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Abstract

I don’t know.



“Is he — is he a tall man?”

“Who shall answer that question?” cried Emma. “My father would say, ‘Yes’;
Mr. Knightly, ‘No’; and Miss Bates and I, that he is just the happy medium.”

— From Emma by Jane Austen.

1 Introduction

When one thinks about language as spoken by real people on a day–to–day basis, it is
hard to ignore the fact that much of what is said is vague. Consider, for example, the
word “tall.” There is no precise, known height which defines the line between a person
who is tall and a person who is not. Why do we use a language in which such terms are
so prevalent? Why don’t we simply adopt as a definition that “tall” will mean above,
say, 6 foot 2? We could even adopt a context–specific definition, saying for example that
“tall” for a newborn means above 15 inches, while “tall” for a professional basketball
player means above 6 foot 10.

In this paper, I will argue that we cannot explain the prevalence of vague terms in
natural language without a model of bounded rationality which is significantly different
from anything in the existing literature. In a nutshell, the argument is that any model
along existing lines will imply that a precise language like the one described above would
Pareto dominate the vague language we see in every society in history. Of course, it
seems rather far–fetched to conclude that we have simply tolerated a world–wide, several–
thousand–year efficiency loss. Further, even a moment’s reflection will suggest that it
is easier to speak when one is allowed to use vague language than it would be if such
language were banned. Hence this dominance surely tells us that there is something
wrong with the model, not the world.

First, let me be more precise about what I mean by vagueness. Following Sainsbury
[1990],1 I will say that a word is precise if it describes a well–defined set of objects. By
contrast, a word is vague if it is not precise. Hence the alternative definition given above
for “tall” (with or without context specificity) would make this term precise, whereas it
is vague in its current usage.

I emphasize that vagueness (as I use the term) is not the same thing as less than full
information. To say that a person’s height is above six feet is precise in the sense that it

1All papers cited here but not listed in the references are contained in Keefe and Smith [1996], an
excellent introduction to the philosophy literature on this topic.
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defines a set of people unambiguously. It is less informative than saying that a person’s
height is 6 foot 2, but it is not vague as I use the term.

The classic illustration of vagueness is what is referred to in the philosophy literature
as the sorites paradox. For one version of this paradox, note that two facts seem clear
about the way people use the word “tall.” First, anyone whose height is 10 feet is tall.
Second, if one person is tall and a second person’s height is within 1/1000 of an inch of
the first, then the second person is tall as well. But then working backward from 10 feet,
we eventually reach the absurd conclusion that a person whose height is 1 inch is tall.
Of course, the source of the difficulty is the vagueness of the word “tall.” Because there
is no fixed set of heights which “tall” corresponds to, no line which separates “tall” from
not, one has the feeling that a small change should not matter. Of course, many small
changes add up to a big change, so this is not consistent.

Many other words are vague in this sense. Some words which can easily yield a sorites
paradox are “bald,” “red” (imagine a sequence of objects moving continuously from red
to orange to yellow), “thin,” “child” (imagine a sequence of people, each one second older
than the previous), “many,” and “probably.” Some philosophers have constructed less
obvious sorites paradoxes for “tadpole,” “chair,” and other seemingly clear–cut terms.

Many of these terms would be difficult to redefine in a precise way. On the other
hand, many could be given such redefinitions. As noted above, “tall” could be defined
to be over a specific height, “bald” could be defined by a specific fraction of the skull
covered by hair, etc.2 In such cases, why is the precise redefinition not adopted?

While it seems clear that it would be more difficult to converse in such a precise
language, it is not obvious why. Some philosophers of language have tried to address
this point. For example, Wright [1976, page 154] observes that “the utility and point
of the classifications expressed by many vague predicates would be frustrated if they
were supplied with sharp boundaries.” Sainsbury [1990, page 251] more colorfully asks of
vagueness: “is it so obvious that it is a Bad Thing, given the extent to which the throbbing
centres of our lives appear to be describable only in vague terms?” With relatively few
exceptions, however, they have not explained what exactly it is about vague terms that
make them preferred to their precise analogues.

