The searcher continues in this fashion, comparing
the largest prize found so far in any box to the maximum index of the unopened boxes.
If the largest prize is strictly above the highest index among the unopened boxes, the
searcher stops and takes the corresponding box. Otherwise, she continues and opens any
unopened box with the largest possible index. If she opens all boxes, she takes the one
with the largest prize.

The following lemma is the key to linking Weitzman’s result to our problem. Recall
that D∗ is the set of optimal d’s. Given λ ∈ RN

+ , let D∗∗(λ) denote the set of maximizers
of the Lagrangian function

L = Ev

[∑
i

Pi(v | d)vi

]
+
∑
i

λi [EvPi(v | d)− ciei(d)]

and let D∗∗ denote the set of incentive compatible d ∈ D∗∗(λ) for some λ such that
λi[EvPi(v | d)− ciei(d)] = 0 for all i.

Lemma 2. D∗ = D∗∗.

In other words, strong duality holds. This follows from the fact that the set of (P, e)
that can be generated by a mechanism is convex and that payoffs are linear in (P, e). The
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proof of this result is relatively standard but is contained in the supplemental appendix
for the convenience of the reader.

Given this lemma, Weitzman’s result almost immediately yields the following:

Theorem 1. Every optimal dynamic mechanism is a generalized tiered threshold mech-
anism.

Proof. We can rewrite the Lagrangian as

Ev

[∑
i

Pi(v | d)(vi + λi)− λiciei(d)

]
.

Let d∗ denote an optimal mechanism and λ∗ the associated Lagrange multipliers. By
Lemma 2, d∗ solves the problem

max
d∈D

Ev

[∑
i

Pi(v | d)(vi + λ∗i )− λ∗i ciei(d)

]
.

This is almost exactly Weitzman’s problem. To be specific, think of agent i as box i
where the prize in box i is vi+λ∗i and the cost of opening box i is λ∗i ci. Think of Pi(v | d)
as the probability of choosing box i under search procedure d when the prizes are given
by (v1 + λ∗1, . . . , vN + λ∗N) and ei(d) as the probability of opening box i under search
procedure d.

The only difference between this problem and Weitzman’s is that a mechanism in
our problem must specify what to do on a history where some agent has been asked
for evidence and refused to comply. In Weitzman’s problem, a search procedure is not
defined on such a history as boxes cannot refuse to be opened. Let H∗ denote the set
of all possible histories in our problem with the property that no agent has ever refused
when asked for evidence. Then the set of search procedures in Weitzman is exactly our
set of dynamic mechanisms when we restrict the set of histories to H∗. In both cases,
the options are only to quit and receive a payoff of zero, quit and give the good to some
agent who has provided evidence/take a previously opened box, or to ask some agent for
evidence who has not yet provided it/open some unopened box. Because an agent will
not refuse to provide evidence if asked, the histories we exclude when considering H∗ are
payoff irrelevant.

Hence d∗ must be in the class of search procedures Weitzman identifies. The index
for box/agent i, which we denote by v̂i + λ∗i , is defined by

λ∗i ci = Evi+λ∗i
max{vi + λ∗i − (v̂i + λ∗i ), 0} = Evi max{vi − v̂i, 0}.

13



Partition the set of agents into tiers, I1, . . . , IK where the agents in I1 have the largest
index, those in I2 have the next largest index, etc. For tier Ik, let v∗k denote the common
index for the agents in that tier.

Then the optimal procedure must start with the agents in tier 1, asking them for
evidence in some order. This order is arbitrary in Weitzman and so could depend on the
specific agents previously asked for evidence and/or the evidence they show. If the prize
in box i/associated with agent i of vi + λi is larger than v∗1, then we stop and take that
box/give the good to that agent. Otherwise, we continue to some other box/agent in
tier 1. After checking the last agent in tier 1, the relevant comparison is to the common
index for the second tier, v∗2. Thus if the agent with the highest virtual value in tier 1 is
above v∗2, this agent gets the good and otherwise we continue to tier 2.

It is not hard to see that this is exactly a generalized tiered threshold mechanism.

As the proof of Theorem 1 shows, we use Weitzman’s theorem to say that the op-
timal mechanism has the form of a generalized tiered threshold mechanism. However,
Weitzman’s results do not identify the randomization over the order of checking, not
even whether it varies with previous observations by the principal. In Weitzman, if two
boxes have the same index, then any randomization over which to check first is equally
good, including randomizations that depend on the prizes in previously opened boxes.
For our model, though, these randomizations are significant as they matter for incentive
compatibility. As discussed in the introduction, all else equal, an agent who is asked
earlier for evidence is less likely to receive the good. Hence an agent who is more likely
to be asked early has less incentive to obey when asked for evidence. In other words,
Weitzman’s theorem identifies the form of the optimal mechanism for some profile of λi’s
without identifying anything about the randomizations involved. The next step is to
identify the λi’s and characterize the randomizations.

A key simplification is that we can restrict attention to the simpler class of tiered
threshold mechanisms, rather than considering all generalized tiered threshold mecha-
nisms. Intuitively, the application of Weitzman’s theorem tells us that the payoff of the
principal is not directly affected by the randomizations, so the principal does not directly
gain from making these depend on the past history. As we will show, having these ran-
domizations depend on the past history does not help with incentive compatibility either,
so there is no value to them.

More specifically, for any generalized tiered threshold mechanism, we will show that
there is a simple mechanism which is equivalent in the following sense.

Definition 1. Mechanisms d and d′ are interim–equivalent if for all i and all vi ∈ [0, 1],
Ev−i

Pi(v | d) = Ev−i
Pi(v | d′) and if for all i, ei(d) = ei(d

′).
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Because the agents are not endowed with private information, it would arguably be
appropriate to call two mechanisms equivalent if they gave the principal and every agent
the same ex ante expected payoff. We use the stronger notion of interim–equivalence
both because it gives a stronger result and because the interim comparison is a convenient
approach to proving our results.

For brevity, we define the usual interim probabilities (also called the reduced form)
by pi(vi | d) = Ev−i

Pi(vi, v−i | d).

The following lemma shows the significance of interim–equivalence.

Lemma 3. If d is an optimal incentive–compatible mechanism and d′ is interim–equivalent
to it, then d′ is also an optimal incentive–compatible mechanism and every type of every
agent obtains the same payoff in d′ as in d.

Proof. Since d is incentive compatible, we have

EPi(v | d)− ciei(d) ≥ 0

or
Evipi(vi | d)− ciei(d) ≥ 0

for all i. Hence, since d′ is interim–equivalent to d, we have

Evipi(vi | d′)− ciei(d′) ≥ 0

for all i, so d′ is also incentive compatible. More generally, the payoff to agent i of type
vi in mechanism d is

Ev−i
Pi(vi, v−i | d)− ciei(d) = pi(vi | d′)− ciei(d′),

so every type of every agent is indifferent between the two mechanisms.

Finally, we can write the payoff of the principal under d as

Ev

[∑
i

Pi(v | d)vi

]
=
∑
i

Evi

[
Ev−i

Pi(vi, v−i | d)vi
]

=
∑
i

Evi [pi(vi | d)vi] .

Since d′ is interim–equivalent to d, the principal’s payoff is the same under d and d′, so
if d is optimal, d′ must be optimal as well.

Put differently, Lemma 3 says that we can only identify optimal mechanisms (at
most) up to interim–equivalence. Hence we may as well focus on a convenient selection
from the interim–equivalent optimal mechanisms. We show below that tiered threshold
mechanisms are such a selection.
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This claim will follow from a result which is broadly useful for characterizing the
optimal mechanism. Specifically, we show that we can identify the λi’s and the ei’s and
use these variables to identify the randomizations. In particular, any two mechanisms
which have the same λi’s and the same ei’s are interim–equivalent. We then characterize
the set of feasible ei’s given the λi’s and show that any feasible ei can be generated by
a simple tiered threshold mechanism, implying that we can restrict attention to these
mechanisms.

Recall that a tiered threshold mechanism specifies numbers λ1, . . . , λN , a partition
of the agents into tiers I1, . . . , IK , and thresholds for each tier. The difference between
generalized and simple tiered threshold mechanisms is how the order of asking agents
within a tier is determined. As the proof of Theorem 1 shows, once we specify the λi’s,
the indices v̂i + λi are defined by Weitzman’s formula, which in turn defines the tiers
and thresholds. Hence the λi’s and the order of asking agents within each tier is all that
needs to be specified.

Lemma 4. Fix mechanisms d and d̂ in D∗∗(λ) satisfying ei(d) = ei(d̂) for all i. Then d
and d̂ are interim–equivalent.

