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"My own behaviour baffles me. For I find myself not doing what I really want to do but doing 
what I really loathe." Saint Paul 

What behaviour can be explained using the hypothesis that the agent faces temptation but is 
otherwise a "standard rational agent"? In earlier work, Gul and Pesendorfer (2001) use a set betweenness 
axiom to restrict the set of preferences considered by Dekel, Lipman and Rustichini (2001) to those 

explainable via temptation. We argue that set betweenness rules out plausible and interesting forms of 

temptation including some which may be important in applications. We propose a pair of alternative 
axioms called DFC, desire for commitment, and AIC, approximate improvements are chosen. DFC 
characterizes temptation as situations in which given any set of alternatives, the agent prefers committing 
herself to some particular item from the set rather than leaving herself the flexibility of choosing later. 
AIC is based on the idea that if adding an option to a menu improves the menu, it is because that option is 
chosen under some circumstances. From this interpretation, the axiom concludes that if an improvement 
is worse (as a commitment) than some commitment from the menu, then the best commitment from 
the improved menu is strictly preferred to facing that menu. We show that these axioms characterize a 
natural generalization of the Gul -Pesendorfer representation. 

1. INTRODUCTION 

What potentially observable behaviour can we explain using the hypothesis that the agent faces 
temptation but is otherwise a "standard rational agent"? We use the phrase temptation-driven 
to refer to behaviour explainable in this fashion. 

By "temptation", we mean that the agent has some current view of what actions she 
would like to choose, but knows that at the time these choices are to be made she will be 
pulled by conflicting desires. For clarity, we refer to her current view of desirable actions 
as her commitment preference since this describes the actions she would commit herself to 
if possible. We interpret and frequently discuss this preference as the agent's view of what 
is normatively appropriate, though this is not a formal part of the model.1 We refer to the 
future desires that may conflict with the commitment preference as temptations. We view this 
conflict as independent of the set of feasible options in the sense that whether one item is more 

1. See Noor (2006a) for a critique of such interpretations. 

937 
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938 REVIEW OF ECONOMIC STUDIES 

tempting than another is independent of what other options are available. Thus we do impose 
a certain structure on the way temptation affects the agent. Also, we allow the possibility that 
the extent or nature of temptation is random, but do not allow similar randomness regarding 
what is normatively preferred. While there is undoubtedly an element of arbitrariness in this 

modelling choice, we choose to rule out uncertainty about what is normatively preferred to 

separate temptation-driven behaviour from the desire for flexibility which such uncertainty 
would generate.2 We retain uncertainty about temptation for two reasons. First, as we will see, 
some behaviour which is very intuitive as an outcome of temptation is (unexpectedly) difficult 
to explain without uncertainty about temptation. Second, we believe that uncertainty about 

temptations is likely to be important in applications.3 
Our approach builds on earlier work by Gul-Pesendorfer (2001) (henceforth GP) and 

Dekel-Lipman-Rustichini (2001) (DLR). DLR consider a rather general model of preferences 
over menus, from which choice is made at a later date. (A menu can be interpreted either 

literally or as an action which affects subsequent opportunities.) DLR show that preferences 
over menus can be used to identify an agent's subjective beliefs regarding her future tastes 
and behaviour. The set of preferences considered by DLR can be interpreted as allowing for a 
desire for flexibility, concerns about temptation, or both considerations, as well as preferences 
with entirely different interpretations.4 

GP were the first to use preferences over menus to study temptation. To see the intuition 
for how this works, recall that temptation refers to desires to deviate from the commitment 

preference. The commitment preference is naturally identified as the preference over singleton 
menus, since such menus correspond exactly to commitments to particular choices. Thus 

temptation can be identified by seeing how preferences over non- singleton menus differ from 
what would be implied by the commitment preference if there were no temptation. That is, if 

{a} > {b}, so the agent prefers a commitment of a to a commitment of b, then if there were 
no temptation (or other "non-standard" motives), we would have {a, b] ~ {a} since she would 
choose a from {a, b}. With temptation, though, {a} may be strictly preferred to {a, b}. 

Using this intuition, GP focus on temptation alone by adding a set betweenness axiom to the 
DLR model. As we explain in more detail in subsequent sections, this axiom has the implication 
that temptation is one dimensional in the sense that for any menu, temptation affects the agent 
only through the "most tempting" item on the menu. While GP show that this simplification 
makes a useful starting point, it rules out many intuitive kinds of temptation-driven behaviour. 
For example, it rules out uncertainty about temptation where the agent cannot be sure which 
item on a menu will be the most tempting one. We give illustrative examples in Section 3. 

We believe that taking account of the multidimensional nature of temptation and uncertainty 
about temptation is important for applications. In reality, an agent cannot easily "fine tune" 
her commitments. That is, it is difficult to find a way to commit oneself to some exact 
course of action without allowing any alternative possibilities. Instead, real commitments 
tend to be costly actions which alter one's incentives to engage in "desired" or "undesired" 
future behaviours. Much of the real complexity of achieving commitment comes from the 
multidimensional character of temptation. To see the point, first suppose that the only possible 
temptation is overspending on current consumption. In this case, the agent can avoid temptation 
by committing herself to a minimum level of savings. Now suppose there are other temptations 

2. Also, allowing uncertainty about normative preferences poses severe identification problems. See Section 6 
for details. 

3. It is true that uncertainty about what is normatively appropriate may also be important in applications as 

well; see Amador, Werning and Angeletos (2006). 
4. For examples of different motivations, see Sarver (2008) or Ergin and Sarver (2008). 
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that may strike as well, such as the temptation to be lazy and avoid dealing with needed home 

repairs or other time-consuming expenditures. In this case, the commitment to saving may 
worsen the agent's ability to deal with other temptations. 

Similarly, casual observation suggests that commitments often involve overcommitment 

(spending more ex ante to commit to a certain behaviour than turns out ex post to be necessary) 
or undercommitment (finding out ex post that the change in one's incentives was not sufficient 
to achieve the desired effect). Neither phenomenon seems consistent with a model of tempted 
but otherwise rational agents unless the model includes uncertainty. 

As GP argue, it was natural for them to begin the study of temptation by narrowing to 
a particularly simple version of the phenomenon. Our goal is to use the DLR framework to 
build on their analysis and carry out the logical next step in the study of temptation, namely 
identifying the broadest possible set of behaviour that can be interpreted as that of a tempted but 
otherwise rational agent. There is a natural analogy to this objective in terms of preferences for 

flexibility. Kreps (1979) characterized a preference for flexibility using preferences over menus 
of deterministic goods. In DLR, we extended his result and characterized the most general class 
within our framework that yields a preference for flexibility using Kreps' monotonicity axiom. 
As we explain in more detail in the next section, both the axiom involved and the representation 
it generates seem to be natural ways to characterize those preferences that are driven solely 
by flexibility. Here we would like to do the same for preferences that are driven solely by 
temptation. Since GP's "one-dimensional" approach imposes more restrictions than just that 
there is temptation, we broaden their model as much as possible without introducing features 
other than temptation. 

It is important to keep in mind that factors other than temptation may lead to similar 
behaviour. Hence, while we define temptation-driven behaviour to be that behaviour consistent 
with the hypothesis of temptation of an otherwise rational agent, it is not possible to prove 
that the agent was tempted. Consequently, one might argue that we have been too broad in 
what we consider to be temptation-related behaviour and have not imposed enough axioms or 
that we have ruled out some forms of temptation by imposing too many axioms. In Section 
4, we argue that our axioms are a reasonable way to identify temptation-driven behaviour. In 
Section 5, we give some special cases of the representation and the additional axioms which 

correspond to these as a way of narrowing the range of behaviour to that which is more clearly 
interprétable as temptation driven. In Section 6, we discuss some possible strengthenings and 

weakenings of our axioms. 
Our analysis is based on a simplified version of DLR, the development of which is another 

contribution of the present paper. To maintain a unified focus, the text focuses almost entirely 
on the issue of temptation, and the Appendix contains a complete explanation of how we add 
a finiteness requirement to DLR. 

In the next section, we present the basic model and state our research goals more precisely. 
In the process, we sketch the relevant results in DLR and GP. In Section 3, we give examples 
to motivate the issues and illustrate the kinds of representations in which we are interested. 
In Section 4, we give representation results and a brief proof sketch. Section 5 contains 
characterizations of some special cases. In Section 6, we discuss directions for further research. 

2. THE MODEL 

Let B be a finite set of prizes and let A(B) denote the set of probability distributions on B. A 

typical subset of A (B) will be referred to as a menu and denoted by jc, while a typical element 
of À (B), a lottery, will be denoted by f$. The agent has a preference relation >- on the set of 
closed non-empty subsets of A(£), which is denoted by X. 

© 2009 The Review of Economic Studies Limited 
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940 REVIEW OF ECONOMIC STUDIES 

The basic representation on which we build is called a. finite additive EU representation. This 
adds a finite state requirement to what DLR called an additive EU representation. Formally, 
we say that a utility function over lotteries, U : A(B) -> R is an expected-utility function if 

U(P) = ^2fi(b)U(b) 
beB 

for all P (where U{b) is the utility of the degenerate lottery with probability 1 on b). 