In the next section, I give a simple but reasonably general model and show that
vague terms are Pareto dominated by precise ones in a certain sense. As I will argue,
this model, while simple, illustrates that many seemingly obvious reasons why language
is vague cannot be made a part of anything close to a standard model. I will argue that

2Of course, sometimes we do develop such definitions for legal purposes, most notably in the case of
the word “child.” On the other hand, it is clear that much common usage of this word outside the legal
context is not based on such a precise definition.

2



in some of these cases, the fault is with the model, not the argument for the optimality
of vagueness. In Section 3, I argue that explaining the value of vagueness requires a
new kind of model of bounded rationality. I suggest that such a model can potentially
formalize some of the arguments in Section 2 which seem correct but are not consistent
with the model.

2 The Suboptimality of Vagueness

In this section, I give a simple model and use this to show why many seemingly obvious
advantages of vague terms do not fit into any standard model.

Consider the following two player game, a version of the standard Crawford–Sobel
[1982] sender–receiver game.3 Player 1 observes h, a random draw from the set H with
distribution function F . For example, he may observe the height of a person (which the
letter h is intended to suggest). He then chooses a message m from a set M . 2 observes
this message but not the value of h and then chooses an action a from a set A. I assume
that messages themselves are costless (think of a message as 1 making a verbal statement
to 2). Also, it is clear that if the objective functions of the agents differ, then 1 may wish
to hide information from 2 and hence may wish to be vague in some sense. This does
not seem to be the primary reason language is vague, so I rule this out by assuming that
the two agents have the same utility function u over (h, a) pairs.4

A pure strategy for player 1 is a function s1 : H → M . A mixed strategy for 1 is a
probability distribution σ1 on the set of pure strategies.5 A pure strategy for player 2 is
a function s2 : M → A, while a mixed strategy is a probability distribution σ2 over the
set of 2’s pure strategies.

Clearly, if there are as many messages as there are possible values of h, the best
equilibrium for 1 and 2 is for 1 to tell 2 the exact value of h. That is, 1’s strategy should
be invertible. Trivially, vagueness is suboptimal in such a model.

While this assumption is often viewed as natural, I think it is not particularly realistic
as a model of language. Consider the case where h is the height of some individual. The
set of possible heights presumably is uncountable, but the set of words we can use to

3One can also view this game as a generalization of Dow [1991].
4De Jaeger [2003] and Blume and Board [2009] show that noisy communication channels, interpreted

as vagueness, can be useful in promoting information transmission when the agents have different prefer-
ences. While these results show a very intriguing role for vagueness, they do not explain the prevalence
of vagueness in situations of common interests.

5It is more common to work with behavior strategies. Of course, it is equivalent to work with mixed
strategies and this is more convenient for my purposes.
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state a height (in, say, less than a century) is finite. Even if one does not accept this
view, I will argue below that models of bounded rationality in the literature can only be
used to explain vagueness if vagueness is an implication of M being too small. Hence
demonstrating that vagueness is suboptimal even when M is small is both less trivial
and more important to the argument I wish to make. I make no assumptions about the
size of M , but consider the interesting case to be where M is finite.

What would it mean to have a vague language in equilibrium? Note that any pure
strategy for player 1 would give a precise language, not a vague one. A pure strategy
specifies a message as a function of h. Given any message, then, 2 knows which set of h’s
lead to this message. In this sense, the message has a precise meaning: it corresponds to
a particular set of h’s.

The obvious way to try to obtain vagueness, then, would be for player 1 to use a
(nondegenerate) mixed strategy. With such a randomization, player 2’s interpretation of
a given message would be that 1 is more likely to use this message to describe some h’s
than others. In this sense, 1’s message is vague. (I discuss an alternative formulation
below.)

However, the following theorem demonstrates that this is suboptimal under very
weak conditions. First, some notation: For any pair of mixed strategies, (σ1, σ2), let
V (σ1, σ2) be the expected utility of player 1 (which equals the expected utility of 2) if
these strategies are played. I will write V (σ1, σ2) = V (s1, σ2) when σ1 is a degenerate
mixed strategy with probability 1 on the pure strategy s1 and similarly for strategies of
player 2. Let

V ∗ = sup
(σ1,σ2)

V (σ1, σ2).

Theorem 1 If there is a pair of strategies (σ1, σ2) such that the supremum is attained,
then every pair of pure strategies (s1, s2) in the support of (σ1, σ2) is a pure Nash equi-
librium in which V ∗ is the expected payoff.

