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These notes provide more details on the Mertens–Zamir [1985] universal belief space
and a proof of Corollary 1 of “Finite Order Implications of Common Priors,” Lipman
[2002]. The discussion on the universal beliefs space is intended to enable a reader to
follow the proof of the corollary without requiring further references. It is not intended
to be a complete introduction to the subject.

Recall from the text that Θ is the parameter space and is assumed to be compact.
For any compact space Z, let ∆(Z) be the set of probability measures on Z endowed
with the weak topology. It is not hard to show that ∆(Z) is compact.

The universal beliefs space, denoted Ω, is a certain subspace of an infinite product
space defined as follows. Let X0 = Θ and recursively define Tn+1 = ∆(Xn) and Xn+1 =
Xn × [Tn+1]I where I is the number of players. Let X = Θ × ∏∞

n=1[Tn]I . Compactness of
Θ implies that X is compact in the product topology.

Mertens–Zamir demonstrate the existence of a subspace of X, denoted Ω, satisfying
the following properties. First, there is a set of types, T , such that Ω is homeomorphic to
Θ×T I . Second, T is homeomorphic to ∆(Θ×T I−1). Finally, Ω is the largest space with
this property. I refer to a point in Ω as a world. Intuitively, we can think of a world as
a specification of the true value of the unknown parameter for that world and a type for
each player. We can think of the type of a player as a probability distribution on Θ and
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the types of the other players or, equivalently, as a probability distribution on the set of
worlds with the property that player i puts probability 1 on his own true type. More
precisely, from the homeomorphism between Ω and Θ×T I , we can identify i’s type at ω.
Then from the homeomorphism between T and ∆(Θ × T I−1), we identify i’s beliefs over
Θ × T I−1. Since i knows his own type, we can write this as a belief over Θ × T I or, via
the homeomorphism, over Ω. In short, for any ω and i, we can identify i’s beliefs over Ω.

As mentioned in passing above, I use the product topology for X. Because Ω is a
subspace of X, it seems natural to topologize Ω by relativizing the topology on X. I
follow Mertens–Zamir in using this topology for Ω.

Let Pi(ω) ⊆ Ω denote the support of ı’s beliefs on worlds at ω. A set of worlds W ⊆ Ω
is belief–closed if for every i and every ω ∈ W , Pi(ω) ⊆ W . That is, every world any
player believes possible at some ω ∈ W is itself contained in W . It is not hard to show
that for any ω, there is a smallest belief–closed set containing it, which I denote B(ω).1

I refer to B(ω) as the belief–closed subspace generated by ω.

As discussed in the text, any partitions model together with any state s in that model
uniquely identifies a particular world denoted ω(s) in the universal beliefs space by the
unravelling procedure described earlier. Conversely, any finite belief–closed subspace
W of Ω generates a partitions model. More specifically, if W is a finite, belief–closed
subspace, we can find a partitions model with the property that the state set in the
partitions model is one–to–one with W and each ω ∈ W is ω(s) for some s in the
partitions model.2 When a partitions model M has this relationship to a belief–closed
set W , I say that M and W are equivalent. Similarly, I say that a state s in M is
equivalent to a world ω ∈ W if ω(s) = ω.

I say that a world ω ∈ Ω is finite if B(ω) is finite. Let Ωf denote the set of finite
worlds. I say that ω ∈ Ωf is weakly consistent if it is equivalent to a state in a partitions
model which is weakly consistent. Let Ωf,wc denote the set of ω ∈ Ωf such that ω is
weakly consistent. Finally, I will say that a world ω ∈ Ωf is consistent with common
priors if it is equivalent to a state in a partitions model which satisfies the common prior
assumption. Let Ωf,cp denote the set of ω ∈ Ωf such that ω is consistent with common
priors. Note that ω can only be consistent with common priors if it is weakly consistent.
Hence Ωf,cp ⊆ Ωf,wc. For any set Z, let cl(Z) denote its closure.

1Obviously, Ω itself is belief–closed, so every world is contained in at least one belief–closed set. It is
easy to see that the intersection of an arbitrary collection of belief–closed sets is belief–closed. Hence the
intersection of the family of belief–closed sets containing ω is the smallest belief–closed set containing
ω. For clarity, I emphasize that B(ω) need not be a minimal belief–closed set. That is, it may contain
a proper subset which is belief–closed. If so, the proper subset must not contain ω.

2One can extend this converse to infinite W if one replaces partitions with σ–fields and allows for
infinite S. However, this issue is irrelevant for my purposes. See Brandenburger and Dekel [1993] or Tan
and Werlang [1988] for details.
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Theorem 1 in the text yields

Lemma 1 cl(Ωf,cp) = cl(Ωf,wc).

Proof. Obviously, since Ωf,cp ⊆ Ωf,wc, we have cl(Ωf,cp) ⊆ cl(Ωf,wc). For the converse,
fix any ω ∈ Ωf,wc. Let s be a state in partitions model M which is equivalent to ω.
Such an s and M must exist because ω is finite. By definition, s is weakly consistent.
By Theorem 1 in the text, for any N , we can find a partitions model satisfying common
priors and a state sN in that model such that the nth order beliefs at sN are the same
as those at s for all n ≤ N . Let ωN = ω(sN). Clearly, ωN ∈ Ωf,cp. Because ωN is the
world generated by sN , ωN has the same parameter value as ω and has the same nth

order beliefs for each player as ω for all n ≤ N . Hence ωN → ω as N → ∞. Hence
Ωf,wc ⊆ cl(Ωf,cp), so cl(Ωf,wc) ⊆ cl(Ωf,cp).

Also,

Lemma 2 cl(Ωf,wc) = cl(Ωf ).

Proof. Analogously to the above, it is sufficient to show that Ωf ⊆ cl(Ωf,wc). So fix any
ω ∈ Ωf . Since ω is finite, it is equivalent to a state in a partitions model. Let s∗ and
M be such a state and partitions model. For each finite N , construct a new partitions
model MN as follows. S, f , and the partitions in MN are the same as those in M. The
prior for i, µN

i , is defined by

µN
i (s | πi(s′)) =

1
N

1
#πi(s′)

+
N − 1

N
µi(s | πi(s′))

for s ∈ πi(s′) where # denotes cardinality. Let ωN be the world consistent with s∗ in
model MN . Obviously, ωN is finite. It is easy to see that for every player j and event E
in MN , E ∩ B0

j (E) = ∅ so for MN the event τ is equal to S. Hence s∗ in MN is weakly
consistent so ωN is weakly consistent. Hence ωN ∈ Ωf,wc. It is easy to see that for any
event E ⊆ S, µN

i (E | πi(s∗)) → µi(E | πi(s∗)) as N → ∞. Hence ωN → ω.

Finally, Mertens and Zamir’s Theorem 3.1 implies

Lemma 3 cl(Ωf ) = Ω.

Hence we obtain the corollary stated in the text:

Corollary 1 The closure of the set of finite worlds consistent with common priors is Ω.
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