Definition 1. A finite additive EU representation is a pair of finite collections of expected- 
utility functions over A(Z?), w\,...,wi and v\, . . . , vj such that the function 

/ j 

V{x) = V maxtu/08) - V max v/(j8) 
i=l y=l 

represents >-. 

DLR, as modified in the corrigendum (Dekel, Lipman, Rustichini and Sarver, 2007), 
characterize this class of representations without the finiteness requirement. Theorem 6 in 
the Appendix extends these papers by characterizing finite representations.5 

DLR interpret the different utility functions over A (B) as different states of the world, 
referring to the / states corresponding to the tu/'s as positive states and J states corresponding 
to the Vj's as negative states. To understand this interpretation most simply, suppose there are 
no negative states, i.e., 7 = 0. Then it seems natural to interpret the w/'s as different utility 
functions the agent might have at some later date when she will choose from the menu she 
picks today. At that date, she will know which w, is her utility function and, naturally, will 
choose the item from the menu which maximizes this utility. Her ex ante evaluation of the 
menu is the expected value of the maximum. If the tu/'s are equally likely, we obtain the value 
above.6 This interpretation was introduced by Kreps (1979), who first used preferences over 
sets to model preference for flexibility. Clearly, the presence of the negative states makes this 
interpretation awkward. 

One way to reach a clearer understanding of this representation, then, is to rule out the 
negative states. DLR show that Kreps' monotonicity axiom does this. 

Axiom 1 (Monotonicity). Ifx Cx'f then x' > x. 

It is straightforward to combine results in DLR with Theorem 6 to show the following.7 

5. In addition to finiteness, the finite additive EU representation differs from DLR' s additive EU representation 
in three respects. First, DLR included a non-emptiness requirement as part of the definition of an additive EU 

representation. Consequently, their axioms differ from those of Theorem 6 by including a non-triviality axiom. Second, 
DLR required that none of the utility functions be redundant. Third, in the infinite case, we cannot define the integration 
without a measure and, for largely technical reasons, we cannot always take the measure to be Lebesgue. That is, in 

the infinite case, we cannot always have equal weights on all the if,'s and v/s. By contrast, in the finite case, as 

is standard with state-dependent utility, we can change the probabilities in essentially arbitrary ways and rescale the 

u;/ 
' s and Vj's to leave the overall utility unchanged. Hence probabilities cannot be identified. 

6. As noted in the previous footnote, we cannot identify probabilities, so the interpretation of the tu/'s as equally 

likely is only for intuition. 
7. If >^ has a representation with J = 0, it will also have other representations with J > 0 since we can add a 

Vj satisfying vj(P) = k for all fi to any representation and not change the preference being represented. This is why 
DLR imposed a requirement that no "redundant" states are included. For the purposes of this paper, it is simpler to 

allow redundancy. 
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Observation 1. Assume the preference > has a finite additive EU representation. Then > 
has a representation with 7 = 0 if and only if it satisfies monotonicity. 

Intuitively, monotonicity says that the agent always values flexibility. Such an agent 
either is not concerned about temptation or values flexibility so highly as to outweigh such 
considerations. In this case, the finite additive EU representation is easy to interpret as 
describing a forward-looking agent with beliefs about her possible future needs. 

GP's approach provides an alternative interpretation of the finite additive EU representation 
by imposing a different restriction on that class of preferences. They recognized that temptation 
and self-control could be studied using this sets of lotteries framework if one does not impose 
monotonicity. If the agent anticipates being tempted in the future to consume something she 
currently does not want herself to consume, this is revealed by a preference for commitment, 
not flexibility. GP's (2001) representation theorem differs from Observation 1 by replacing 
monotonicity with an axiom they call set betweenness. 

Axiom 2 (Set betweenness). Ifx>y, then x > x U y > y. 

To understand this axiom, consider a dieting agent's choice of a restaurant for lunch where 
jc, y and x U y are the menus at the three possible restaurants. Suppose jc consists only of a 
single healthy food item, say broccoli, while y consists only of some fattening food item, say 
french fries. Since the agent is dieting, presumably x > y. Given this, how should the agent 
rank the menu x U y relative to the other two? A natural hypothesis is that the third restaurant 
would lie between the other two in the agent's ranking. It would be better than the menu 
with only french fries since the agent might choose broccoli given the option. On the other 
hand, x U y would be worse than the menu with only broccoli since the agent might succumb 
to temptation or, even if she did not succumb, might suffer from the costs of maintaining 
self-control when tempted. Hence x > x U y > y. 

GP introduced the following representation. 

Definition 2. A self-control representation is a pair of expected-utility functions (w, v), 
u : A(B) -+ R, v : A(B) -> R, such that the function Vgp represents > where 

VG?(x) = max[w(£) + v(P)] - max v(P). 
Pex pex 

It is easy to see that this is a finite additive EU representation with one positive state and 
one negative state where we do a "change of variables", letting w\ = u + v and v\ = v. Thus 
it comes as no surprise that the axioms GP use for this representation include those we use in 
Theorem 6 to characterize finite additive EU representations.8 Hence we can paraphrase their 
result as 

Observation 2. (GP, Theorem 1) > has a self-control representation if and only if it 
has a finite additive EU representation and satisfies set betweenness. 

8. Specifically, their axioms are the same as those we use in Theorem 6 except that they have set betweenness 
instead of our finiteness axiom. One can show that set betweenness implies finiteness. On the other hand, they only 
assume B is compact, not finite. 
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To interpret GP's representation, note that u represents the commitment preference-the 
preference over singletons -as Ygp ({/?}) = k(j8) for any p. For any menu x and any fi e x, let 

c<fi,x) = \maaiv<ft')\-v<ft). 

Intuitively, c is the foregone utility according to v from choosing fi from x instead of choosing 
optimally according to v. It is easy to see that 

VGp(x) = max[u(P)-c(P,x)]. 
pex 

In this form, it is natural to interpret c as the cost of the self-control needed to choose fi from 
x. Given this, v is naturally interpreted as the temptation utility since it is what determines the 
self-control cost. 

To summarize, consider the set of preferences with a finite additive EU representation. 
Intuitively, the subset of these preferences which are monotonie corresponds to those agents 
that value flexibility but are not affected by temptation. It seems natural to call such preferences 
flexibility driven, as both the axiom and the representation it generates seem to describe such an 

agent. In other words, in defining flexibility-driven preferences as those that can be explained 
by flexibility considerations alone, it seems natural to conclude that monotonicity characterizes 
these preferences. 

Analogously, we refer to those preferences that have a finite additive EU representation and 
can be explained solely by a concern about temptation as temptation driven. It seems natural 
to say that the preferences that satisfy set betweenness are temptation-driven preferences. 
However, set betweenness does not appear to be as complete a statement of "temptation-driven 
preferences" as monotonicity is for "flexibility driven". In the next section, we give examples 
of behaviour that seems temptation driven but violates set betweenness, suggesting that set 
betweenness is stronger than a restriction to temptation-driven preferences. Our goal in this 

paper is to identify and give a representation theorem for the full class of temptation-driven 
preferences. 

3. MOTIVATING EXAMPLES AND REPRESENTATIONS 

In this section, we give two examples to illustrate our argument that set betweenness is stronger 
than a restriction to temptation-driven preferences. We also use these examples to suggest other 

representations of interest. 

Example 1. 

Consider a dieting agent who wishes to commit herself to eating only broccoli. There are 
two kinds of snacks available: chocolate cake and high-fat potato chips. Let b denote the 
broccoli, c the chocolate cake and p the potato chips. The following ranking seems quite 
natural: 

[b}>[b,c}Ab,p}>[b,c,p}. 

That is, if broccoli and a fattening snack are available, the tempting snack will lower her utility, 
so {b, c] and {b, p] are both worse than {b}. If broccoli and both fattening snacks are available, 
she is still worse off since two snacks are harder to resist than one. 

This preference violates set betweenness. Note that {b, c, p] is strictly worse than {b, c] 
and {b, p] even though it is the union of these two sets. Hence set betweenness implies that 
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two temptations can never be worse than each of the temptations separately. In GP, temptation 
is one dimensional in the sense that any menu has a most tempting option and only this option 
is relevant to the self-control costs. 

Intuitively, two snacks could be worse than one for at least two reasons. First, it could be 
that the agent is unsure what kind of temptation will strike. If the agent craves a salty snack, 
then she may be able to control herself easily if the chocolate cake is the only alternative to 
broccoli. Similarly, if she is in the mood for a sweet snack, she may be able to control herself 
if only the potato chips are available. But if she has both available, she is more likely to be 
hit by a temptation she cannot avoid. Second, even if she resists temptation, the psychological 
cost of self-control seems likely to be higher in the presence of two snacks than in the presence 
of one.9 

It is not hard to give generalizations of GP's representation that can model either of these 

possibilities. To see this, define utility functions w, v\ and V2 by 

b 3 2 2 
c 0 0 6 

p 0 6 0 

Define V\ by the following natural generalization of GP: 

1 
2 

T 1 

1=1 ^ 

In DLR's terminology, this representation has two positive states (u + v\ and u + v2) and two 

negative states (v\ and 1*2). Equivalently, let 

c/(/J,jc) = |maxul-(^/)l-i;/(i8). 
Lfi'ex J 

Then 

! 
2 

Vi(x) = -^2msui[u(fi)-Ci(fitx)]. 