Put differently, vagueness cannot have an advantage over specificity and, except in
unusual cases, will be strictly worse.

The proof is almost trivial. Let (σ∗1, σ
∗
2) be a pair of strategies satisfying V (σ∗1, σ

∗
2) =

V ∗. Obviously, (σ∗1, σ
∗
2) is a Nash equilibrium — any deviation by either player (weakly)

reduces V and hence the payoff to both players. Since σ∗1 is an optimal strategy for player
1, it must yield the same payoff as any6 pure strategy in its support. Hence for any such
pure strategy s1, we have V ∗ = V (s1, σ

∗
2). Again, this must be a Nash equilibrium since

6Or almost any if the distribution is not discrete.
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any deviation by either player leads to a weakly lower payoff for both. Again, since σ∗2 is
optimal for 2, then for any pure strategy s2 in its support, we have V ∗ = V (s1, s2). By
the same argument as before, (s1, s2) is a pure Nash equilibrium.

Remark 1 This result is not much more than Corollary 2.2 of Monderer and Shapley
[1996].

Remark 2 One could give a similar result for the case where the supremum is not
achievable. It is not hard to see that for any pair of strategies (σ1, σ2) achieving a
payoff within ε of V ∗, there is (s1, s2) in the support of (σ1, σ2) which is a pure ε–Nash
equilibrium with a payoff within ε of V ∗. A proof: Fix (σ1, σ2) with payoff within ε of V ∗.
Obviously, this must be a ε–Nash equilibrium. Player 1’s payoff is, of course, a convex
combination of the payoffs he gets from his various pure strategies. Hence there must
be a pure strategy s1 such that V (s1, σ2) ≥ V (σ1, σ2). Clearly, this yields both players
payoffs within ε of V ∗ and so is a ε–Nash equilibrium. A similar argument for player 2
completes the proof.

Remark 3 These games often have no (nontrivial) mixed equilibria, even if we drop the
assumption that the players have the same preferences over (h, a) pairs. For example, the
original Crawford–Sobel [1982] model assumes that player 2’s payoff function is strictly
concave in his own action and that the set of actions is convex. Given this, 2’s best reply
is always pure. Given this, Crawford and Sobel’s assumptions on 1’s payoffs ensure that
the set of types who are indifferent between inducing two different actions is of measure
zero, implying that 1 (essentially) does not randomize.

One might object to my identification of vagueness with mixed strategies. While ran-
domization by player 1 does give one way to formalize the idea that 2 doesn’t know pre-
cisely what 1 means, other approaches might be possible. I explain a different approach
here and return to a related alternative later. To see the idea, suppose H = {L,M,R}
and M = {m1,m2}. Suppose that L and M are “the same” in the sense that they induce
the same preferences over actions. That is, letting u denote the utility function for 1 and
2 over (h, a) pairs, we have u(L, a) > u(L, a′) if and only if u(M,a) > u(M,a′). Suppose
we have an equilibrium in which 1’s strategy is m(L) = m(R) = m1 and m(M) = m2.
What does player 2 learn when he receives message m1? In one sense, his information
is precise: the signal received by 1 was either L or R. On the other hand, one could
interpret this differently. One could say that what is really relevant is whether the signal
is R or in {L,M}. In this sense, m1 conveys noisy information. It lowers the probability
of {L,M} but does not refute it.

This kind of vagueness cannot be optimal either. To state this more precisely, for
each h, define a preference relation over A by a �h a′ if and only if u(h, a) > u(h, a′).
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Say that h and h′ are equivalent, denoted h ∼∗ h′ if they induce the same preferences
over actions — that is, if �h = �h′ . If h and h′ are equivalent, then, neither player
1 nor player 2 care about which of these two signals is received.7 In light of this, I will
say that strategy σ1 induces a precise language if it is pure and σ1(h) = σ1(h

′) whenever
h ∼∗ h′. Otherwise, I will say that σ1 induces a vague language.

Theorem 2 Suppose there is a pair of strategies (σ1, σ2) such that V (σ1, σ2) = V ∗. Then
there must be an equilibrium (σ′1, σ

′
2) which also achieves payoff V ∗ with the property that

σ′1 induces a precise language.