Proof. We prove this result by showing that we can write pi(vi | d) entirely as a function
of the λ’s and ei. Given this, if two mechanisms have the same λ’s and e’s, they must be
interim–equivalent.

So fix any λ ∈ RN
+ and any d ∈ D∗∗(λ). The proof of Theorem 1 shows that this must

be a generalized tiered threshold mechanism. Fix the e’s generated by this mechanism.

The proof of Theorem 1 shows that we can define the index for i entirely from λi.
Specifically, it is v̂i + λi where v̂i is defined by

λici =

∫ 1

v̂i

(v − v̂i)fi(v) dv.

It is easy to show that v̂i is uniquely determined by λi.

Given the profile (v̂1+λ1, . . . , v̂N+λN) and e = (e1, . . . , eN), we can compute pi(vi | d)
for any i and any vi as follows. First, if vi ≥ v̂i, then agent i receives the good if and
only if she is asked for evidence. Second, if vi < v̂i, we have

pi(vi | d) =
∏

j 6=i|v̂j+λj≥vi+λi

Fj(vi + λi − λj).

To see this, first, consider vi ≥ v̂i. Clearly, the no–free–lunch property implies that i
does not receive the good if she is not asked for evidence. If she is asked for evidence
and is in a tier with other agents, she receives the good if her virtual value is above the
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threshold for that tier. Since the threshold is the common index for the agents in that
tier, this means she receives the good if vi + λi ≥ v̂i + λi or simply vi ≥ v̂i. If she is
in a tier by herself, she receives the good if her virtual value is above the next highest
index among the other agents. But then if her virtual value is above her own index, this
certainly holds. Hence if vi ≥ v̂i, we have pi(vi | d) = ei(d).

So suppose vi < v̂i, so i’s virtual value is below her index. In this case, i receives the
good only if all the other agents who are checked have virtual values below hers. To be
more specific, note that any agent j with v̂j + λj > vi + λi will be checked before agent
i is given the good. So for i to receive the good when her value is vi, it must be the case
that all such j have vj +λj < vi +λi. The expression above gives exactly the probability
of this event.

Hence pi(vi | d) is uniquely identifed by the λ’s and e’s generated by d.

The next step is to identify the set of ei’s that can be generated by an optimal
mechanism given the λ’s. To see the issue, suppose that tier 1 consists of agents 1 and
2, that v̂1 = v̂2 ∈ (0, 1), and that e1 = e2 = 1. From the above, if v1 ≥ v̂1 and v2 ≥ v̂2,
both agents 1 and 2 have virtual values above the threshold for tier 1. Hence both get
the good iff they are asked for evidence. But we are hypothesizing that both are asked
for evidence with probability 1. This is simply not possible — when v1 ≥ v̂1 and v2 ≥ v̂2,
we are saying both agents get the good, but only one of them can.

In other words, given the λ’s, not every (e1, . . . , eN) can be generated by some choice of
randomization over the order of asking agents for evidence. The issue may seem different,
but it turns out to be related to Border’s (1991) characterization of the set of interim
allocation functions which are feasible in the sense that they can be generated by some
allocation functions. Border’s result covered symmetric distributions and subsequent
work extended his results in many directions — see, for example, Mierendorff (2011) or
Che, Kim, and Mierendorff (2013). Here we give some clearly necessary conditions on
the ei’s in the spirit of the Border conditions. In the Appendix, we show that these
conditions are sufficient.

Lemma 5. Fix λ = (λ1, . . . , λN) and the associated v̂1, . . . , v̂N . If there exists a gen-
eralized tiered threshold mechanism d ∈ D∗∗(λ) which generates (e1(d), . . . , eN(d)) =
(e1, . . . , eN), then the following conditions hold. First,∑

i∈Ik

ei[1− Fi(v̂i)] =

[ ∏
i∈Ik−1

Fi(v
∗
k − λi)

][
1−

∏
i∈Ik

Fi(v̂i)

]
, (1)

where the first term on the right–hand side is defined to be 1 for k = 1 and otherwise

Ik−1 =
k−1⋃
`=1

I`.
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Second, for all I ⊂ Ik,

∑
i∈I

ei[1− Fi(v̂i)] ≤

[ ∏
i∈Ik−1

Fi(v
∗
k − λi)

][
1−

∏
i∈I

Fi(v̂i)

]
, (2)

Furthermore, for any e satisfying these conditions, there is a simple tiered threshold
mechanism d ∈ D∗∗(λ) that generates ei(d) = ei for all i.

Because of their similarity to the conditions identified by Border (1991), we refer to
equations (1) and (2) as the Border conditions.

Proof. The proof that any e generated by a generalized tiered threshold mechanism must
satisfy the Border conditions is straightforward. First, consider tier 1. For k = 1, the
first Border condition, equation (1), says∑

i∈I1

ei[1− Fi(v̂i)] = 1−
∏
i∈I1

Fi(v̂i).

To understand the left–hand side, consider an agent i in tier 1 with vi ≥ v̂i (equivalently,
vi + λi ≥ z∗i (v̂i)). By the definition of a generalized tiered threshold mechanism, such an
agent gets the good if and only if she is asked for evidence. Hence the left–hand side is
the probability that the good goes to some agent i in tier 1 with a value in this range.
However, the definition of a generalized tiered threshold mechanism also says that if there
is some agent i in tier 1 with a value in this range, then the good must go to such an
agent. Since the right–hand side is the probability that the realized v has at least one
tier 1 agent with a value in this range, we see that the left–hand side and right–hand
side must be equal.

Continuing with k = 1, the second Border condition, equation (2), says∑
i∈I

ei[1− Fi(v̂i)] ≤ 1−
∏
i∈I

Fi(v̂i),

for all I ⊆ I1. To see that this must hold, note that the left–hand side is the probability
that an agent i ∈ I has vi ≥ v̂i, is asked for evidence, and hence receives the good, while
the right–hand side is the probability that some agent i ∈ I has vi ≥ v̂i. Hence the
left–hand side must be smaller than the right.

Similarly, consider k = 2, where the first Border condition says that

∑
i∈I2

ei[1− Fi(v̂i)] =

[∏
i∈I1

Fi(v
∗
2 − λi)

][
1−

∏
i∈I2

Fi(v̂i)

]
.
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Now the left–hand side is the probability that an agent i in tier 2 has a value vi ≥ v̂i,
is asked for evidence, and hence receives the good. We know that this happens if and
only if all the tier 1 agents have virtual values below the tier 2 threshold v∗2 and some
tier 2 agent has vi ≥ v̂i. A tier 1 agent i has virtual value below the tier 2 threshold iff
vi + λi < v∗2 or vi < v∗2 − λi. So the right–hand side is exactly the probability a tier 2
agent with virtual value above the tier 2 threshold gets the good.

For k = 2, the second Border condition says that

∑
i∈I

ei[1− Fi(v̂i)] ≤

[∏
i∈I1

Fi(v
∗
2 − λi)

][
1−

∏
i∈I

Fi(v̂i)

]
,

for every I ⊆ I2. In this case, the left–hand side is the probability that some agent
i ∈ I has a value above v̂i and gets the good, while the right–hand side is the obviously
necessary condition that no agent in tier 1 gets the good before we get to tier 2 and that
there is some agent i ∈ I with vi ≥ v̂i. Hence this inequality is necessary.

The proof for other tiers is analogous. The proof that any e satisfying the Border
conditions can be generated by a simple tiered threshold mechanism is in the Appendix.

Corollary 1. For any optimal generalized tiered threshold mechanism d, there is a simple
tiered threshold mechanism d′ which is interim–equivalent to it. Hence there is always an
optimal mechanism which is a tiered threshold mechanism.

To see why the corollary holds, note that Lemma 5 implies that the e generated by
any d ∈ D∗∗(λ) can also be generated by a simple tiered threshold mechanism d̂ ∈ D∗∗(λ).
By Lemma 4, then, for any generalized tiered threshold mechanism, there is an interim–
equivalent simple tiered threshold mechanism.

Summarizing, we have shown

Theorem 2. An incentive–compatible mechanism d is optimal if and only if it is a
generalized tiered threshold mechanism with tiers defined by v̂1 + λ1, . . . , v̂N + λN where
λi ≥ 0 for all i,

λici =

∫ 1

v̂i

(v − v̂i)fi(v) dv, ∀i,

λi [Evipi(vi | λ, ei)− ciei] = 0, ∀i,

and the Border conditions (1) and (2) hold, where ei = ei(d) for all i.