Intuitively, the agent does not know whether the temptation that will strike is the one described 

by v\ and cost function c\ (where she is most tempted by the potato chips) or V2 and cost 
function q (where she is most tempted by the chocolate cake) and gives probability 1/2 
to each possibility. It is easy to verify that V\({b}) = 3, V\({b, c}) = V\{{b, /?}) = 3/2 and 

V\({b, c, /?}) = 0, yielding the ordering suggested above. 

Alternatively, define V2 by a different generalization of GP: 

V2(x) = max[M(0) + vx(fi) + U2O?)] - maxvi(/J) - maxi^O?). (1) 
Pex flex 0ex 

This representation has one positive state, u + v\ + i>2, and two negative states (again v\ and 

V2). Here we can think of the cost of choosing {$ from menu x as 

c(0,x) = maxv!(/î) + maxv2(j3) - vx(fi) - V2<fi), 
L 0€* pex J 

9. GP (2001, pp. 1408-1409) mention this possibility as one reason why set betweenness may be violated. 
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so that V2OO = max06JC[M(/J) - c(fï, x)]. This cost function has the property that resisting two 

temptations is harder than resisting either separately. It is easy to verify that V^CW) = 3, 
V2({b, c}) = Vi({b, P)) = -1 and V({fe, c, p}) = -5, again yielding the ordering suggested 
above. 

We note that there is one odd feature of V2. If the agent succumbs to one temptation, she 
still suffers a cost associated with the other temptation. That is, the self-control cost associated 
with choosing either snack from the menu [b, c, p] is 6, not zero. Arguably, it should be 
feasible for the agent to succumb to temptation and incur no self-control cost. We return to 
this issue in Section 6. 

Example 2. 

Consider again the dieting agent facing multiple temptations, but now suppose the two 
snacks available are high-fat chocolate ice cream (/) and low-fat chocolate frozen yogurt (y). 
In this case, it seems natural that the agent might have the following rankings: 

{b, y] > {y} and {b, /, y} >- {b, /}. 

In other words, the agent prefers a chance of sticking to her diet to committing herself to 

violating it so {b, y] >- {y}. Also, if the agent cannot avoid having ice cream available, it is 
better to also have the low-fat frozen yogurt around. If so, then when temptation strikes, the 

agent may be able to resolve her hunger for chocolate in a less fattening way. 
Again, GP cannot have this. To see why this cannot occur in their model, note that 

VG?({b, y}) = max{w(fc) + v(fc), u(y) + v(y)} - max{u(ft), v(y)} 

while Vcp({y}) = w(y) = w(y) 4- v(y) - v(y). Obviously, max{v(b), v(y)} > v(y). So 

Vgp({6, y)) > vG?({y}) requires max{w(fc) + v(b), u(y) + v(y)} > u{y) + v(y) or u{b) + 
v(b) > u(y) + v(y). Given this, 

max{«(fc) + u(fc), 11(1) + v(i), u(y) + v(y)} = mzx{u(b) + v(b), u(i) + v(i)}. 

Since 

max{i>(^), v(i), v(y)} > max{t>(Z?), v(i)), 

we get Vgp({^, *\ y}) < Vgp({^, «}). That is, we must have [b, i] > {b, 1, y}.10 
To see this more intuitively, note that [b, y] > {y} says that adding b improves the menu 

{y}. As we explain in Section 4, we interpret this as saying that the agent considers it possible 
that she would choose b from the menu [b, y}, an interpretation we share with GP. However, 
in GP, the agent has no uncertainty about temptation, so this statement means she knows she 
will definitely choose b from {b, y}. Consequently, she will definitely not choose y whenever 
b is available.11 Hence the only possible effect of adding y to a menu which contains b is to 
increase self-control costs. Hence GP require {b, f, y} < {b, /}. 

10. This conclusion does not follow from set betweenness alone but from the combination of set betweenness 
and independence. It is not hard to show how this preference is ruled out by set betweenness and independence using 
an argument similar to the one in Appendix C. 

11. Note that this conclusion relies on the assumption that temptation does not lead the agent to violate 

independence of irrelevant alternatives. That is, we are assuming that if the agent would choose b over y from 
one set, she would never choose y when b is available. See Section 6 for further discussion. 
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This intuition suggests that uncertainty about temptation is critical to rationalizing this 
preference. The following simple generalization of GP to incorporate uncertainty allows the 
intuitive preference suggested above. Let 

u v 
b 6 0 
i 0 8 
y 4 6 

and let 

V3(x) = - 
2 maxu(P) + - 

2 |max[K(j8) + v(fi)] - maxv(P) 1 . (2) 2 flex 2 I 0€jc pex J 

This representation has two positive states (u and u + v) and one negative state (v). Intuitively, 
there is a probability of 1/2 that the agent avoids temptation and chooses according to the 
commitment preference u. With probability 1/2, the agent is tempted and has a preference of 
the form characterized by GP. We have V3({b, y}) = 5 > 4 = V3({y}) and V3({b, i, y}) = 5 > 
3 = V3({b, /}), in line with the intuitive story. 

The three representations in these examples share certain features. First, all are finite 
additive EU representations. While we do not wish to argue that the axioms needed for such 
a representation are innocuous, it is not obvious that temptation should require some violation 
of them (though see Section 6). Second, in all cases, the representation is written in terms of 
the utility functions for the negative states and w, the commitment utility. Equivalently, we can 
write the representation in terms of the commitment utility and various possible cost functions 
generated from different possible temptations. 

Intuitively, the various negative states from the additive EU representation identify the 
temptations. The various positive states correspond to different ways these temptations might 
combine to affect the agent. However, all the positive states share a common view of what 
is "normatively best" as embodied in u. In this sense, there is no uncertainty about "true 
preferences" and hence no "true" value to flexibility, only uncertainty about temptation. 

A general representation with these properties is as follows: 

Definition 3. A temptation representation is a function Vj representing > such that 

/ 
Vt(x) = J^qt msix[u(P) -c;(£,jc)] 

1=1 
^x 

where qt > 0 for all /, £. qt • = 1, and 

c/08,*)= Vmaxi;,0S') - VVOS) 

where u and each Vj is an expected-utility function. 

Note that 5^f-^i = l implies that VT({fi}) = «(£), so u is the commitment utility. 
Intuitively, we can think of each c, as a cost of self-control, describing one way the agent 
might be affected by temptation. In this interpretation, qi gives the probability that temptation 
takes the form described by c, . 
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We can think of this as generalizing GP in two directions. First, more than one temptation 
can affect the agent at a time. That is, the cost of self-control may depend on more than one 
temptation utility. Second, the agent is uncertain which temptation or temptations will affect 
her. It is not hard to show that this representation nests all our examples and GP's representation 
as special cases. 

The following less interprétable representation is useful as an intermediate step. 

Definition 4. A weak temptation representation is a function Vw representing > such that 

1=1 /=/'+i 

where qi > 0 for all i, J^i Qi = 1 anc* 

where u and each Vj is an expected-utility function. 

Obviously, a temptation representation is a special case of a weak temptation representation 
where V = I.12 

4. CHARACTERIZATION OF TEMPTATION-DRIVEN PREFERENCES 

4.1. Results 

The following axiom seems to be a natural part of a definition of temptation driven. 

Axiom 3 (DFC: Desire for commitment). A preference > satisfies DFC if for every x 
there is some a e x such that {a} > x. 

This axiom says that there is no value to flexibility associated with jc, only potential costs 
due to temptation leading the agent to choose some point worse for her diet than a. 

On the other hand, DFC only says that flexibility is not valued. It does not say anything 
about when commitment is valued. The second axiom identifies a key circumstance in which 
commitment is strictly valuable, that is, when there is some a e x such that {a} > x. 