Proof. From the previous theorem, we know that given the condition stated, there is a
pure strategy equilibrium achieving V ∗. So fix such an equilibrium, say (s1, s2). If s1

does not induce a precise language, then, by definition, we must have some h and h′ with
s1(h) 6= s1(h

′) even though h ∼∗ h′. Note that for any such h and h′, it must be true that
u(h, s2(s1(h))) = u(h, s2(s1(h

′))). That is, player 1 must be indifferent between sending
the message s1(h) or s1(h

′) when the signal is either h or h′ — otherwise, he’d use the
better of the two in response to either signal.

In light of this, construct a new strategy ŝ1 as follows. Fix a subset of H, say H∗,
with the property that for every h ∈ H, there is exactly one h∗ ∈ H∗ with h ∼∗ h∗. That
is, H∗ takes one representative from each equivalence class under ∼∗. Let ŝ1(h

∗) = s1(h
∗)

for all h∗ ∈ H∗. For any other h, define ŝ1(h) to equal ŝ1(h
∗) for that h∗ ∈ H∗ with

h ∼∗ h∗. Clearly, ŝ1 induces a precise language. (If s1 already induced a precise language,
ŝ1 = s1.)

Note also that V (ŝ1, s2) = V (s1, s2) = V ∗ since ŝ1 and s1 differ only in which of
several equally good messages to send. Hence, by definition of V ∗, there cannot be any
s′2 with V (ŝ1, s

′
2) > V (ŝ1, s2). That is, (ŝ1, s2) is a Nash equilibrium.

An Example.

1 must describe Mr. X to 2 who must pick him up at the airport. 1 knows X’s height;
2 doesn’t. Height is continuously distributed on the interval [0,1] with density function
f and distribution function F , independently across people. There will be n people at
the airport in addition to Mr. X. 2 must pick one of these n + 1 people and ask if he is
X. If he guesses right, he and 1 get a payoff of 1. Otherwise, they both get 0. 2 cannot
observe the exact heights of the people at the airport, but does observe relative heights.
That is, he sees the height ranking of each person.

7One might object to this statement, since I have defined h and h′ to be equivalent if they induce the
same preferences over A, not over lotteries over A. In other words, risk attitudes could differ between h
and h′ even if h ∼∗ h′. As we will see, such a difference will be irrelevant.
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What is the optimal language when #M = 2? Surprisingly, the answer is independent
of n and depends on F only through its median. It is for 1 to say m1 when X’s height is
below the population median and m2 otherwise. 2’s strategy is to try the shortest person
in the first case and the tallest in the second. In fact, this is the unique equilibrium in
which 2 uses a pure strategy.

To see this, let 2’s strategy be to choose the (k + 1)th tallest person in response to
one word and the (k + d + 1)th tallest in response to the other, where d > 0. It is not
difficult to show that given k and d, there is a unique c with the property that 1’s payoff
to sending the first word exceeds his payoff to sending the second iff h ∈ [0, c]. Hence
given any pure strategy by 2, 1’s best reply will always partition [0, 1] into two intervals.
Therefore, we know that the language will have 1 send one message if h ∈ [0, c] and the
other if h ∈ (c, 1] for some c.

Consider 2’s best reply if he receives the message corresponding to (c, 1]. His payoff
to choosing the (k + 1)th tallest person is proportional to

Pr[h ∈ (c, 1] and k people taller] =

(
n

k

)∫ 1

c
[1− F (h)]k[F (h)]n−kf(h) dh.

Define this expression to be ϕ(k). For k ≥ 1, we can integrate by parts to obtain

ϕ(k) =
(
n
k

)
1

n−k+1
[1− F (h)]k[F (h)]n−k+1|1c

+
(
n
k

) ∫ 1
c

k
n−k+1

[1− F (h)]k−1[F (h)]n−k+1f(h) dh.

But F (1) = 1 and (
n

k

)
k

n− k + 1
=

(
n

k − 1

)
,

so

ϕ(k) = ϕ(k − 1)−
(
n

k

)
1

n− k + 1
[1− F (c)]k[F (c)]n−k+1.