Furthermore, given any optimal mechanism d, there is a tiered threshold mechanism
which is also optimal and yields every type of every agent the same expected payoff.
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A tempting but incorrect intuition suggests that the complexities of identifying these
randomizations can “typically” be avoided. We only need to identify the random order
in which agents are asked when agents are in the same tier. Agents are only in the same
tier when they have the same index. It is tempting to suspect that for “generic” ci’s and
Fi’s, indices never tie, so, in this sense, randomization is “almost always” irrelevant.

This is not correct for the following reason. Recall that the index is v̂i + λi where v̂i
is defined by

λici =

∫ 1

v̂i

(v − v̂i)fi(v) dv.

Evidently, the index depends not just on the exogenous ci and Fi, but also on the en-
dogenous λi. This endogeneity leads to ties in the indices and hence with more than one
agent with nontrivial probability. In fact, “similar enough” agents must be in the same
tier, so that ties are not “measure zero.”

To see the intuition, first consider the (nongeneric) symmetric agent case. Suppose
there are two agents with the same Fi’s and the same ci’s. For simplicity, assume the
incentive compatibility constraint is binding for both agents. In this case, the optimal
mechanism must randomize 50–50 over who to start with. The key reason for this is that,
as is easily shown, v̂i + λi is decreasing in λi in the relevant range. So suppose we try to
construct an optimal mechanism where these two agents are in different tiers. Without
loss of generality, suppose we try to put 1 in the higher tier, so v̂1 + λ1 > v̂2 + λ2. The
functions defining v̂ from λ are the same for the two agents since they have the same ci
and Fi. So the fact that the index is decreasing in λ implies that we must have λ1 < λ2.

But then 1 has the pressure of going first and the disadvantage of a smaller “handicap”
in the form of a smaller λ. Given that the agents are identical, this implies that the
incentive constraint cannot be binding for both agents.4

So suppose v̂1+λ1 = v̂2+λ2, so the two agents are in the same tier, but we randomize
over which is first in some asymmetric fashion. Because the two agents have the same
index, they must have the same λi’s. Thus everything that enters their payoffs is the same
except the randomization over which is asked for evidence first. Since the one more likely
to go first must have a lower expected payoff, the only way both incentive constraints

4To see this, note that if both incentive constraints are binding, then the total expected evidence
costs must equal 1 as the total probability of allocating the good is 1. Because 1 is always asked for
evidence since she is first, her expected evidence cost is c, so 2’s must be 1−c. Hence 2 must be asked for
evidence with probability (1− c)/c. Therefore, 1 gets the good without 2 being asked with probability
1 − (1 − c)/c. That is, F (v̂1) = (1 − c)/c. Since 1’s probability of getting the good must be c in total,
this means that the probability 1 gets the good when 2 is asked is c− [1− (1− c)/c] = (1− c)2/c. But
the handicap of the smaller λ means that 1 gets the good less than half of the time that both 1 and
2 are below the threshold. Hence this must be less than (1/2)[(1 − c)/c]2. But this holds iff c ≤ 1/2,
implying that the first–best is feasible and the incentive constraints do not bind.
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can bind is if the randomization is 50–50.

Given that a 50–50 randomization is the unique solution for identical agents, it should
not be surprising that nearby randomizations are the unique solution for nearly identical
agents. Hence ties are not “nongeneric.”

The figure below illustrates. Assuming two agents, each with vi ∼ U [0, 1], the area
between the red curves is the set of (c1, c2) in the range [.5, 1]2 where the two agents
have the same index in the optimal mechanism. As the intuition above suggests, it is a
non–negligible set of types around symmetry.

c1

c2

.5
.5

1

1

4 Properties of the Optimal Mechanism

In this section, we describe properties of optimal mechanisms. Section 4.1 specializes the
discussion to the particularly tractable symmetric case, describing the mechanism and
its properties in detail. In Section 4.2, we return to the general case and characterize the
random ordering of agents used in the optimal dynamic mechanism. Finally, Section 4.3
gives some comparative statics.

4.1 Symmetric Mechanisms

When the agents are symmetric in the sense that ci = cj ≡ c and Fi = Fj ≡ F for all i
and j, the analysis simplifies greatly. In this case, the principal doesn’t care which agent
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he asks for evidence next and hence only needs to decide whether to seek evidence at any
particular point.

More formally, it is not hard to see that in the symmetric setting, there must be an
optimal mechanism which is symmetric in the sense that it treats the agents identically.
Thus λi, v̂i, and ei are all independent of i. For simplicity, we drop the i subscripts on
these variables when discussing the symmetric case.

Since all agents have the same v̂+λ, clearly, there is only one tier and one threshold.
In this case, there is no point distinguishing between virtual values, vi + λ, and actual
values, vi, since the λ will cancel out of any comparison across agents or comparison of
an agent to the threshold. Hence we may as well simplify and ignore the λ.

In this case, the optimal mechanism is simply stated. If the incentive compatibility
constraint does not bind, then ei = 1 for every agent i and v̂i = 1. That is, every agent is
asked for evidence and the good is allocated to the agent with the highest value. Hence
incentive compatibility binds iff c > 1/N .

If the incentive compatibility constraint does bind, then ei = 1/(Nc) for all i. To see
this, recall that the incentive compatibility constraint is that

Evipi(vi) ≥ ciei.

In the symmetric case, all agents are equally likely to receive the good, so the left–hand
side is 1/N . Since this constraint binds and ci = c for all i, we see that ei = 1/(Nc) for
all i. Finally, Lemma 5 implies that v̂ is pinned down by∑

i

ei[1− Fi(v̂i)] = 1−
∏
i

Fi(v̂i)

or, using symmetry,
Ne[1− F (v̂)] = 1− [F (v̂)]N .

Using the formula for the sum of a geometric series, we see that this is equivalent to

e =
1

N

N−1∑
j=0

[F (v̂)]j.

To see how this lines up with the dynamic mechanism, recall that we choose an order
at random with, in the symmetric case, all orders equally likely.5 This means that any
given agent i has a 1/N chance of being first, 1/N chance of being second, etc. Think

5To be sure, there are other ways to generate the same evidence probabilities. For example, we could
randomize uniformly over the orders (1, 2, . . . , N). (2, 3, . . . , N, 1), (3, 4, . . . , N, 1, 2), . . ., (N, 1, 2, . . . , N−
1).
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of the index j on the right–hand side as denoting how many agents are ahead of i in
the selected order. If j = 0, then i is first and hence asked for evidence with certainty.
If j = 1, there is one agent ahead of i and so i is asked for evidence iff this agent has
a value below v̂. Hence in this case, i is asked for evidence with probability F (v̂). In
general, there are j agents ahead of i with probability 1/N and i is asked for evidence in
this situation with probability [F (v̂)]j, the probability all these agents have values below
v̂. In short, using the value computed earlier for e, we see that v̂ is defined by

1

c
=

N−1∑
j=0

[F (v̂)]j.

The comparative statics for the symmetric case are straightforward. If we increase
c, the left–hand side of the equation above falls, so v̂ must be reduced. This is natural
— if the cost of acquiring evidence goes up, agents must be promised a higher chance of
getting the good to induce them to obtain evidence. This requires reducing the threshold.
The evidence probability e also is reduced. Again, this fits together intuitively with the
reduction in the threshold. With a lower threshold, each agent is less likely to be reached
and asked for evidence.

If the distribution F of values is shifted up in the sense of first–order stochastic
dominance, then F (v̂) is smaller at every point. Hence we must increase v̂ to restore
equality. Again, this is intuitive: if agents are more likely to have high values, then the
principal can raise the threshold and be “pickier” about who he gives the good to. Note
that e is unchanged since it is 1/(Nc). So the improvement in an agent’s probability
of getting the good from the improvement in F is entirely extracted by the principal in
raising the threshold.

Finally, the effects of increasing the number of agents, N , is similarly straightforward
to compute, though the intuition is less immediate. If we increase N , then we must
reduce v̂ to restore equality in the equation above. So if there are more agents, the
principal holds each to a lower standard, a perhaps unexpected conclusion. Intuitively,
the principal does this because the increase in the number of agents reduces any one
agent’s likelihood of getting the good if the threshold is unchanged. Thus each agent’s
incentive to obtain evidence is reduced and must be restored by lowering the threshold.
Increasing N also lowers the probability any given agent gets the good and lowers the
probability the agent is asked for evidence.