To get some intuition for the second axiom, consider the following example, similar to 
Example 2, where the three goods are broccoli (b), low-fat frozen yogurt (y) and high-fat ice 

12. One way to interpret the weak temptation representation is that it is a limiting case of temptation 

representations. To see this, fix a weak temptation representation with / > /' and any s e (0, 1). We can define 

a (strict) temptation representation with / "states" by shifting s of the probability on the first /' states to the remaining 
/ - /' states, adjusting the cost functions at the same time. More specifically, define <J, = qi - e/ï for / < /' and 

qi = £/(/ - /') for / = /' + 1, ...,/. For e > 0 sufficiently small, q{ > 0 for all i. For i < /', let c, = c,-. For 

i = /' + 1, ...,/, define new cost functions c, = (l/<J,)c;. Consider the payoff to any menu as computed by this 

temptation representation minus the payoff as computed by the original weak representation. It is easy to see that 

this difference converges to 0 as s I 0. In this sense, we have constructed a sequence of temptation representations 

converging to the weak representation. 
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cream (/). Assume that {b} > {y} > {/}, so broccoli is best for the agent's diet and ice cream is 
worst. As argued above, it seems plausible that adding y to the menu [b, i] improves the menu 
since v is a useful compromise when tempted. So assume {b, /, y) > {b, i}. As we argue below, 
if adding an item to a menu improves the menu, this is naturally interpreted as implying that the 
added item is sometimes chosen from the menu. That is, we will conclude from {b, i, y] > {b, i] 
that y is sometimes chosen from the menu {b, /, y}. So with this menu, the agent sometimes 
breaks her diet, choosing y instead of b. Consequently, we conclude that she strictly prefers 
committing herself to the broccoli. That is, we conclude {b} >- {b, /, y}. In addition, if y is 
sometimes chosen over b and /, it should also be sometimes chosen from the menu {b, y}. 
Thus the dieter sometimes breaks her diet with this menu too, implying {b} > {b, y}. These 

implications are the content of our next axiom when applied to this example: since adding y 
improves the menu {&, /}, we require that {b} is strictly preferred to both {&, i, y] and {&, y}. 

In short, there are three key steps to the axiom. First, we interpret {b, i, y] >- {b,i} to 
mean that y is sometimes chosen from {b, i, y}. Second, since {b} > {y}, we conclude that this 

implies [b] > {b, /, y}. Third, we appeal to a kind of "independence of irrelevant alternatives" 
(IIA) property to conclude that y is also sometimes chosen from {b, y] and that therefore 
ib]>{b,y}.13 

More generally, suppose adding ft to the menu x strictly improves the menu for the agent 
in the sense that xU {ft} > x. In such a case, we say f$ is an improvement for x. How should 
we interpret this property? Our goal is to characterize agents who face temptation but are 
otherwise "standard rational agents". As such, we consider an agent for whom the items on a 
menu have a certain appeal which is menu independent, an appeal which may create internal 
conflicts which the agent has to resolve. Thus we assume that the normative appeal and the 
extent of temptation of any given item is independent of the other items in the menu. 

In light of this, it seems natural to assume that adding an element to a menu does not make 
it easier to choose other elements or create value separately from choice. That is, adding an 
unchosen alternative cannot improve the menu. Hence we interpret x U {fi} > x as saying that 
the agent at least considers it possible that she would choose fi from the menu x U {£}.14 We 
emphasize that this is only an interpretation, not a theorem. We are arguing that our focus 
on agents who are tempted but are otherwise "standard rational agents" strongly suggests this 
interpretation, not that it "proves" it.15 

Under this interpretation ofiU{^)>i, what else should be true? Suppose a is the best 
item for her diet in x (i.e., is optimal according to the commitment preference) and {a} > {/*}. 
So a is strictly better for the agent's diet than fi and yet she considers it possible that her choice 
from x U [ft] would be ft, inconsistent with her commitment preference. Hence she strictly 
prefers committing herself to a rather than facing the menu x U {ft}. That is, commitment is 
strictly valuable in the sense that {a} >- x U {ft}. 

Similarly, consider some x' ç x. If the agent considers it possible that she would choose 
P from x U {(}}, it seems natural to conclude that she also considers it possible that she would 

13. In Section 6, we discuss the independence axiom and its relation to such IIA-like properties, noting that they 
may not be appropriate when modelling temptation. 

14. Gul and Pesendorfer (2005) also argue for this interpretation of ft improving x. 
15. There are temptation-related interpretations of x U {0} > x in which p is not chosen but which violate the 

"otherwise rational" part of our focus. For example, if ft is a very unappealing dessert, its inclusion in the menu may 
make it easier for the agent to focus on healthy dishes and hence to stick to her diet. Alternatively, a menu with a 

larger number of fattening items may create more conflict for the agent in choosing among the unhealthy dishes and 
so, again, may make it easier for her to stick to her diet. We discuss another example in Section 6. 
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choose fi from x' U {fi}. Again, if the best a e xr for her diet satisfies {a} > {£}, then the agent 
would strictly prefer the commitment {a} to facing the menu xf U {/*}. 

To summarize, we interpret x U {ft} > x to mean that ft is sometimes chosen from x U {ft} 
and hence from x' U {/*} for any x' ç x. If the best a ex' satisfies {a} > {ft}, this implies 
that the agent does not always choose from x' U {^} according to her commitment preferences. 
Therefore, commitment is strictly valuable for xf U {/3} in the sense that {a} > x' U {/*}. Since 
the key to this intuition is that x U [ft] > x implies f$ is sometimes chosen from x U {ft}, we 
summarize this by saying improvements are (sometimes) chosen.16 

The axiom we need is slightly stronger. In addition to applying to any ft which is an 
improvement for jc, it applies to any (Ï which is an approximate improvement for x. Because 
of this, we call the axiom AIC, approximate improvements are chosen. 

Definition 5. P is an approximate improvement for x if 

j8€cl({j8'|*U{0'}^*}) 

where cl denotes closure. Also, let B{x) denote the set of best commitments in x. That is, 

B(x) = {aex\[a}> {£}, V/J e x). 

Axiom 4 (AIC: Approximate improvements are chosen). // f$ is an approximate 
improvement for x, x' ç jc, and a e B(x') satisfies [a] > {/J}, then {a} > x' U {ft}. 

Theorem 1. >- has a temptation representation if and only if it has a finite additive EU 
representation and satisfies DFC and AIC. 

As mentioned earlier, the weak temptation representation, while not as interprétable as 
the temptation representation, is a natural intermediate point between the finite additive EU 
representation and the temptation representation. More specifically, in the course of proving 
Theorem 1, we also show 

Theorem 2. >^ has a weak temptation representation if and only if it has a finite additive 
EU representation and satisfies DFC. 

Since GP's self-control representation is a special case of a temptation representation, their 
axioms must imply ours. That is, for any preference with a finite additive EU representation, 
set betweenness implies DFC and AIC. A direct proof for AIC involves the other additive 
EU axioms (continuity and independence, defined in the B Appendix), so we postpone this to 
Appendix C. 

The proof for DFC is simpler. To see it, first note that if x = {a, f$] where {a} >z {fi}, then 
set betweenness implies {a} > x > {fi}. Thus DFC must hold for all menus with two elements. 

16. One may wonder whether we also require {a} > x' U {£} if >S worsens x instead of improving it-that is, if 

jc >- jc U {ft}. In fact, it is not hard to show that such an axiom is necessary as well, though without the approximation 
issue discussed later. We do not separate out this property since it is not needed for the sufficiency proof and hence is 

implied by the other axioms. Intuitively, there is a natural asymmetry between /8 improving a menu and (3 worsening 
a menu. In the former case, it is natural to interpret the preference as saying p is sometimes chosen. In the latter 

case, ft might be chosen, but might simply be a temptation that the agent manages to avoid but only by incurring 
self-control costs. 
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With this in mind, suppose we have shown that DFC holds for all menus with n - 1 or fewer 
elements. We now show set betweenness17 implies DFC for all menus with n elements. Fix 
x with n elements and any a e x. Obviously, if {a} > x, DFC is satisfied for this menu. So 
suppose x > {a}. By set betweenness, x > {a} implies x \ {a} > x since [jc \ {a}] U {a} = x. 
Since x \ {a} has n - 1 elements, the fact that DFC applies to all such menus implies that there 
is some ft e x \ {a} such that {/*} > x \ {a} >x. Since ft e jc, we see that DFC is satisfied for 
x. This shows that the conclusion of DFC holds for all finite menus. It is not difficult to show 
that DFC for all finite menus plus continuity (one of the axioms required for the finite additive 
EU representation) implies DFC for all menus. 

4.2. Proof sketch 

We prove Theorem 1 by first showing Theorem 2, that is, that DFC implies existence of a weak 

temptation representation. The key idea is to generalize the "change of variables" we used to 
derive GP's self-control representation from a one positive state, one negative state additive 
EU. The idea there was that we begin with a representation of the form 

maxwiOft) - maxi>i(jc). 
fiex 0ex 

We define u to be the utility function for singletons, so u = w\ - v\. We then use this to change 
variables, letting v = v\ and substituting u + v for w\, yielding the self-control representation. 

We generalize in the following way. Now we start from / positive states and J negative 
ones, so the "base" representation is 

/ j 
y^maxiVi(B) - Y^maxi;/^). 
hpex Ufiex 

As before, the main part of the change of variables is writing wi in terms of u and the negative 
state utilities. In the GP case, this was simple, but here it is not. Here we write each w, as 
a positive linear combination of u and the u/s. Further, we will need certain restrictions to 

interpret the coefficients in this linear combination. 
To be specific, suppose there are numbers at > 0 and bl} > 0, with £]/ ai = 1 anc* 

£\ bij = 1 for each j such that wt = atu + J2j ^jvj f°r eacn *• Tnus each wi is a positive 
linear combination of u and the i>/s. We could then substitute into the expression for the 

representation to obtain 

/ j , J 

J^ai nrax[ii(j8) + J2 ~^VJ^)] 
- 

£™J Mi*)- 

Since the a\ s are positive and sum to 1, they look like probabilities. With some tedious but 

straightforward algebra, we can rewrite the v/s into a cost-function form for each /, yielding 
our temptation representation. 