Because the term being subtracted on the right–hand side must be positive, we see that
ϕ(k) is decreasing in k. Hence the optimal choice for 2 is k = 0 — that is, to choose
the tallest person. An analogous argument shows that when 2 conditions on [0, c], the
optimal choice is the shortest person.

Given these options, it is easy to see that 1 prefers 2 to pick the tallest person iff
[F (h)]n > [1− F (h)]n or F (h) > 1/2. Thus we must have c equal to the median height.
Because this is the only pure strategy equilibrium, Theorem 1 implies that it gives the
optimal language.

This game may have mixed equilibria as well. For example, if the distribution is uni-
form and n = 2, there is an equilibrium where 1 sends m1 if h ∈ (.5−(

√
3/6), .5+(

√
3/6))
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and m2 otherwise. In this equilibrium, 2 chooses the middle person when receiving m1

and randomizes between the tallest and shortest when receiving m2. The expected payoff
in this equilibrium is about .43, while it is .583 in the pure equilibrium.

This simple model illustrates my claim that many seemingly obvious advantages of
vague terms cannot be made part of anything like a standard model. Perhaps the most
obvious argument for the usefulness of vague terms is that one cannot observe the height
of an individual precisely enough to be sure in all cases of how to classify someone
in such a precise language. But there is an easy counterargument: Suppose I cannot
observe height exactly. Then I should form subjective beliefs regarding which category
an individual falls into. The theorem above then says that the optimal language will
be precise about such probability distributions. More formally, reinterpret the h above
not as height but as a signal of height. The above result then says that it is optimal to
partition the set of signals in a precise way. This is equivalent to partitioning the set of
induced beliefs and communicating them precisely.

An obvious reply to this is that real people do not form precise subjective beliefs.
I believe this is true, but it cannot fit into anything like a standard model of bounded
rationality. For example, it is not enough to replace probability distributions with nonad-
ditive probabilities or sets of probability beliefs. If agents have nonadditive probabilities,
then it is surely optimal to partition the set of such beliefs precisely and analogously for
sets of probabilities.

Another seemingly obvious advantage to vague language is that it makes context–
sensitivity easier. For example, if “tall” is not given a precise definition, I can use it to
describe a newborn whose height is 2 feet or a professional basketball player whose height
is 7 feet. Again, this objection cannot fit: we could make the precise definitions context–
specific. That is, “tall” could be defined to be greater than or equal to 15 inches for a
newborn and greater than or equal to 6 foot 10 for a professional basketball player. In
terms of the model above, it would be simple to add a random variable which is observed
by both players and interpreted as the context. The result above would imply that in
each context, it is optimal to have a precise language, though the language might vary
with the context in general.

A natural objection to this point is that it is cognitively difficult to remember all
the relevant cutoff points. Of course, the key question is not whether it is difficult to
remember the cutoff points corresponding to words in a precise language but whether
it is more difficult than remembering a vague meaning. Again, this requires a model of
bounded rationality different from anything in the existing literature.

The existing models often consider the complexity of strategies or rules8 and so,

8See, for example, Rubinstein [1998], Chapters 8 and 9.
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in principle, could be used to formalize a notion of the complexity of identifying the
appropriate cutoffs for a given context or the complexity of the language in other senses.
However, this is unlikely to deliver the conclusion that vagueness is optimal. Such a
model could well deliver the conclusion that fewer words are used than would be used in
the absence of complexity costs since this would be a way of simplifying. However, this
effectively gives only a model of how many messages there are. As noted earlier, the size
of the message set has no bearing on the conclusion that vagueness is suboptimal. The
real problem is that none of these models include options which are naturally interpreted
as simplifying the language by introducing some form of vagueness.

Another argument might be that the model above ignores the fact that people must
learn to use a language. In particular, one explanation for the prevalence of vague terms
which has been suggested in the philosophy literature is that vague terms might be
easier to learn. Sainsbury [1990, page 262] argues that “we acquire the concept from the
inside, working outwards from central cases . . . rather than from the outside, identifying
boundaries and moving inwards.” As I understand the argument, the idea is rather
natural. Suppose that I enter a population of people who have agreed on the cutoff
height between “short” and “tall.” The only way I can learn about this cutoff, however,
is to observe how they classify various people. Naturally, unless I get very lucky and
observe the classification of two individuals very close to but on opposite sides of the
boundary, I will never learn the cutoff being used. Instead, I will end up learning that
people below, say, 5 foot 5, are short, while people above, say, 6 foot 6, are tall and I
would have no clear idea about people in the middle. In this sense, what I have learned
is a vague term. Hence, even if we begin with a precise term, as new agents come into
the population and old ones die out, the term will become vague.