One might expect that the increase in the number of agents and resulting lowering of
the threshold could make the principal worse off. While it can be optimal for the principal
to exclude some agents in asymmetric settings, this is never true in the symmetric case.
Increasing the number of agents in the symmetric case always makes the principal strictly
better off.
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One way to see this is to consider the expected number of agents asked for evidence.
We know that if the principal asks, say, n agents for evidence, then each agent has an
equal probability of being one of the n agents asked. Hence each agent has probability
n/N of being asked for evidence in this case. So, overall, the expected probability that
an agent is asked for evidence is 1/N times the expected number of agents asked. Since
we know this probability is 1/(Nc), this says that the expected number of agents asked
for evidence is 1/c, independent of N . On the other hand, if the number of agents goes
from N to N+1, the probability the principal asks N+1 agents for evidence goes from 0
to something strictly positive. Because the threshold falls, the probability the principal
asks only one agent for evidence also increases. In other words, as we increase the number
of agents, the optimal mechanism changes so as to generate a mean–preserving spread
in the number of agents asked. This change is valuable to the principal. It enables him
to sample more agents when the draws are all low, though at the cost of sampling fewer
when the draws are high.

Another way to see the point is to suppose that the principal designs a mechanism for
N symmetric agents and then one more is added. Suppose that the principal is restricted
to asking at most N agents for evidence, but can give the good to the (N + 1)st agent.
Suppose the principal chooses N of the N + 1 agents at random, with all agents equally
likely to be included, and then runs the N agent mechanism with the chosen subset.
If he ends up asking all N agents for evidence and all have values below E(v), then,
instead of giving the good to the agent with the highest value, he gives it to the (N+1)st
agent, the one he did not get evidence from. Clearly, if this is incentive compatible, it
is better for the principal than the usual N agent mechanism. To see that it must be
incentive compatible, consider any agent’s probability of being asked for evidence. If
the agent is one of the N agents chosen at the outset, then her probability is the same
as in the N–agent mechanism. Of course, if she is not chosen, her probability of being
asked for evidence is 0. Hence her overall probability of being asked is N/(N + 1) times
the probability of being asked in the usual N–agent mechanism. But we know that the
probability of being asked in the N–agent mechanism is 1/(Nc), so in this mechanism,
it is 1/[(N + 1)c]. Hence her expected evidence cost is 1/(N + 1). Because the overall
mechanism treats all agents symmetrically, her probability of receiving the good is also
1/(N + 1), so this mechanism is indeed incentive compatible. So the principal is strictly
better off when N + 1 agents than with N .

It is worth noting that this observation generalizes to case where not all of the agents
are symmetric in the following way.6

Theorem 3. Suppose ci = cj and Fi = Fj. In any optimal mechanism, we have ei = 0
iff ej = 0.

6This result follows directly from Theorem 4 below, but it is more convenient to prove it separately.
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4.2 Optimal Ordering

In the symmetric case, the agents are identical, so there is no reason for the principal to
prefer one order for seeking evidence over another. When agents are asymmetric, what
determines the optimal randomization over the order?

Intuitively, agents who are later in the order are more protected from competition.
These later agents are only asked for evidence when the values of the earlier agents are
relatively low, so being asked is a good sign for them about the competition they face.
This suggests that the principal will tend to put “stronger” agents earlier. The theorem
we present in this section shows that this intuition is exactly correct.

We say that agent i is stronger than agent j if ci ≤ cj and Fi (weakly) first–order
stochastically dominates Fj. Note that one or both of these comparisons can be an
equality relation — i.e., agents with the same cost and same distribution are each stronger
than the other.

Theorem 4. If i is stronger than j, then in an optimal mechanism, we have ei ≥ ej.

The following corollaries elucidate the implications of this result.

Corollary 2. If i is stronger than j, then i’s index, v̂i + λi is weakly larger than j’s.
Hence if i is stronger than j and they are in different tiers, then i is in a higher tier than
j. In particular, if the optimal order is deterministic, i is asked before j.

To see why the corollary follows, first note that if i and j have different indices and
hence are in different tiers, then ei ≥ ej implies that i must be the one in the higher
tier. This is because agents in tier k are not asked for evidence until all agents in all
higher tiers have been asked. Similarly, if the optimal order is deterministic, agents who
are later in the order are necessarily asked for evidence with lower probability than those
before.

Corollary 3. If i is stronger than j and j is stronger than i, then ei = ej. In this case,
the optimal order cannot be deterministic if their incentive constraints are binding.

If i and j have the same costs and same distribution, each is stronger than the other,
so Theorem 4 implies that ei = ej. If the order is deterministic, this means that i is
asked for evidence if and only if j is also asked. This cannot be optimal if the incentive
constraints for i and j are both binding, so in this case, the optimal order cannot be
deterministic. Note that if both incentive constraints are slack, both agents are asked for
evidence with probability 1 and the principal does not care whether he asks both at the
same time or in some order.
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Corollary 4. If i is stronger than j and i is excluded in the sense that she receives the
good with zero probability, then j is excluded. This implies that in the symmetric case,
exclusion is not optimal.

To see this, first observe that i is excluded if and only if ei = 0. If ei = 0, then the
no–free–lunch property implies that i never receives the good and hence is excluded in
this sense. Conversely, if i never receives the good, then her incentive constraint becomes
−ciei ≥ 0, implying ei = 0. If i is stronger than j and i is excluded, then we have ei = 0
and hence ej = 0.

In a symmetric model, all agents are stronger than all other agents. Hence all must
have the same ei. So if one of them is excluded in the optimal mechanism, all must be.
But this can never be optimal since the principal could do better simply by giving the
good to one of the agents without asking anyone for evidence.

4.3 Comparative Statics

As noted in Section 4.1, comparative statics in the symmetric case are straightforward
to derive. Unfortunately, this is not true in the asymmetric case.

To see why the comparative statics are complex and can vary across the parameter
space, consider the effects of an increase in c1 in the two–agent case. Throughout this
discussion, we assume both incentive constraints bind. First, suppose we start at a point
where v̂1 + λ1 > v̂2 + λ2. In this case, the optimal mechanism begins by asking 1 for
evidence. If v1 + λ1 > v̂2 + λ2, or, equivalently, v1 > v∗ ≡ v̂2 + λ2 − λ1, 1 receives the
good. Otherwise, 2 is asked for evidence and whichever agent has the higher virtual value
receives the good. That is, 1 receives the good iff v1 + λ1 > v2 + λ2 or v1 > v2 + λ2 − λ1.
Note, then, that the allocation of the good depends only on v∗ and λ2 − λ1.

When c1 increases, we must change the allocation or else 1’s incentive constraint will
be violated. Assume the change in c1 is small so that we continue to have v̂1+λ1 > v̂2+λ2
and hence continue to start with agent 1. Then we must change v∗ and λ2−λ1 in such a
way as to improve 1’s probability of receiving the good to offset the increase in her costs
without violating 2’s incentive constraint.

It is not hard to see that the variables v∗ and λ2 − λ1 affect 2 in opposite directions
but affect 1 in the same direction. To be specific, decreases in v∗ and in λ2 − λ1 both
improve 1’s payoff, while the first improves 2’s payoff and the second reduces it.

To see this, consider first a reduction in v∗. Clearly, this reduction helps 1 since she
is more likely to receive the good without having to compete with 2. To see that it
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also helps 2, simply note that the best types of agent 1 that 2 had to compete with are
now receiving the good without 2 being asked for evidence. Hence, conditional on being
asked, 2’s chances of receiving the good are improved.

On the other hand, a reduction in λ2−λ1 (holding v∗ fixed) hurts 2 but helps 1. This
is because 2’s relative handicap in the competition with 1 is lowered, so, all else equal, 2
loses to 1 more often.

Because we need to maintain 2’s incentive constraint, we must move v∗ and λ2−λ1 in
the same direction at magnitudes such that the net effect on 2’s payoff is zero. Clearly,
then, we must reduce both: increasing both could not possibly compensate 1 for the
increase in c1.

While this explanation focuses on the case where 1 is asked for evidence first, essen-
tially the same argument applies to the situation where 2 is asked first.

Consider, by contrast, the situation where e1 and e2 are both in (0, 1). In this case,
the optimal mechanism has a strictly interior probability of asking 1 for evidence first.
Now the simple analysis above falls apart and a wide range of things can happen. This
is simply because the principal now has another tool to compensate 1 for the increase in
her costs. In addition to the kind of changes discussed above, the principal could now
respond by lowering e1 or, equivalently, lowering the probability that 1 is the first to be
asked for evidence.

In this situation, the principal could, for example, lower the probability of starting
with 1, which lowers e1 and raises e2, lower the threshold v∗, and raise 2’s relative
advantage λ2−λ1. The change in the e’s helps 1 and hurts 2, the change in the threshold
helps both, and the change in the relative advantage hurts 1 and helps 2. Hence by
making these changes in the appropriate magnitudes, 2’s utility could remain unchanged
so that her incentive constraint continues to hold, while 1’s utility is improved to offset
the effect of the increase in c1.