For brevity in what follows, we refer to the above inequalities on the a's and b's as the 
cross equation restrictions. We refer to a relaxed version allowing a,- = 0 for some / as the 
weak cross equation restrictions. As we explain in more detail below, DFC ensures existence 

17. In fact, it is not hard to see that a weaker assumption, positive set betweenness, is sufficient for this argument. 
See the definition in Section 5. 
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of coefficients satisfying the weak cross equation restrictions. Thus DFC allows the possibility 
that some of the a,-' s are zero. Since the rearranging above to obtain a temptation representation 
involved dividing by a,-, we cannot have a temptation representation in this case. Instead, we 
obtain the weak temptation representation.18 The only role of AIC is to ensure that a\ > 0 for 
all i. 

The proof that DFC implies existence of the coefficients satisfying the weak cross equation 
restrictions (and hence giving a weak representation) is based on a separating hyperplane 
argument. To give some intuition for this result, we prove a simpler result here, namely 
that each w, can be written as a positive linear combination of u and the v/s, ignoring 
the other inequalities in the cross equation restrictions (that is, the summing to 1 of the a,' s 
and the fc,-/s). This proof is connected to a famous result in the literature known as the 

Harsanyi aggregation theorem (Harsanyi, 1955). 19 
Harsanyi showed that an expected utility 

function, say W, can be written as a positive linear combination of a finite collection of other 

expected utility preferences, say U\, ...,Un, if and only if W respects the Pareto ordering 
generated by U\, . . . , Un- Applying this to our setting, we need to show that if u(a) > u(P), 
and Vj(a) > Vj(P) for all j, then wl (a) > W((P) as well. To see that DFC implies this, suppose 
that the conclusion does not hold, so w, (P) > wi (a). Then using the additive EU representation, 
we know that the value of the menu {a, P) is 

V({a, j8}) = Wi(fi) + J2 max(^(«), wk<fi)} - 
J2 M<*)- 

W j 

Since wi(P) > W((a) and max{wfc(a), Wk(fi)} > Wk(&), we have 

V({«, P)) > 10/(00 + £>*(<*) -J2yjW = UW ^ u^' 

Hence {a, P) is strictly preferred to {a} and {£}, contradicting DFC. In the Appendix, we show 
that DFC yields all the inequalities of the weak cross equation restrictions. 

The sole use of AIC is to ensure that a, > 0 for all i. Before showing that AIC has this 

implication, we relate the notion of p being an improvement to P being "chosen" by some w, . 

Suppose we have a finite additive EU representation, a menu y and a lottery P with 

Wi(P) = max Wi(a); 

so P is an optimal choice for iu,- from the menu y U {p}. Does this mean p improves the menu 

y? That is, does this imply yU(j8)> yl There are two reasons why this strict preference might 
not hold. First, it could be that there is some other a e y which wi finds just as good as p. In 
this case, iu,- does just as well under y as under y U {/*}, so we could have y ~ y U {p}. If this 
is the only reason why P does not improve the menu y, then we can improve p by an arbitrarily 
small amount according to the W( preference and this slightly better version of P will improve 
y. In other words, if this is why p does not improve the menu y, then P will approximately 
improve y. This consideration is why we need to consider approximate improvements and not 

just improvements. 
For the rest of this argument, then, assume that 

W((P) > max wt(a). 

18. Intuitively, if we have a w, such that a, = 0, it is very "close" to a w'( with ax > 0. This is the reasoning 
behind the result mentioned in footnote 12. 

19. See Weymark (1991) for an introduction to this literature. 
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Thus adding j$ to y strictly increases the maximum for W(. This is still not sufficient for 

concluding that f$ improves the menu y. It could be that adding fl to y also improves the 
maximum for some of the negative states. In this case, adding f$ to y could actually make 
the menu worse for the agent. Lemma 8 shows that in this case we can find a bigger menu 
which fi does improve. The idea is simple: take any negative state that would improve from 
the addition of fi and add to y some other lottery which that negative state finds just as good as 

P but which wt likes less than ft. Call the collection of these additional lotteries /. Now what 

happens if we add ft to y U y'l By construction, the maximum utility in each of the negative 
states is unaffected. The maximum utility in state u;, is strictly increased by adding ft and the 
maximum utility in other positive states must weakly increase. Hence adding f$ must improve 
yUy'. 

In short, if ft is optimal over y U {/?} for some positive state tu,-, then it must be true that 

P is an approximate improvement for y U yr for some y'. 
With this in mind, let us return to the question of why AIC implies at > 0 for all i. Note 

that what we need to do is to ensure that each tu/ is "strictly increasing in w". Intuitively, we 
need to rule out the possibility that there is an a and fl such that u(a) > w(£), Vj(a) = Vj(fi) 
for all j and u>,-(a) = Wi(P). So suppose there is such an a and ft. Hence f$ is an optimal 
choice for tu,- over the set {a, ft}. So from the paragraph above (letting y = {a}), we see that 
there must be some y' such that f$ is an approximate improvement for x = {a} U yr . Since 

u(ot) > w(£), we have {a} > {ft}. If we apply AIC with y = [a] ç x, we see that it implies 
{a} > {a, fi}. But from the finite additive EU representation, we see that 

V({«, /?}) = Wi(a) + J2k# max{tu*(a), wk(fi)} - 
£;- vj(a) 

> T,kwk(a) -T,jvj(a) 
= V([a}). 

Hence we conclude {a, fi] > {a}, a contradiction. So AIC implies that each at > 0, completing 
the proof. 

5. SPECIAL CASES 

In this section, we characterize the preferences corresponding to two special cases of temptation 

representations. Specifically, we characterize the "no uncertainty" representation V2 in (1) of 

Example 1 and the "uncertain strength of temptation" representation V3 in (2) of Example 2. 

These special cases are of interest in part because of the way the required conditions relate to 

GP's set betweenness axiom. Also, they illustrate how we can narrow the "allowed" forms of 

temptation in easily interprétable ways. 
First, consider a representation of the form 

j "1 j 

VNU(jc) = max u(fi) + 
J2vjW ~^mf*M£) 
j=i J 7=1 

which we call a no-uncertainty representation. Equivalently, 

VNU(jc) = max[MOS)-c(£,x)] 
Pex 

where 

j "I J 

j=i 
P ex 

J j=i 
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Note that this representation differs from the general temptation representation by assuming that 
/ = 1-that is, that the agent knows exactly which temptations will affect her. Hence we call 
this a no-uncertainty representation. This representation, then, generalizes GP only by allowing 
the agent to be affected by multiple temptations. 

If the preference has a finite additive EU representation with one positive state, then we 
can rewrite it in the form of a no-uncertainty representation by a generalization of the change 
of variables discussed in Section 2. Specifically, suppose we have a representation of the form 

j 

V(x) = maxw\(P) - y^maxi;/(j0). 

The commitment utility u is defined by u(fi) = V({P}) = w\(P) - 
J2j Vj(P)- Hence we can 

change variables to rewrite V in the form of Vnu- 
The no-uncertainty representation corresponds to half of set betweenness. 

Axiom 5 (Positive set betweenness). >- satisfies positive set betweenness if whenever 
x > y, we have x > x U y. 

For future use, we define the other half similarly: 

Axiom 6 (Negative set betweenness). >- satisfies negative set betweenness if whenever 
x > y, we have x U y > y. 

The following lemma characterizes the implication of positive set betweenness.20 

Lemma 1. Suppose > has a finite additive EU representation. Then it has such a 
representation with one positive state if and only if it satisfies positive set betweenness. 

To see the intuition, consider a preference > with a finite additive EU representation. 
Suppose >- satisfies positive set betweenness but, contrary to our claim, we have two or more 
positive states. For concreteness, suppose the indifference curves for the various tu/'s and v/s 
are as shown in Figure 1. More precisely, suppose there are four states in total, where w\ and 
W2 are two of the positive states. Suppose the lines labelled 1 and 2 are indifference curves for 
tu i, the lines labelled 3 and 4 are indifference curves for u>2 and the lines labelled 5 and 6 are 
indifference curves for the other two states (which could be positive or negative). In all cases, 
utility is increasing as we move "out"-that is, 2 is a higher indifference curve than 1 for w\, 
4 is a higher indifference curve than 3 for u>2 and "better" indifference curves for 5 and 6 are 
further down in the figure. Let x = z\ U zi and let y = zi U Z3. Thus x U y = z\ U zi U Z3. We 
claim that it must be true that x U y > x. To see this, note that x U y yields the same utility as 
x in the states corresponding to indifference curves 5 and 6 and in state w\. However, x U y 
yields higher utility than x in state W2. That is, the max 10, and maxvy terms are the same 
for x and x U y except that the max W2 term is strictly larger for x U y. Hence x U y >- x. A 
symmetric argument implies jc U y >- y, so positive set betweenness is violated, a contradiction. 
In short, positive set betweenness implies that there can only be one positive state but says 
nothing about the number of negative states. 

