Supplemental Notes for "Finite Order Implications of Common Priors"

Barton L. Lipman University of Wisconsin and Boston University

email: blipman@bu.edu

January 2003

These notes provide more details on the Mertens–Zamir [1985] universal belief space and a proof of Corollary 1 of "Finite Order Implications of Common Priors," Lipman [2002]. The discussion on the universal beliefs space is intended to enable a reader to follow the proof of the corollary without requiring further references. It is not intended to be a complete introduction to the subject.

Recall from the text that Θ is the parameter space and is assumed to be compact. For any compact space Z, let $\Delta(Z)$ be the set of probability measures on Z endowed with the weak topology. It is not hard to show that $\Delta(Z)$ is compact.

The universal beliefs space, denoted Ω , is a certain subspace of an infinite product space defined as follows. Let $X_0 = \Theta$ and recursively define $T_{n+1} = \Delta(X_n)$ and $X_{n+1} = X_n \times [T_{n+1}]^I$ where I is the number of players. Let $X = \Theta \times \prod_{n=1}^{\infty} [T_n]^I$. Compactness of Θ implies that X is compact in the product topology.

Mertens–Zamir demonstrate the existence of a subspace of X, denoted Ω , satisfying the following properties. First, there is a set of *types*, T, such that Ω is homeomorphic to $\Theta \times T^{I}$. Second, T is homeomorphic to $\Delta(\Theta \times T^{I-1})$. Finally, Ω is the largest space with this property. I refer to a point in Ω as a *world*. Intuitively, we can think of a world as a specification of the true value of the unknown parameter for that world and a type for each player. We can think of the type of a player as a probability distribution on Θ and the types of the other players or, equivalently, as a probability distribution on the set of worlds with the property that player *i* puts probability 1 on his own true type. More precisely, from the homeomorphism between Ω and $\Theta \times T^{I}$, we can identify *i*'s type at ω . Then from the homeomorphism between *T* and $\Delta(\Theta \times T^{I-1})$, we identify *i*'s beliefs over $\Theta \times T^{I-1}$. Since *i* knows his own type, we can write this as a belief over $\Theta \times T^{I}$ or, via the homeomorphism, over Ω . In short, for any ω and *i*, we can identify *i*'s beliefs over Ω .

As mentioned in passing above, I use the product topology for X. Because Ω is a subspace of X, it seems natural to topologize Ω by relativizing the topology on X. I follow Mertens–Zamir in using this topology for Ω .

Let $P_i(\omega) \subseteq \Omega$ denote the support of *i*'s beliefs on worlds at ω . A set of worlds $W \subseteq \Omega$ is *belief-closed* if for every *i* and every $\omega \in W$, $P_i(\omega) \subseteq W$. That is, every world any player believes possible at some $\omega \in W$ is itself contained in *W*. It is not hard to show that for any ω , there is a smallest belief-closed set containing it, which I denote $\mathcal{B}(\omega)$.¹ I refer to $\mathcal{B}(\omega)$ as the *belief-closed subspace generated by* ω .

As discussed in the text, any partitions model together with any state s in that model uniquely identifies a particular world denoted $\omega(s)$ in the universal beliefs space by the unravelling procedure described earlier. Conversely, any finite belief-closed subspace W of Ω generates a partitions model. More specifically, if W is a finite, belief-closed subspace, we can find a partitions model with the property that the state set in the partitions model is one-to-one with W and each $\omega \in W$ is $\omega(s)$ for some s in the partitions model.² When a partitions model \mathcal{M} has this relationship to a belief-closed set W, I say that \mathcal{M} and W are equivalent. Similarly, I say that a state s in \mathcal{M} is equivalent to a world $\omega \in W$ if $\omega(s) = \omega$.

I say that a world $\omega \in \Omega$ is finite if $\mathcal{B}(\omega)$ is finite. Let Ω_f denote the set of finite worlds. I say that $\omega \in \Omega_f$ is weakly consistent if it is equivalent to a state in a partitions model which is weakly consistent. Let $\Omega_{f,wc}$ denote the set of $\omega \in \Omega_f$ such that ω is weakly consistent. Finally, I will say that a world $\omega \in \Omega_f$ is consistent with common priors if it is equivalent to a state in a partitions model which satisfies the common prior assumption. Let $\Omega_{f,cp}$ denote the set of $\omega \in \Omega_f$ such that ω is consistent with common priors. Note that ω can only be consistent with common priors if it is weakly consistent. Hence $\Omega_{f,cp} \subseteq \Omega_{f,wc}$. For any set Z, let cl(Z) denote its closure.