In fact, it is not hard to show that when we start from symmetry, this is what must
happen. That is, if F1 = F2 and we start from the point c1 = c2, we know that we start
where each agent is first with probability 1/2. A small increase in c1 from this point
necessarily leads to a reduction in λ2−λ1, exactly the opposite of what we see if we start
from parameters where a deterministic order is optimal. Not only can λ2 − λ1 increase
or decrease, one can also show that the threshold v∗ can increase or decrease, and e2 can
increase or decrease.7

More broadly, with N agents and anywhere from 1 to N different tiers possible, the

7We conjecture that an increase in c1 must weakly reduce e1, but even this is not clear.
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principal has a range of tools which affect the agents in different directions. The value
of these tools to the principal and for improving agent incentives vary in complex ways
across the parameter space. As a result, there are essentially no comparative statics that
hold globally.

5 Extensions

5.1 High Costs/Reserve Value

Up to this point, we have assumed ci < 1 for all i. In this section, we describe how the
analysis changes if some agents have ci ≥ 1.

It is easy to see that the principal cannot get (useful) information from agent i if
ci ≥ 1. Obviously, if ci > 1, then i strictly prefers not getting the good to getting it and
providing evidence. If ci = 1, the principal can induce i to obtain evidence, but only
by promising to give i the good regardless of what her value turns out to be. In this
sense, the principal can get information from i if ci = 1 but cannot get information he
can actually use.

So if there are such agents, their only role is as a kind of reservation value for the
principal. In other words, we have assumed that the principal receives a payoff of 0 from
keeping the good. If there is some agent i with ci ≥ 1, then the principal has a better
outside option than keeping the good since he can give it to i for a “known” payoff of
E(vi). Hence adding such agent simply changes the principal’s reservation utility.

This has the same effect as adding an agent i with ci = 0 and a known value. The
optimal mechanism can be thought of as asking this agent for evidence first with λi = 0
and v̂i = 1. In other words, this agent is asked first but the principal continues after
learning her type (except in the zero measure situation where her value is 1). Then this
agent’s value is compared to thresholds and other agents’ types as above.

5.2 Varying Value to Agent from Receiving Good

The use of Weitzman’s results to characterize the structure of the optimal mechanism
enables us to extend the analysis to the case where the agent’s value of receiving the
good varies and may be correlated with the value to the principal of giving it to her.

For an illustration, suppose that if the value to the principal of giving the good to the
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agent is vi, then the value to agent i of receiving it is ϕi(vi). Assume ϕi(·) is continuous
and that Eviϕi(vi) = 1. Then it is not hard to show that our result that every optimal
mechanism satisfies no–free-lunch continues to hold. Now the Lagrangian takes the form

Ev

[∑
i

Pi(v | d)vi +
∑
i

λi (Pi(v | d)ϕi(vi)− ei(d)ci)

]
or

Ev

[∑
i

Pi(v | d)(vi + λiϕi(vi))−
∑
i

λiciei(d)

]
.

As above, we can view the λ’s as fixed parameters and characterize the solution to this
maximization problem using the Weitzman solution for the case where the prize in box i
is vi + λiϕi(vi). In this problem, we see that if ϕi is decreasing, it is possible that agent
i is more likely to receive the good for some low values of vi than for some higher values.

5.3 Costs

If we change the principal’s objective so that he prefers, all else equal, to not impose
costs on the agents, then with no other changes in the model, we lose the no–free–lunch
property and hence the ability to appeal to Weitzman (1979). On the other hand, we
can still use Weitzman’s result for a variation of our model.

To be specific, assume the principal’s payoff if he allocates the good to agent i is
vi−

∑
j αjcjxj where xj = 1 if agent j gets evidence and is zero otherwise. Also, assume

that agent i cannot consume the good unless she acquires evidence. For example, if we
think of the agents as departments in a university competing for a job slot and the ci’s as
the costs of determining who they would hire, then it seems clear that agent i cannot use
the job slot without acquiring information. In this case, it is without loss of optimality
for the principal to restrict attention to mechanisms that satisfy no–free–lunch. If the
principal is about to allocate the good to agent i without requiring evidence from her,
he knows his payoff from this action is E(vi) − αici since agent i will have to obtain
information anyway. By requesting evidence first and then disregarding it, the principal
and agent i get the same payoff.

In this case, it is easy to see that given the λi’s, the Lagrangian reduces to the
Weitzman problem where the prize in box i is vi + λi and the cost of opening box i is
(λi + αi)ci. The incentive constraints are unaffected by this change, so the analysis is
similar to the above.
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6 Conclusion

There are several potentially interesting directions for future research. First, there are a
number of simplifications here which could be relaxed. For example, we could consider
situations where an agent might be unable to get evidence with some probability, as
in the classic Dye (1985) model. Alternatively, we could consider situations where the
principal prefers not to impose evidence gathering costs on the agents, all else equal.
With this change, the no–free–lunch property is no longer guaranteed, so the appeal to
Weitzman is, at the least, made more complex.

Second, our analysis focuses on the case where the principal has complete commitment
power. Unlike in some work on mechanism design with evidence, this is not a setting
where such an assumption is innocuous.8 In our mechanism, the principal sometimes
gives the good to an agent even when he knows he would receive a higher payoff giving it
to a different agent. Clearly, this cannot happen without commitment. One question of
interest in the setting without commitment is whether the principal can show evidence
from one agent to other agents in order to induce them to get evidence.

8For results on settings where commitment has no value to the principal, see, for example, Glazer
and Rubinstein (2004, 2006), Hart, Kremer, and Perry (2017), or Ben-Porath, Dekel, and Lipman (2019,
2023).
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Appendix

A Completion of Proof for Lemma 5

The completion of the proof of Lemma 5 follows from a result in Border (1991). For the
reader’s convenience, the Supplemental Appendix contains a complete proof of a version
of Border’s result. The version we use is the following. For this section of the Appendix
and the related Supplemental Appendix only, we consider a different allocation problem
with M agents where agent i has a finite set of types Ti. As in our model, the types are
independently drawn across agents. Let µi denote the distribution over Ti. We consider
allocations P = (P1, . . . , PN) with Pi : T → [0, 1] with

∑
i Pi(t) ≤ 1 for all t ∈ T . Given

P , we let p = (p1, . . . , pN) denote the interim allocation where

pi(ti) =
∑

t−i∈T−i

µ−i(t−i)Pi(ti, t−i).

When p and P are related in this fashion, we say P generates p.

A hierarchical allocation is an allocation P that can be constructed as follows. We
have a ranking function R which maps ∪iTi to {1, . . . , K} for some positive integer K.
We assume that for every k < K, there is exactly one i such that R(ti) = k for some
ti ∈ Ti. Note that this restriction does not apply to rank K — there may be no or many
agents with types at rank K.

Then given a type profile t = (t1, . . . , tM), either all agents have rank K or there is
a unique i with R(ti) < R(tj) for all j 6= i. If all agents have rank K, then Pj(t) = 0
for all j. If there is a unique i with R(ti) < R(tj) for all j 6= i, then Pi(t) = 1. In other
words, unless all agents are in the lowest rank, the agent who has the highest ranked
type receives the good (where higher ranks have lower numbers).

We say that p is a hierarchical interim allocation if it is generated by a hierarchical
allocation P . Of course, the collection of hierarchical interim allocations is a subset of
the interim allocations. The following result is essentially Border’s Lemma 6.1. We prove
it in the Supplemental Appendix.

Theorem 5. Every interim allocation function p is a convex combination of hierarchical
interim allocations.

We also use the following finite type version of Border’s theorem which is the main
result of Border (2007):
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Theorem 6. p is an interim allocation function if and only if for every collection T̂i ⊆ Ti
for i = 1, . . . ,M , we have∑

i

∑
ti∈T̂i

pi(ti)µi(ti) ≤ 1−
∏
i

[1− µi(T̂i)].

We now use these results to complete the proof. So fix (e1, . . . , eN) satisfying the
Border conditions. We now show that there exist randomizations over the orderings
generating these evidence probabilities.

First, consider tier 1, I1. By assumption, the two Border conditions hold for tier 1,
so the evidence probabilities for agents in this tier satisfy∑

i∈I1

ei[1− Fi(v̂i)] = 1−
∏
i∈I1

Fi(v̂i) (3)

and ∑
i∈Î

ei[1− Fi(v̂i)] ≤ 1−
∏
i∈Î

Fi(v̂i), ∀Î ⊆ I1. (4)

Given this, consider the following alternative model. Let the set of agents be I1. Each
agent i ∈ I has two types, denoted `i and hi, where µi(`i) = Fi(v̂i). Define functions
p̂i : Ti → [0, 1] for i ∈ I1 by

p̂i(ti) =

ß
0, if ti = `i;
ei, if ti = hi.