20. See also Kopylov (2005), which gives a generalization to / positive states and J negative states. 
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Figure 1 

Using the change of variables discussed above, this lemma obviously yields the following: 

Theorem 3. > has a no-uncertainty representation if and only if it has a finite additive 
EU representation and satisfies positive set betweenness. 

One can modify the proof of Lemma 1 in obvious ways to show the following: 

Lemma 2. Suppose > has a finite additive EU representation. Then it has such a 
representation with one negative state if and only if it satisfies negative set betweenness. 

Observation 2 (GP's representation) is obviously a corollary to Lemmas 1 and 2. 
A second special case takes Lemma 2 as its starting point. This representation has one 

negative state but many positive states that differ only in the strength of temptation in that 
state. Specifically, we define an uncertain strength of temptation representation to be one that 
takes the form 

Vusto = J]^/mra[ii(i8) 
- YiC<ft,x)] 

i 

where qt > 0 for all /, J^i ai = 1» Yi ^ 0 f°r a^ *> anc* 

c(0,jc) = [maxv(j8')]-v(0). 
P'€X 

In this representation, the temptation is always v, but the strength of the temptation (as measured 

by y,) is random. The probability that the strength of the temptation is Yi is given by #,-. In a 
sense, this representation allows the minimum possible amount of uncertainty. Note that this 
allows / = 2, Y\ - 1 and Yi - 0 as m me representation used in Example 2. 

Theorem 4. >- has an uncertain strength of temptation representation if and only if it has 
a finite additive EU representation and satisfies DFC and negative set betweenness. 
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6. DISCUSSION 

Our goal in this paper is to define and characterize the set of temptation-driven preferences -that 
is, those that can be explained in terms of an agent who is tempted but is otherwise a "standard 
rational agent". In this section, we address the extent to which we have achieved this goal by 
considering whether we have assumed too little (characterized too large a set of preferences) 
or too much (characterizing too small a set). In addition, we briefly discuss possible extensions 
of our work. 

6.1. Extensions 

By treating the commitment preference as the agent's view of what is normatively desirable, 
we have implicitly assumed away uncertainty about what is normatively desirable. At the 
same time, we have allowed uncertainty about what is tempting or the strength of temptation, 
suggesting that a more symmetric treatment of normative preference may be of interest. In 
a sense, though, this problem is too easily solved. More specifically, any finite additive EU 
representation can be written as a temptation representation with uncertainty about normative 
preferences. To see the point, return to the general finite additive EU representation where 

/ j 
V(x) = y^maxw/Off) - V* max u /(/?). 

i=l 7=1 

Partition the set {1, . . . , J] into / sets, J\, . . . , Jj in any fashion. Use this partition to define 
/ cost functions 

je* J JtJi 

just as in the definition of a temptation representation. Define m, so that w, + J2jeJi vj = wi- 
Obviously, then, we can write 

/ 
V(jc) = ^max[ii/(i8)-c/(i8,jf)]. 

1=1 
fiex 

Interpreting the / states as equally likely, this looks like a temptation representation where 
the normative preference, w,-, varies with /. On the other hand, it is not clear what justifies 
interpreting the m,'s as various possible normative preferences. In our temptation representation, 
u represents the commitment preference and thus is identified. Note that the inability to identify 
the w/'s above leads to a more general inability to identify which temptations are relevant in 
what states since the partition above was arbitrary. 

This observation points to another important direction to extend the current model. Our 
assumption that the normative preference is the commitment preference and hence is state 
independent allows the possibility that at least some aspects of the representation are uniquely 
determined (up to some transformation). It is not hard to show that the representation is 
identified in a natural sense if u and the various v/s are affinely independent in the sense 
that these functions (viewed as vectors in R* where K is the number of pure outcomes) and 
the vector of l's are linearly independent. With such identification, it is possible to consider 
how changes in preferences correspond to changes in the representation {i.e., analogs to the 
correspondence between increased willingness to undertake risk and a lower Arrow-Pratt 
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measure of risk aversion). For example, DLR show that one preference has an additive 
EU representation with a larger set of negative states than another if and only if it values 
commitment more in a certain sense. Since temptation representations have more structure 
than additive EU representations, there may be new comparisons of interest. 

A different approach to achieving identification is to put more discipline on the model 

by enlarging the set of primitives. Here, the only primitive is the preference over menus. In 
some of our discussion, particularly in motivating AIC, we interpreted this preference in terms 
of what it might say about choices from menus. Arguably, a superior approach would be to 

augment the primitives by bringing in such choices explicitly. 
It is not possible to draw définitive conclusions about choices the agent would make from a 

menu based only on preferences over menus. For example, consider an agent whose preference 
over menus has a temptation representation. We interpret the representation as saying that the 

agent assigns probability qt to being tempted according to cost function c,-. It seems natural, 
then, to say that if the agent has menu jc, then with probability qi she will choose a ft e x 
which maximizes u(fi) - c/(/i, jc). However, this conclusion is only an interpretation of the 

model, not a theorem which can be proven. As long as the only primitive in the model is a 

preference over menus, we have no information about choice from the menu with which to 
confirm this interpretation. GP resolve this problem by extending the preference over menus 
to menu-choice pairs, but this approach inherently involves a significant deviation from the 

principle of revealed preference. To see the point, let x = {a, b, c] and let >* denote this 
extended preference. Suppose (jc,a) ^* (x,b) >-* (jc,c). GP interpret this as saying that the 

agent prefers choosing a from x to choosing b from x and prefers choosing b from x to 

choosing c from x. Hence they conclude that a is chosen from menu jc. While this conclusion 
seems natural, the interpretation of (jc, b) >* (jc, c) is very puzzling. There is no choice that 
can reveal this preference to us. If jc is the set of choices available, neither b nor c would 
be chosen by the agent. Asking the agent to compare (*, b) to (x , c) is like asking the agent 
which she prefers: being offered jc but forced to choose b, or being offered x but forced to 

choose c. In what sense is jc the available set if the agent must choose something other than a 

from the set? 

6.2. Assuming too little? 

We have argued that DFC and AIC are a reasonable way to define temptation driven on the 

ground that both the axioms and the resulting representation seem to describe temptation-driven 
behaviour. On the other hand, the general representation does allow some behaviour that one 

might interpret as based on other considerations. 
One possible instance of this problem was mentioned in the discussion of Example 1. Our 

general representation allows cost functions that depend on more than one temptation in the 

sense that we have 

ci (P,x)= Y] max Vj (a) - Y" vj 08) 
JeJi J jeJt 

where 7/ need not be a singleton. Such a representation will often have the property that there 

is no choice the agent can make that reduces c, to 0. One might prefer to assume that if the 

agent gives in to temptation, the self-control cost is zero. One could argue that when this is not 

possible, these representations include considerations other than temptation such as regret.21 

21. We thank Todd Sarver for this observation. 
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This motivates considering a restriction to what we call a simple representation, a temptation 
representation with the property that 7, is a singleton for all /. Recently, Stovall (2007) has 

proved a conjecture from an earlier version of this paper that > has a simple representation if 
and only if it has a finite additive EU representation and satisfies weak set betweenness: 

Axiom 7 (Weak set betweenness). If {a} > {($} for all a e x and f$ e y, then x > 

On the other hand, it is worth noting that there are reasons why self-control costs might 
not be zero even if the agent succumbs to temptation. For example, it may be that the agent 
incurs such costs in a failed attempt to avoid succumbing to temptation, feels guilt or suffers 
from conflict over which temptation to succumb to. 

6.3. Assuming too much? 

Finally, our characterization of temptation-driven behaviour is carried out within the set of 
preferences with a finite additive EU representation, a set characterized in Theorem 6 in the 
Appendix. While some of the axioms required seem unrelated to issues of temptation, two of 
the necessary conditions, continuity and independence (see Appendix for definitions), arguably 
eliminate some temptation-related behaviour. If so, it may be useful to consider weaker forms 
of these axioms, thus enlarging the set of preferences considered. 

Regarding continuity, GP show that one common model of temptation requires continuity 
to be violated. Suppose the agent evaluates a menu x according to maxpeBv(x)u(P)> where 
Bv(x) is the set of v maximizers in x. Intuitively, the agent expects her choice from the menu 
to be determined by her later self with utility function v, where her later self breaks ties in 
favour of the current self. As GP demonstrate, in general, such a representation cannot satisfy 
continuity. 