¹Obviously, Ω itself is belief-closed, so every world is contained in at least one belief-closed set. It is easy to see that the intersection of an arbitrary collection of belief-closed sets is belief-closed. Hence the intersection of the family of belief-closed sets containing ω is the smallest belief-closed set containing ω . For clarity, I emphasize that $\mathcal{B}(\omega)$ need not be a *minimal* belief-closed set. That is, it may contain a proper subset which is belief-closed. If so, the proper subset must not contain ω .

²One can extend this converse to infinite W if one replaces partitions with σ -fields and allows for infinite S. However, this issue is irrelevant for my purposes. See Brandenburger and Dekel [1993] or Tan and Werlang [1988] for details.

Theorem 1 in the text yields

Lemma 1 $\operatorname{cl}(\Omega_{f,cp}) = \operatorname{cl}(\Omega_{f,wc}).$

Proof. Obviously, since $\Omega_{f,cp} \subseteq \Omega_{f,wc}$, we have $\operatorname{cl}(\Omega_{f,cp}) \subseteq \operatorname{cl}(\Omega_{f,wc})$. For the converse, fix any $\omega \in \Omega_{f,wc}$. Let *s* be a state in partitions model \mathcal{M} which is equivalent to ω . Such an *s* and \mathcal{M} must exist because ω is finite. By definition, *s* is weakly consistent. By Theorem 1 in the text, for any *N*, we can find a partitions model satisfying common priors and a state s^N in that model such that the n^{th} order beliefs at s^N are the same as those at *s* for all $n \leq N$. Let $\omega^N = \omega(s^N)$. Clearly, $\omega^N \in \Omega_{f,cp}$. Because ω^N is the world generated by s^N , ω^N has the same parameter value as ω and has the same n^{th} order beliefs for each player as ω for all $n \leq N$. Hence $\omega^N \to \omega$ as $N \to \infty$. Hence $\Omega_{f,wc} \subseteq \operatorname{cl}(\Omega_{f,cp})$, so $\operatorname{cl}(\Omega_{f,wc}) \subseteq \operatorname{cl}(\Omega_{f,cp})$.

Also,

Lemma 2 $\operatorname{cl}(\Omega_{f,wc}) = \operatorname{cl}(\Omega_f).$

Proof. Analogously to the above, it is sufficient to show that $\Omega_f \subseteq \operatorname{cl}(\Omega_{f,wc})$. So fix any $\omega \in \Omega_f$. Since ω is finite, it is equivalent to a state in a partitions model. Let s^* and \mathcal{M} be such a state and partitions model. For each finite N, construct a new partitions model \mathcal{M}^N as follows. S, f, and the partitions in \mathcal{M}^N are the same as those in \mathcal{M} . The prior for i, μ_i^N , is defined by

$$\mu_i^N(s \mid \pi_i(s')) = \frac{1}{N} \frac{1}{\#\pi_i(s')} + \frac{N-1}{N} \mu_i(s \mid \pi_i(s'))$$

for $s \in \pi_i(s')$ where # denotes cardinality. Let ω^N be the world consistent with s^* in model \mathcal{M}^N . Obviously, ω^N is finite. It is easy to see that for every player j and event Ein \mathcal{M}^N , $E \cap B_j^0(E) = \emptyset$ so for \mathcal{M}^N the event τ is equal to S. Hence s^* in \mathcal{M}^N is weakly consistent so ω^N is weakly consistent. Hence $\omega^N \in \Omega_{f,wc}$. It is easy to see that for any event $E \subseteq S$, $\mu_i^N(E \mid \pi_i(s^*)) \to \mu_i(E \mid \pi_i(s^*))$ as $N \to \infty$. Hence $\omega^N \to \omega$.

Finally, Mertens and Zamir's Theorem 3.1 implies

Lemma 3 $\operatorname{cl}(\Omega_f) = \Omega$.

Hence we obtain the corollary stated in the text:

Corollary 1 The closure of the set of finite worlds consistent with common priors is Ω .

References

- [1] Brandenburger, A., and E. Dekel, "Hierarchies of Beliefs and Common Knowledge," Journal of Economic Theory, 59, February 1993, pp. 189–198.
- [2] Lipman, B., "Finite Order Implications of Common Priors," Boston University working paper, December 2002.
- [3] Mertens, J.-F., and S. Zamir, "Formalization of Bayesian Analysis for Games with Incomplete Information," *International Journal of Game Theory*, **14**, 1985, pp. 1–29.
- [4] Tan, T., and S. Werlang, "On Aumann's Notion of Common Knowledge An Alternative Approach," working paper, 1988.