It is easy to see that equations (3) and (4) together with Theorem 6 imply that p̂ is an
interim allocation function.

By Theorem 5, p̂ is a convex combination of hierchical interim allocations. That is,
we can find q1, . . . , qS and weights αs ∈ (0, 1) with

∑
s α

s = 1 with p̂ =
∑

s α
sqs. Clearly,

the fact that p̂i(`i) = 0 for all i implies that qsi (`i) = 0 for all i and all s. By Theorem 6,
we have ∑

i∈I1

qsi (hi)[1− Fi(v̂i)] ≤ 1−
∏
i∈I1

Fi(v̂i), ∀s.

But ∑
s

αs

{∑
i∈I1

qsi (hi)[1− Fi(v̂i)]

}
=
∑
i∈I1

ei[1− Fi(v̂i)] = 1−
∏
i∈I1

Fi(v̂i).

Hence ∑
i∈I1

qsi (hi)[1− Fi(v̂i)] = 1−
∏
i∈I1

Fi(v̂i), ∀s.
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The left–hand side is the probability that one of the agents i is type hi and receives
the good, while the right–hand side is the probability that at least one agent is type hi.
Hence this equality says that for every s, qs has the property that if at least one agent is
type hi, the good is allocated to one such agent.

Given this, consider any qs. Since qs is a hierarchical interim allocation, there is an
allocation function, Qs, and a ranking function, Rs, associated with it. From the above,
we know that for any type profile such that some i is type hi, the good is allocated to such
an i. Because the allocation is hierarchical, there is a unique such i who gets the good
with probability 1. Consider the allocation on type profile (h1, . . . , h#I1). Whichever
agent i receives the good on this profile must have Rs(hi) = 1. Let i1 denote this agent.

Then consider the profile of types where agent i1 is type `i1 and every other agent i is
type hi. Again, there must be an agent, say i2, who receives the good with probability 1
and hence we have Rs(hi2) = 2. Continuing in this fashion, we can construct the ranking
Rs which completely ranks the hi types of all agents. Define an ordering over i ∈ I1, �s,
by i ≺s j iff Rs(hi) < Rs(hj).

By construction,

ei = p̂i(hi) =
∑
s

αsqsi (hi) =
∑
s

αs
∏
j≺si

µj(`j) =
∑
s

αs
∏
j≺si

Fj(v̂j).

Hence the randomization over orderings over I1 given by O1(�s) = αs generates the ei’s
for I1.

Next consider tier 2, I2. By assumption, we know that the evidence probabilities for
agents in this tier satisfy

∑
i∈I2

ei[1− Fi(v̂i)] =

[∏
i∈I1

Fi(v
∗
2 − λi)

][
1−

∏
i∈I1

Fi(v̂i)

]
. (5)

Also, we must have

∑
i∈Î

ei[1− Fi(v̂i)] ≤

[∏
i∈I1

Fi(v
∗
2 − λi)

]1−
∏
i∈Î

Fi(v̂i)

 , ∀Î ⊆ I2. (6)

To see this, note that the left–hand side is the probability that an agent i ∈ Î ⊆ I2 has
vi ≥ v̂i and receives the good, while the right–hand side is the probability that an agent
i ∈ Î has vi ≥ v̂i and that all the tier 1 agents have virtual values below v∗2. Because an
agent in tier 2 cannot get the good unless all tier 1 agents have virtual values below v∗2,
the left–hand side must be smaller than the right.
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For i ∈ I2, let

êi =
ei∏

j∈I1 Fj(v
∗
2 − λi)

.

Then equations (3) and (4) hold for tier 2 and the ê’s. That is, equations (5) and (6) can
be rewritten as ∑

i∈I2

êi[1− Fi(v̂i)] = 1−
∏
i∈I2

Fi(v̂i)

and ∑
i∈Î

êi[1− Fi(v̂i)] ≤ 1−
∏
i∈Î

Fi(v̂i), ∀Î ⊆ I2.

Hence the same argument as above shows that we can construct a probability distribution
O2 over orderings �s over I2 such that for all i ∈ I2,

êi =
∑
s

O2(�s)
∏
j≺si

Fj(v̂j)

or, equivalently,

ei =

[∏
j∈I1

Fj(v
∗
2 − λi)

]∑
s

O2(�s)
∏
j≺si

Fj(v̂j).

Iterating this argument for the remaining tiers completes the proof.

B Proof of Theorem 3

The proof is by contradiction. So suppose ci = cj and Fi = Fj, but we have an optimal
mechanism d1 with ei(d

1) = e1i = 0 and ej(d
1) = e1j > 0. By the no–free–lunch property,

we must have Pi(v | d1) = 0 for (almost) all v. Given this, it’s not hard to see we must
have at least three agents. Otherwise, the best outcome of this form is to simply give
the good to j with probability 1. Essentially the same argument as the proof of Lemma
1 gives a contradiction to this being optimal.

We write v̂1k, λ
1
k, etc., to denote the relevant variables for this outcome. We write P 1

for P (d1) and e1 for e(d1).

Let d2 denote the mechanism which flips the roles of i and j, so j is never asked
for evidence and i is asked in the situations in which j had been in d1. Let d∗ =
(1/2)d1 + (1/2)d2, the 50–50 randomization between these mechanisms. We write P ∗ for
P (d∗), etc.
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Key observation: e∗i = e∗j = (1/2)e1j > 0. This means that we must have v̂∗i + λ∗i =
v̂∗j + λ∗j . Because these are defined from the same function which is strictly decreasing in
λ in the relevant range, this implies λ∗i = λ∗j and v̂∗i = v̂∗j .

So what is the mechanism d∗? This mechanism has a certain set of histories on which
either i or j is next asked for evidence, each with probability 1/2. (By history here, we
include the randomization over the order if i and j are in a tier with one or more other
agents.) But if, say, i is chosen, the mechanism never continues to j. Because we only
get to i if all previously observed virtual values are below v̂∗i +λ∗i = v̂∗j +λ∗j , the only way
this can be true is if the good is given to i with probability 1 — that is, if v̂∗i ≤ 0. But
this implies i receives the good iff she is asked for evidence. Hence her expected utility in
the mechanism is e∗i − cie∗i = (1− ci)e∗i . We know that e∗i > 0 and ci < 1, so i’s expected
payoff is strictly positive, implying that her incentive constraint is not binding. Hence
λ∗i = 0, so v̂∗i satisfies

0 =

∫ 1

v̂∗i

(v − v̂∗i )fi(v) dv

requiring v̂∗i = 1, a contradiction.

C Proof of Theorem 4

The following lemmas will be useful.

Recall that v̂i is defined from λi by

λi =
1

ci

∫ 1

v̂i

(v − v̂i)fi(v) dv (7)

It is more convenient to work with the inverse function, defining λi from v̂i.

Lemma 6. Define a function λn(·) by

λn(v̂) ≡ 1

cn

∫ 1

v̂

(v − v̂)fn(v) dv.

Then λn(·) is decreasing. Also, the function v̂+λn(v̂) is increasing in v̂, weakly at v̂ = v̂n,
strictly for v̂ > v̂n, where v̂n is the value at the optimal mechanism.

Proof. It’s easy to see that

λ′n(v̂) = −1− Fn(v̂)

cn
≤ 0.
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Also,
∂

∂v̂
[v̂ + λn(v̂)] = 1− 1− Fn(v̂)

cn
.

This is weakly positive iff cn ≥ 1 − Fn(v̂). We now show that this must hold for all
v̂ ≥ v̂n, strictly for v̂ > v̂n.

First, suppose λn = 0. Then v̂n = 1 since this is the only way to solve equation (7).
Hence Fn(v̂n) = 1 so

∂

∂v̂
[v̂ + λn(v̂n)] = 1 > 0.

Second, suppose λn > 0. Then n’s expected payoff in the optimal mechanism is zero.
Hence we must have

en[1− Fn(v̂n)− cn] ≤ 0

as agent n certainly gets the good if asked for evidence when her value is above v̂n and
n might get the good even when her value is below v̂n. Hence 1− Fn(v̂n) ≤ cn, implying
the derivative above is weakly positive at v̂ = v̂n. For v̂ > v̂n, we have

1− Fn(v̂) < 1− Fn(v̂n) ≤ cn,

so, as claimed, the derivative is positive at v̂ > v̂n.

Lemma 7. For all i and vi, pi(vi | d) ≤ ei.