While this idea has some appeal for terms based on variables that are difficult to
quantify (such as “nice” or perhaps Sainsbury’s example of “red”), it is hard to accept
when applied to a notion like height. Surely in the fictitious world described above, I
should be able to open a dictionary and get out a tape measure to see exactly how tall
is “tall.”9

A related but different critique is that words are vague because we don’t know the
strategies of other people. If 2 does not know 1’s pure strategy, then 2 does not know
the intended meaning of the words 1 uses. This idea can also be incorporated into the
model. Suppose we add a payoff irrelevant signal to what player 1 observes and assume
this is not observed by 2. In such a model, there might be equilibria in which player 1’s
usage of words to describe the h he has seen depends on this signal. Since 2 does not
observe the signal, 2 does not know how 1 is using words. In other words, player 1 may
use a pure strategy, but his pure strategy choice depends on the payoff irrelevant signal.

9Another problem is that it is hard to see why the language won’t ultimately collapse. After all, each
generation learns a vague version of the previous generation’s usage.

9



On the other hand, it is not hard to see that Theorem 2 implies that an equilibrium of
this kind is at least weakly Pareto inefficient. That is, the best possible outcome can be
achieved by an equilibrium where 1 does not condition his choice of words on the payoff
irrelevant signal. Hence an equilibrium in which people aren’t sure of the pure strategies
chosen by others is Pareto inefficient.10

Another version of this argument would be to suppose that player 1 observes two
payoff relevant signals. This would make the set H above a product space. In such a
world, even a precise language will not give a precise statement on each dimension. To
see the point, return to the airport example and suppose 1 observes both height and
weight of Mr. X. A partition of the set of height–weight pairs will not necessarily induce
a clear partition on the set of heights. For example, it might be optimal to lump height
and weight together into some general comparison of “large” versus “small.”

I think this objection also misses the mark for two reasons. First, the optimal language
here is precise, even if it is not precise in either dimension. Real language is not precise in
this sense. Second, “tall” seems to be a clearly one dimensional notion and this argument
cannot explain vagueness in one dimension. Many other vague terms (“thin” and “bald”
for example) seem similarly one dimensional.

Some readers may object to my argument on the grounds that the formulation of
vagueness as an issue in game theory is incorrect. The sorites problem, for example, does
not seem to depend on communication between agents, only the inability of a single agent
in isolation to made a categorization. I believe such a criticism is misplaced. There is no
meaning to the word “tall” aside from what people interpret it to be. If a person says
he cannot say for sure whether a particular person is “tall,” surely this means he is not
sure how most people would categorize this person or how he would best describe this
person to others, not that he is unable to make a choice. Put differently, we use words
to communicate: there is only an answer to the question of the minimum height of a tall
person if we decide to use the word in such a way. Inherently, then, it is indeed a game
theory problem.

10One could argue that the players might not have a common prior over these various languages 1
might use. More precisely, they may have the same prior over H but different priors over the payoff
irrelevant signal. If so, they have different beliefs about the likelihood that 1 uses a particular message
for a particular reason. On the other hand, 1 observes h and the payoff irrelevant signal before choosing
his message, so his prior over the pair is irrelevant to determining whether particular strategies form
an equilibrium or not. Hence for the purposes of characterizing equilibria, we may as well assume the
players have the same prior. On the other hand, 1’s prior does affect his ex ante expected payoff in an
equilibrium and hence differences in priors could induce different preferences over equilibria. However, as
suggested above, surely differences in preferences (induced by differences in priors or more “fundamental”
disagreements) are not the primary reason for the prevalence of vague languages.
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3 Vagueness and Bounded Rationality

As noted numerous times in the preceding section, it may be possible to understand the
prevalence of vague terms in a model which incorporates a different kind of bounded
rationality than has been studied in the extant literature. In this section, I first try to
say why existing models of bounded rationality will not help. I then sketch three possible
directions in increasing order of ambitiousness (and vagueness!).