Regarding independence, there are several temptation-related issues that may lead to 
violations of this axiom. For example, guilt may lead the agent to prefer randomization, a 
phenomenon inconsistent with independence. To see the point, consider a dieter in a restaurant 
faced with a choice between a healthy dish and a tempting, unhealthy dish. Independence 
implies that such a dieter would be indifferent between this menu and one that adds a 
randomization between the two. However, with such an option available, the dieter can choose 
the lottery and have some chance of consuming the unhealthy dish with less guilt than if 
it had been chosen directly. Hence the indifference required by independence is not entirely 
compelling.22 

Also, there is a sense in which independence implies that the agent's choices satisfy 
"independence of irrelevant alternatives". To understand this, note that we represent the agent 
as if she would face cost function c, with probability #,. Subject to the caveats mentioned 
in Section 6.1, suppose we interpret the agent who faces menu x as choosing some fi which 
maximizes u(fi) - c;(/?, jc) with probability <?,. Substituting for c,, this means that the agent 
maximizes a certain sum of utilities which is independent of x. Hence if ft is chosen over a 
from menu jc, f$ is chosen over a from any menu, a kind of II A property. This conclusion is 

22. We thank Phil Reny for suggesting this example. The example has a strong resemblance to the "Machina' s 

mom" story in Machina (1989). See also the earlier discussion of the point in Diamond (1967). The resemblance 

suggests that the issue is more about having preferences over procedures for decision making, perhaps driven by 

temptation, than about temptation given otherwise standard preferences, the case we study here. 

© 2009 The Review of Economic Studies Limited 

This content downloaded from 128.197.26.12 on Fri, 06 Nov 2015 21:51:08 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


DEKEL ETAL. TEMPTATION-DRIVEN PREFERENCES 957 

driven by the linearity of the representation -this causes the max^ Vj(fi) terms to be irrelevant 
to the max^er u(f$) - c/(/J, x) expression. This linearity comes from independence. 

As Noor (2006&) suggests by example, this II A property is not a compelling assumption 
for temptation. For a diet-related version of his example, suppose the menu consists only of 
broccoli and frozen yogurt. Arguably, the latter is not very tempting, so the agent is able to 
stick to her diet and orders broccoli. However, if the menu consists of broccoli, frozen yogurt 
and an ice cream sundae, perhaps the agent is much more significantly tempted to order dessert 
and opts for the frozen yogurt as a compromise. See also the related criticism of independence 
in Fudenberg and Levine (2005). 

Related to the earlier discussion of guilt, issues of guilt and its flip side, feelings of 
"virtuousness", may be important aspects of temptation and pose new modelling challenges. 
To see the point, we again let b denote broccoli, y frozen yogurt and / ice cream and assume 
{b} > {y} >- {/}. Suppose the agent knows she will choose y from any menu containing it. 
Then it seems plausible that {v, /} >- {y} > {b, y}. Intuitively, the first preference comes about 
because the agent can feel virtuous by choosing frozen yogurt over the more fattening ice 
cream, a feeling which the agent cannot get from choosing yogurt when it is the only option. 
Similarly, the second preference reflects the agent's guilt from choosing frozen yogurt when 
broccoli was available, a feeling not generated by consuming frozen yogurt when there is 
no other option. Note that the first of these preferences contradicts our main axiom, DFC, 
since it implies {y, /} > {y} > {/}. This story also runs contrary to the motivation for our AIC 
axiom: here, adding / improves the menu {y} but does so because it is not chosen. While the 
preference {b} > {y} >- {b, y) is consistent with our general representation, it is not consistent 
with a simple representation. In particular, with guilt, an agent who succumbs to temptation 
does not avoid all costs. We suspect that an adequate treatment of these issues requires moving 
beyond the class of finite additive EU representations. 

APPENDIX A. NOTATIONAL CONVENTIONS 

Throughout the Appendix, we use u, Vj, etc., to denote utility functions as well as the vector giving the payoffs 
to the pure outcomes associated with the utility function. When interpreted as vectors, they are column vectors. Let K 

denote the number of pure outcomes, so these are £ by 1. We write lotteries as 1 by K row vectors, so fi  u = u(P), 
etc. Also, 1 denotes the K by 1 vector of l's. 

APPENDIX B. EXISTENCE OF FINITE ADDITIVE EU REPRESENTATIONS 

It is simpler to work with the following equivalent definition of a finite additive EU representation. 

Definition 6. A finite additive EU representation is a pair of finite sets S\ and S2 and a state-dependent utility 
function V : A(B) x (Si U S2) -> R such that (i) V(x) defined by 

V(x) = J2 max ^O8' *) - £ max U(P> s) 
S€S{ S€S2 

represents >- and (ii) each U (-,s) is an expected-utility function in the sense that 

U{p,s) = Y,W)U{b,s). 
b€B 

The relevant axioms from DLR are: 
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Axiom 8 (Weak order). >- is asymmetric and negatively transitive. 

Axiom 9 (Continuity). The strict upper and lower contour sets, [xf ç A(fl) | jc' >- jc} and {jc' ç A(B) \ x >- 

x'), are open (in the Hausdorff topology). 

Given menus x and y and a number k e [0, 1], let 

kx + (1 - k)y = {0e A(fl) \0 = kp' + (l- k)P", for some p' e jc, p" € y) 

where, as usual, kfi + (1 - A.)/J" is the probability distribution over B giving b probability kfi'(b) + (1 - k)P"(b). 

Axiom 10 (Independence). //jc >- jc', then for all k e (0, 1] am* a// jc, 

kx + (1 - X)3c > Xjc' + (1 - k)x. 

We refer the reader to DLR for further discussion of these axioms. 
The new axiom which will imply finiteness requires a definition. Given any menu jc, let conv(jc) denote its convex 

hull. 

Definition 7. x' ç conv{x) is critical for x if for all y with x' ç conv(y) ç convex), we have y ~ x. 

Intuitively, a critical subset of x contains all the "relevant" points in x. It is easy to show that the three axioms 
above imply that the boundary of x is critical for jc, so every set has at least one critical subset. 

Axiom 11 (Finiteness). Every menu x has a finite critical subset. 

Theorem 6. >- has a finite additive EU representation if and only if it satisfies weak order, continuity, 

independence and finiteness. 

Necessity is straightforward. The sufficiency argument follows that of DLR by constructing an artificial "state 

space", SK, then restricting it to a particular subset. To do this, write B = [b\, . . . , bK}. Let SK = {s e RK \ ^s,  = 

0, 51 sf = 1}. In line with our notational conventions, we write elements of SK as K by 1 column vectors. For any 
set x € X, let ax denote its support function. That is, ax : SK -+ R is defined by 

ax(s) = max p • s. 

As explained in DLR, our axioms imply that if ax = oxi, then x ~ x' . 
To prove sufficiency, fix any sphere, say **, in the interior of A(#). By finiteness, x* has a finite critical subset. 

Let xc denote such a subset. We claim that we may as well assume xc is contained in the boundary of x*. To see this, 
suppose it is not. For every point in xc, associate any line through this point. Let xc denote the collection of intersections 
of these lines with the boundary of x*. Obviously, xc is finite. Also, it is easy to see that conv(xc) ç conv(ic). In 

light of this, consider any convex y ç x* and suppose xc ç y. Then 

xc ç conv(jcc) ç conv(Jcc) ç y ç x*. 

So y ~ jc*. Hence xc is a finite critical subset of x* which is contained in the boundary of jc*. So without loss of 

generality, we assume jcc is contained in the boundary of jc*. 
Since jc* is a sphere, there is a one-to-one mapping, say g, from the boundary of jc* to S* where g(P) is the 

s such that p is the unique maximizer of a • s over a g jc. That is, g(p) is the s for which we have an indifference 
curve tangent to jc* at p. Let 

S* = g(jcc) = {s eSK \ g(P) = s for some p e xc). 
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Let 

x = p| {a € A(fl) | a • g(P) < fi • g(0)}. (Bl) 

That is, jc is the poly tope bounded by the hyperplanes tangent to x* at the points in xc. The rest of the proof focuses 
on this menu. 

Lemma 3. xc is critical for x. 

Proof. Obviously, xc c x. Fix any convex y such that xc ç y c x. We show that y ~ x. 
To show this, fix any e > 0 and let 

/ = conv I xc U p| {a e y | a • g(0) < j8 • g(0) - e} I . 

V U»€* J/ 
Note that xc ç. ye ç. y. Also, y£ -> y as £ | 0 since xc ç y ç *. 

We claim that 

Claim 1. For every e > 0, f/iere ejris/s A. < 1 such that 

kconv(xc) + (1 - k)y£ Qx*. 

We establish this geometric property shortly. First, note that with this claim, the proof of the lemma can be 

completed as follows. Fix any e > 0 and A. e (0, 1) such that A.conv(jtc) + (1 - A.)ye ç x*. Because xc ç ye, we have 

xc ç A.conv(*c) + (1 - k)y£ Ç x*. 

Since xc is critical for x* and A.conv(jrc) + (1 - A.)y£ is convex, this implies A.conv(*c) + (1 - A.)ye ~ x*. The fact 
that xc is critical for x* also implies conv(;cc) ~ x*. Hence independence requires y£ ~ jc*. Since this is true for all 
e > 0, continuity implies y ~ jc*. But this argument also works for the case of y = x, so we see that x ~ x*. Hence 

y ~ jc, so xc is critical for x. 