Proof. In the proof of Lemma 4, we showed that

pi(vi | d) =

®
ei, if vi ≥ v̂i;∏

j 6=i|v̂j+λj≥vi+λi Fj(vi + λi − λj), otherwise,

Hence the claim of the lemma is obviously true for vi ≥ v̂i. For vi < v̂i, it is clear that
pi(vi | d) is increasing, so

pi(vi | d) ≤ lim
v′i↑v̂i

pi(v
′
i | d).

Clearly, the limit on the right–hand side is the probability that every agent j in the same
tier as i or a higher tier has a virtual value below v̂i + λi. In this event, the optimal
mechanism must ask i for evidence and may ask i for evidence even before this. Hence
this probability must be weakly smaller than ei.

Lemma 8. If i’s incentive constraint is not binding, then λi = 0, v̂i = 1, and ei = 1. If
i’s incentive constraint is binding, then v̂i + λi < 1.
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Proof. Obviously, if i’s incentive constraint doesn’t bind, the Lagrange multiplier for that
constraint, λi, is 0. Recall that v̂i is defined by

λici =

∫ 1

v̂i

(v − v̂i)fi(v) dv,

so if λi = 0, we must have v̂i = 1. Hence i’s index, v̂i + λi, equals 1.

So consider any j 6= i. Then j’s index satisfies

v̂j + λj = v̂j +
1

cj

∫ 1

v̂j

(v − v̂j)fj(v) dv.

By Lemma 6, viewing the right–hand side as a function of v̂j, it is increasing in v̂j at the
value in the optimal mechanism. Hence

v̂j +
1

cj

∫ 1

v̂j

(v − v̂j)fj(v) dv ≤ 1 +
1

cj

∫ 1

1

(v − 1)fj(v) dv = 1,

with a strict inequality if v̂j < 1. Hence i must be in the highest tier and any agent j 6= i
in the same tier must also have λj = 0 and v̂j = 1. Therefore, with probability 1, all of
the agents in this highest tier will be asked for evidence, so ei = 1.

Finally, if i’s incentive constraint is binding, we have λi > 0 and hence v̂i < 1.
From the argument regarding j 6= i in the previous paragraph, we see that this implies
v̂i + λi < 1.

Recall that i is stronger than j if ci ≤ cj and Fi FOSD Fj. The definition implies that
if i is stronger than j and j is stronger than i, then we must have ci = cj and Fi = Fj.

The next lemma shows the result of Theorem 4 for a special case.

Lemma 9. If d is an optimal mechanism, i is stronger than j, and ei(d) = 0, then we
have ej(d) = 0.

Proof. Suppose not. So suppose i is stronger than j, ei = 0, and ej > 0. (We omit the d
argument when no confusion is likely to result.) By Theorem 3, we cannot have ci = cj
and Fi = Fj, so either ci < cj or Fi strictly FOSD Fj or both.

By the no–free–lunch property, ei = 0 implies that i never receives the good.

We construct an alternative mechanism d̄ as follows. Define a function ϕ : Vi → Vj
by

ϕ(vi) = F−1j (Fi(vi)).
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Define d̄ to be exactly the same as d except for two changes. First, on any history where
d asks j for evidence with positive probability, d̄ asks i instead with this same probability.
Second, in the event that i is asked for evidence and proves value vi, the mechanism d̄
treats this the same way mechanism d would treat proof by j of value ϕ(vi).

The key observation is that the distribution of ϕ(vi) is the same as the distribution
of vj. That is, for any z, we have

Pr[ϕ(vi) ≤ z] = Pr[F−1j (Fi(vi)) ≤ z]

= Pr[Fi(vi) ≤ Fj(z)]

= Pr[vi ≤ F−1i (Fj(z))]

= Fi(F
−1
i (Fj(z))) = Fj(z).

Hence for any k 6= i, j, the probability k is asked for evidence and the probability k
receives the good is unaffected.

Similarly, the probability i gets the good in d̄ is the same as the probability j got the
good in d and the probability i is asked for evidence in d̄ is the same as the probability
j is asked in d. Because ci ≤ cj, then, i’s incentive constraint is satisfied. (The incentive
constraint for j is trivially satisfied in d̄ as she is never asked for evidence.)

In short, d̄ is incentive compatible.

Finally, consider the principal’s payoff from d̄. Because the probability the principal
gives the good to any agent k 6= i, j is unchanged, we can write the payoff as

Ev[Pi(vi, vj, v−ij | d̄)vi] +
∑
k 6=i,j

Ev[Pk(v | d)vk].

We can write the first term as

Ev[Pj(vj, ϕ(vi), v−ij | d)vi].

Since ϕ(vi) has the same distribution as vj, we can write the corresponding term in the
original mechanism as

Ev[Pj(vi, vj, v−ij | d)vj] = Ev[Pj(vj, ϕ(vi), v−ij | d)ϕ(vi)].

Hence the new mechanism yields the principal a weakly better payoff if

vi ≥ ϕ(vi), ∀vi

or vi ≥ F−1j (Fi(vi)) or Fj(v) ≥ Fi(v) for all v. This holds as Fi FOSD Fj.

Hence d̄ yields at least as high a payoff for the principal as d. If Fi 6= Fj, the gain
must be strict.

38



So suppose Fi = Fj. Then we must have ci < cj by Theorem 3. Then the incentive
constraint for i is not binding in (P̄ , ē). If j’s incentive constraint in (P, e) was binding,
then again it must be possible to make the principal strictly better off than at d. This
is because we have effectively replaced j with an equivalent agent and turned a binding
constraint into a nonbinding one, ensuring that an improvement is possible. Hence if d
was optimal, j’s incentive constraint was not binding.

In this case, i and j are effectively identical from the point of view of the principal.
Even though ci < cj, the fact that j’s incentive constraint does not bind implies that
reductions in j’s cost have no effect on the optimal mechanism. Hence we can analyze
this case as if ci = cj. By Theorem 3, then, we have the needed contradiction.

Lemma 10. If i is stronger than j and 0 < ei < ej, then v̂j + λj ≥ v̂i + λi, v̂j ≥ v̂i, and
λj ≤ λi.

Proof of Lemma. Clearly, if ej > ei, we cannot have j in a lower tier than i. Any agent
is only asked for evidence after all agents in higher tiers are asked, so ej > ei implies j is
in a weakly higher tier than i. Hence

v̂j + λj ≥ v̂i + λi,

establishing the first claim.

Next, we show that if i is stronger than j, then for all v̂, we have

λi(v̂) ≥ λj(v̂),

where for any n, λn(·) is the function defined in Lemma 6. To see this, first note that
this holds with equality if ci = cj and Fi = Fj since the functions are then the same. So
suppose Fi = Fj but ci < cj. Then the λi function must be larger at every v̂ < 1 since
it’s defined by dividing by a strictly smaller number. Alternatively, suppose ci = cj but
Fi FOSD Fj. Because the function max{0, v− v̂} is increasing in v, Fi FOSD Fj implies∫ 1

v̂

(v − v̂)fi(v) dv ≥
∫ 1

v̂

(v − v̂)fj(v) dv,

again implying λi(v̂) ≥ λj(v̂).

Suppose, contrary to what we claim, that v̂i > v̂j. Then by Lemma 6, we know that
v̂ + λj(v̂) is strictly increasing in v̂ for all v̂ ∈ (v̂j, v̂i). Hence we must have

v̂j + λj(v̂j) < v̂i + λj(v̂i).

But i stronger than j then implies

v̂j + λj(v̂j) < v̂i + λj(v̂i) ≤ v̂i + λi(v̂i).
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From equation (7), we have

v̂j + λj = v̂j + λj(v̂j) < v̂i + λj(v̂i) ≤ v̂i + λi(v̂i) = v̂i + λi.

But this contradicts j being in a weakly higher tier than i. Hence v̂j ≥ v̂i, establishing
the second claim.

Finally, because the λn(·) functions are decreasing, equation (7) implies

λi = λi(v̂i) ≥ λi(v̂j).

Again using i stronger than j, we have

λi(v̂j) ≥ λj(v̂j) = λj.

Hence λi ≥ λj, establishing the third claim.

We prove Theorem 4 by contradiction. So suppose i is stronger than j but ei < ej.
By Lemma 9, we must have ei > 0. By Lemma 8, the fact that ei < ej ≤ 1 implies
that i’s incentive constraint is binding. By Lemma 8, this implies v̂i + λi < 1. Also, by
Lemma 10, we have v̂j + λj ≥ v̂i + λi, v̂j ≥ v̂i, and λj ≤ λi.

The proof of Lemma 4 shows that

pi(vi | d) =

®
ei, if vi ≥ v̂i;∏

j 6=i|v̂j+λj≥vi+λi Fj(vi + λi − λj), otherwise,

so we can write the expected payoff to any agent k as

Uk = ek[1− Fk(v̂k)]− ekck +

∫ v̂k

0

 ∏
j 6=k|v̂j+λj≥vk+λk

Fj(v + λk − λj)

 fk(v) dv.