A key point is that vagueness requires a different way of thinking about information
and what it is. In most models of bounded or unbounded rationality, information takes
the form of an event in some state space. That is, when an agent receives information,
what he learns is always modeled as the fact that the state of the world lies in some
set. The learning may be incomplete and even systematically flawed, but the ultimate
conclusion takes this form. In this sense, what is learned is precise.11 I don’t know how
we can mathematically represent vague knowledge, but I believe that this is what is called
for.

Turning to some possible approaches, first, I think that a natural intuition is that
vagueness is easier than precision, for the speaker, listener, or both. Intuitively, for
the speaker, deciding on which precise term to use may be harder than using a vague
term. For the listener, information which is too specific may require more effort to
analyze. With vague language, perhaps one can communicate the “big picture” more
easily. Several of the points mentioned in the previous section can be thought of as
versions of this approach. This requires a different model of information processing than
anything in the literature. There is no model in the literature of what vague information
is or how it is processed.

An approach which seems more difficult still would be to focus on the relationship
between vagueness and unforeseen contingencies. That is, when I use a word, I do
not know all the possible situations where you would use my information and hence
I might want to “hedge” my bets and be vaguer.12 A very concrete example of this
comes from contract theory. Instead of attempting to specify in exact terms what a
party to the contract is supposed to do, contracts often use vague terms such as “taking
appropriate care” or “with all due speed.” If agents fear that circumstances may arise

11There are models where information is treated in a purely syntactic fashion — that is, where infor-
mation consists of simply a set of formulas in some logical language. See, for example, Lipman [1999] or
Feinberg [2005a, 2005b]. However, even in these models, the agent’s view of the information is translated
into some kind of subset of a state space.

12Pierce [1902] seems to define vagueness in terms of unforeseen contingencies, saying “a proposition
is vague when there are possible states of things concerning which it is intrinsically uncertain whether,
had they been contemplated by the speaker, he would have regarded them as excluded or allowed by
the proposition . . . because these questions never did . . . present themselves . . .” [italics in original].
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that they currently cannot imagine, then they may wish to avoid being too precise in
order to avoid being trapped later. Instead, they require the other party to respond to
unexpected circumstances “appropriately,” relying on the hope that the meaning of this
word will be sufficiently clear ex post.13 While there has been more work in recent years
on this topic, I think it fair to say that there is still no reasonably plausible model of
unforeseen contingencies which could be used to analyze such contracts. Dekel, Lipman,
and Rustichini [1998] is a somewhat dated but detailed review of the literature; Lipman
[2008] is briefer but more recent.

To understand the third suggestion, let us return to one comment I made in the pre-
vious section. I noted that if 1 did not know the height of the person he is describing
to 2, he should form a subjective probability distribution over it and communicate this
distribution precisely to 2. A natural reply is that people don’t form precise subjective
beliefs and hence cannot communicate them. If one takes the Savage view of subjective
beliefs, one must interpret this reply as saying that agents do not have precise preferences
or, perhaps, that agents do not truly “know” their own preferences. If we think of prefer-
ences over, say, flavors of ice cream, this sounds ridiculous. If we think of preferences over
state–contingent sequences of commodity bundles over one’s lifetime, it seems obviously
correct. In 1967, Savage described the problem as “the utter impracticality of knowing
our own minds in the sense implied by the theory.” He went on to comment

You cannot be confident of having composed the ten word telegram that
suits you best, though the list of possibilities is finite and vast numbers of
possibilities can be eliminated immediately; after your best efforts, someone
may suggest a clear improvement that had not occurred to you.

Put differently, the vastness of even very simple sets of options suggests it is ludicrous
to think a real person would have well defined ideas, much less well behaved preferences,
regarding the set. I think this is more than saying preferences are incomplete in reality
since the key is that some options may not even been recognized as such.

In short, it is not that people have a precise view of the world but communicate
it vaguely; instead, they have a vague view of the world. I know of no model which
formalizes this. I think this is the real challenge posed by the question of my title.

13This idea bears more than a passing resemblance to the Grossman–Hart–Moore approach to in-
complete contracts. See Hart [1995] on this approach and Dekel, Lipman, and Rustichini [1998] for a
discussion of the connection between it and formal models of unforeseen contingencies.
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