Because i’s incentive constraint binds, we must have Ui = 0 ≤ Uj.

For vj < v̂j, we have

pj(vj | d) =
∏

k 6=j|v̂k+λk≥vj+λj

Fk(vj + λj − λk).
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Let w = vj + λj. Then for w ∈ [λi, v̂j + λj), we have

pj(w − λj | d) =
∏

k 6=j|v̂k+λk≥w

Fk(w − λk)

= Fi(w − λi)
∏

k 6=i,j|v̂k+λk≥w

Fk(w − λk)

≤ Fj(w − λj)
∏

k 6=i,j|v̂k+λk≥w

Fk(w − λk)

=
∏

k 6=i|v̂k+λk≥w

Fk(w − λk)

= pi(w − λi | d), ∀w − λi < v̂i

where the inequality in the third line comes from Fi FOSD Fj and λi ≥ λj. To understand
the last line, note that w− λi < v̂i means that vi = wi − λi < v̂i, so the formula given in
the proof of Lemma 4 for pi(vi | d) applies.

Summarizing, we have

pj(vj | d) ≤ pi(vj + λj − λi | d), ∀vj < v̂i + λi − λj.

Hence, by Lemma 7, we have

pj(vj | d) ≤ ei, ∀vj < v̂i + λi − λj ≤ v̂j.

We derive a further implication shortly. First, because pi(vi | d) is increasing in vi,
the hypothesis that Fi FOSD Fj implies∫ 1

0

pi(vi | d)fi(vi) dvi ≥
∫ 1

0

pi(vi | d)fj(vi) dvi.

Rewriting the right–hand side, we have

∫ 1

0

pi(vi | d)fj(vi) dvi =

∫ v̂i

0

 ∏
k 6=i|v̂k+λk≥vi+λi

Fk(vi + λi − λk)

 fj(vi) dvi + [1− Fj(v̂i)]ei.

Change variables in the integral on the right–side side by defining w = vi + λi. This
changes the integral to

∫ v̂i+λi

λi

 ∏
k 6=i|v̂k+λk≥w

Fk(w − λk)

 fj(w − λi) dw.
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The same reasoning as above shows that this is weakly larger than∫ v̂i+λi

λi

 ∏
k 6=j|v̂k+λk≥w

Fk(w − λk)

 fj(w − λi) dw.
Change variables in the integral again, replacing w with vj + λi to write this as∫ v̂i

0

 ∏
k 6=j|v̂k+λk≥vj+λi

Fk(vj + λi − λk)

 fj(vj) dvj.
The fact that λi ≥ λj implies

Fk(vj + λi − λk) ≥ Fk(vj + λj − λk)

for all k and vj. Also, note that if we change the index on the product from k 6= j such
that v̂k + λk ≥ vj + λi to k 6= j such that v̂k + λk ≥ vj + λj, the fact that λi ≥ λj
means that we will be taking the product over weakly more k’s. Since each term in the
product is weakly less than 1, this must reduce the product. Hence the expression above
is weakly larger than∫ v̂i

0

 ∏
k 6=j|v̂k+λk≥vj+λj

Fk(vj + λj − λk)

 fj(vj) dvj =

∫ v̂i

0

pj(vj | d)fj(vj) dvj.

The fact that i’s incentive constraint binds implies

ciei =

∫ 1

0

pi(vi | d)fi(vi) dvi ≥
∫ v̂i

0

pj(vj | d)fj(vj) dvj + [1− Fj(v̂i)]ei.

j’s incentive constraint implies∫ 1

0

pj(vj | d)fj(vj) dvj + (1− Fj(v̂j))ej ≥ cjej.

For vj ∈ [v̂i, v̂i +λi−λj], we know that pj(vj | d) ≤ ei. For vj ∈ [v̂i +λi−λj, v̂j], we have
pj(vj | d) ≤ ej. Hence∫ v̂i

0

pj(vj | d)fj(vj) dvj + [Fj(v̂i + λi − λj)− Fj(v̂i)]ei + [1− Fj(v̂i + λi − λj)]ej ≥ cjej.

Summarizing, we have

ciei ≥
∫ v̂i

0

pj(vj | d)fj(vj) dvj + [1− Fj(v̂i)]ei

≥ [1− Fj(v̂i)]ei + cjej − [Fj(v̂i + λi − λj)− Fj(v̂i)]ei − [1− Fj(v̂i + λi − λj)]ej
= cjej + [1− Fj(v̂i + λi − λj)]ei − [1− Fj(v̂i + λi − λj)]ej.
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So
[ci − (1− Fj(v̂i + λi − λj))]ei ≥ [cj − (1− Fj(v̂i + λi − λj))]ej. (8)

Recall that

Ui = 0 = (1− Fi(v̂i)− ci)ei +

∫ v̂i

0

 ∏
k 6=i|v̂k+λk≥vi+λi

Fk(vi + λi − λk)

 fi(vi) dvi.
Obviously, the integral is non–negative as it is a probability. We now show that ei > 0
implies that the integral must be strictly positive. Recall that the mechanism does not
ask i for evidence until every agent k with v̂k + λk > v̂i + λi has already been asked for
evidence and has been found to have a virtual value strictly below v̂i + λi. Hence the
fact that ei > 0 implies that this event must have positive probability.

Furthermore, any other agent k in the same tier as i must have a positive probability
of having a virtual value below the tier threshold. To see this, suppose it were not true.
k’s virtual value is below the threshold for the tier if vk < v̂k, so the only way this could
have zero probability is if v̂k = 0. But if v̂k = 0, this means agent k receives the good
if and only if she is asked for evidence, so her probability of getting the good ex ante is
ek. But then her expected payoff is ek(1 − ck) > 0 as we assume ck < 1 for all k. This
implies that k’s incentive constraint is not binding, which by Lemma 8 implies v̂k = 1,
not zero, a contradiction.

Hence Ui = 0 implies

0 <

∫ v̂i

0

 ∏
k 6=i|v̂k+λk≥vi+λi

Fk(vi + λi − λk)

 fi(vi) dvi = [ci − (1− Fi(v̂i))]ei.

So we have

ci > 1− Fi(v̂i) ≥ 1− Fi(v̂i + λi − λj) ≥ 1− Fj(v̂i + λi − λj),

where the second inequality is implies by λi ≥ λj and the second from Fi FOSD Fj.

Hence ci − [1− Fj(v̂i + λi − λj)] > 0, so ej > ei implies

[ci−(1−Fj(v̂i+λi−λj))]ei < [ci−(1−Fj(v̂i+λi−λj))]ej ≤ [cj−(1−Fj(v̂i+λi−λj))]ej,

where the second inequality follows from cj ≥ ci. But this contradicts equation (8).
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[10] Crémer, J., Y. Spiegel, and C. Zheng, “Auctions with Costly Information Acquisi-
tion,” Economic Theory, 38, January 2009, 41–72.

[11] DeMarzo, P., I. Kremer, and A. Skrzypacz, “Test Design and Minimum Standards,”
American Economic Review, 109, June 2019, 2173–2207.

[12] Deneckere, R. and S. Severinov, “Mechanism Design with Partial State Verifiability,”
Games and Economic Behavior, 64, November 2008, 487–513.

[13] Dye, R. A., “Disclosure of Nonproprietary Information,” Journal of Accounting Re-
search, 23, 1985, 123–145.

[14] Gershkov, A., and B. Szentes, “Optimal Voting Schemes with Costly Information
Acquisition,” Journal of Economic Theory, 144, January 2009, 36–68.

44



[15] Glazer, J., and A. Rubinstein, “On Optimal Rules of Persuasion,” Econometrica,
72, November 2004, 1715–1736.

[16] Glazer, J., and A. Rubinstein, “A Study in the Pragmatics of Persuasion: A Game
Theoretical Approach,” Theoretical Economics, 1, December 2006, 395–410.

[17] Green, J., and J.-J. Laffont, “Partially Verifiable Information and Mechanism De-
sign,” Review of Economic Studies, 53, July 1986, 447–456.

[18] Hart, S., I. Kremer, and M. Perry, “Evidence Games: Truth and Commitment,”
American Economic Review, 107, March 2017, 690–713.

[19] Mierendorff, K., “Asymmetric Reduced Form Auctions,” Economics Letters, 110,
January 2011, 41–44.

[20] Shishkin, D., “Evidence Acquisition and Voluntary Disclosure,” working paper, De-
cember 2020.

[21] Weitzman, M., “Optimal Search for the Best Alternative,” Econometrica, 47, May
1979, 641–654.

45