Proof of Claim 1. First, note that it is sufficient to prove this for the case of y = x since this makes the set on 
the left-hand side the largest possible. Next, note that it is then sufficient to show that for every s > 0, there exists 
A. < 1 such that every extreme point of A.conv(;cc) + (1 - X)xe is contained in x*. Since each such extreme point must 
be a convex combination of extreme points in xc and x£, this implies that a sufficient condition is that there is a A. < 1 
such that for every a\ e xc and «2 € ext(x£), \a\ + (1 - A.)c*2 € x* where ext(-) denotes the set of extreme points. 
Since x£ is a convex polyhedron, it has finitely many extreme points. Also, xc is finite. Since there are finitely many 
«i and a2 to handle, it is sufficient to show that for every ot\ e xc and ot2 € ext(*e), there is a A. g (0, 1) such that 

Xd\ +(1 -A.)a2 €x*. 

Equivalently, we show that for every a \ e xc and «2 e xe, there exists A. e (0, 1) such that (A.ai + (1 - A.)c*2) • s < 

(7x*(s) for all s € SK. That is, 

(\-X)(a2-s-ai -s) <<Jx*(s)-on s, Vs e SK . (B2) 

Since oi\ e x*, we have crx*(s) > ct\ • s for all s e SK . By construction, there is a unique s, say s = g(«i), such 
that this inequality holds with equality. For all s ^ s, ax*(s) > a\ • s. Also, by definition of x£, a2 e x£ implies that 

a2 -s < a\ -s - s . Hence for any A. e [0, 1], equation (B2) holds at s = s. For any s ^ s, if a2 s < a\ -s, again, 
equation (B2) holds for all A. € [0, 1]. Hence we can restrict attention to s such that oc2  s > ai -s and ox* (s) > oi\ • s. 

Given this restriction, it is clear that if a2  s < crx*(s), again, equation (B2) holds for all A. € [0, 1]. 
Let S = {s e SK \a2- s > ax*(s) >cti s}. From the above, it is sufficient to show the existence of a A. 6 (0, 1) 

satisfying equation (B2) for all s e S. A sufficient condition for this is that there exists A. e (0, 1) such that 

(1 - A.)(crA(fl)(s) -oi\ -s) < crx*(s) -on -s, Vs € S. 
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Obviously, (J/±.(B)(s) -a\ s is bounded from above. Hence it is sufficient to show that the right-hand side of the 

inequality is bounded away from zero for s e S. 
To see that this must hold, suppose there is a sequence [sn] with s" e S for all n with crx*(sn) - c*i • s" -» 0. 

Clearly, this implies s" -> s. But then 

lim «2 • s" = «2 • s < ctx*(s) ' - e = lim <jx*(s") - e, 
n->oo ' n-^oo 

implying that we cannot have s" e S for all n, a contradiction. Hence such a k must exist. || 

Lemma 4. If y is any set with oy(s) = ox(s)for all s e S*, then y ~ jc. 

Note: The x referred to here is again the menu defined in equation (B 1 ). 

Proof. Fix any such y. Without loss of generality, assume y is convex. (Otherwise, we can replace y with its 
convex hull.) Clearly, 

yÇ[P\P'S<crx(s) VseS*} 

since otherwise y would contain points, giving it a higher value of the support function for some s e S*. But the set 
on the right-hand side is x, so y ç x. Obviously, then if xc ç y, the fact that xc is critical for jc implies y ~ x. 

So suppose xc £ v. As noted, we must have y ç x. So let yk = kx + (1 - k)y. Obviously, yx converges to jc 
as À - 1. For each ft € jcc, there is a face of the polyhedron jc such that ft is in the (relative) interior of the face. 

Also, y must intersect the face of the polyhedron and so yx must intersect the face. As k increases, the intersection 
of yx with the face enlarges as it is pulled out toward the boundaries of the face. Clearly, for k sufficiently large, ft 
will be contained in the intersection of yk with the face of jc which contains p. Take any k larger than the biggest 
such k over the finitely many p e xc. Then jcc ç yx c x. Since jcc is critical for jc, this implies kx + (1 - k)y ~ jc. 

By independence, then, y ~ jc. || 

Lemma 5. For any y and y such that cry(s) = a y (s) for all s e S*, we have y ~ y. 

Proof. Fix any such y and y. For any k € [0, 1), define u\ : 5* -> R by 

, , OX(s)-kOy{s) -*<*> , , = - r^r^- 
Because oy(s) = a y (s) for all s e S*, it would be equivalent to use Oy instead of oy. Let 

zk = [P € A(fi) | p  s < uk(sh V* e S*}. 

Obviously, kay(s) + (1 - k)uk(s) = ax(s) for all s € S*. This implies that for all k e (0, 1), ky + (1 - k)zx Ç *• 
To see this, note that for any a e y and P € zx, 

ka • s + (1 - k)P  s < koy{s) + (1 - k)ux(s) = crAs), Vs e S*. 

But jc = nseS*{y \y -s < crx(s)}, so ka + (1 - X)£ G jc. 
Note also that ux(s) ->• <r.r(.s) as A. | 0. We claim that this implies that there is a k € (0, 1) such that for every 

5 6 5*, there exists P £ Zk with p • s = ux(s). To see this, suppose it is not true. Then for all k € (0, 1), there exists 

5a. g S* such that for a\\ p e zx, P  h < «x^a.), so 

H {PIP'S <uk(s)}= f}{P\P s<uk(s)}. 
s£S*\[sk) seS* 

Because S* is finite, this implies that there exists s € S*, a. sequence {kn} with kn € (0, 1) for all n, kn -> 0 such that 

for all n, 

n wij8.s<nÀII(5)}= n^i^^^))- 
.v€5*\{f} seS* 
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But u\n - ax as n -* oo. Hence the limit as n -* oo of the right-hand side, namely jc, cannot equal the limit of the 
left-hand side, a contradiction. 

Hence, there is a k e (0, 1) such that for every s e S*t there is a fi € zx. with £ • s = ux(s). Choose such a 
k and let u = u\ and z = Z\. Obviously, for every s G S*, there is a € y with a  s = ay(s). Hence, given our 
choice of A., for every s e S*, there is y e ky + (1 - k)z such that y • s = Àcr^Cs) + (1 - à)m(.s) = crx(s). Hence, 

(Txy+a-xjzCs) = &x(s) for ail 5 € S*. Hence, Lemma 4 implies ky + (1 - À)z ~ x. The symmetric argument with y 

replacing y implies ky + (1 - k)z ~ jc. So, Ay H- (1 - k)z ~ A. y + (1 - A)z. By independence, then, y ~ y- II 
DLR show that weak order, continuity and independence imply the existence of a function V : X - R which 

represents the preference and is affine in the sense that V(kx + (1 - k)y) = kV(x) + (1 - A.)V(y). Fix such a V. 

LetU= {((Tx(s))s€S* I jc € X} c RM where M is the cardinality of S*. Let a\S* denote the restriction of a to 5*. 
Define a function W : £/- R by W(£/) = V(jc) for any jc such that ax\S* = U. From Lemma 5, we see that if 

ax\S* =axf\S*, then jc ~ x' so V(jc) = V{x'). Hence W is well defined. It is easy to see that W is affine and 

continuous and that U is closed and convex and contains the 0 vector. It is easy to show that W has a well-defined 

extension to a continuous, linear function on the linear span of U. Since U is finite dimensional, W has an extension 

to a continuous linear functional on RM . (See Lemma 6.13 in Aliprantis and Border (1999), for example.) Since a 

linear function on a finite-dimensional space has a representation by means of a matrix, we can write 

W(U)= J2c*us 
seS* 

where the c/s are constants and U = (Us)s£s*- Hence, 

V(x) = W«crx{s))ses*) =J2C* mea*^ 
' s- 

seS* 

Hence, we have a finite additive EU representation. || 

APPENDIX C. RELATING GP'S AXIOMS TO AIC 

As noted in the text, since GP's self-control representation is a temptation representation, our existence theorem 

implies that GP's axioms imply AIC. Here we show this conclusion directly from the axioms. More specifically, we 

show that continuity, independence and set betweenness imply AIC. 

Suppose fi is an approximate improvement for jc, y ç jc, a e B(y) and {a} >- {ft}, but the conclusion of AIC does 

not hold. That is, we do not have {a} >- y U {ft}. Since we have already shown that GP's axioms imply DFC, we know 

that {a} > y U {&} since a e B(y U {£}). Hence if AIC fails, it must be true that {a} ~ y U {£}. Since {a} ^ {0}, this 

implies y U {0} > {&}. 
Since p is an approximate improvement for jc, we can find a ft* arbitrarily close to f$ such that x U {fi*} >- x. 

Since ft* can be made arbitrarily close to ft, continuity and yU {ft} > {0} imply that we can choose ft* so that 

yU{/T}Mn. 
Independence and jc U {/?*} > x imply 

\ \y u iP'U + \ [* u {/HI > \ h u WH + \x. 

Also, y U {£*} >- {ft*} and independence imply 

\[yv {/ni + \[xu in] > \ in + \[xu [ni 

It is not hard to see, however, that y ç x implies 

I [yu{i8*}]+| [jruW}] = 
{i 

[yuWH + i 
jrj U [I{^) 

+ 
i[*u{im|. 

Hence this contradicts set betweenness. 
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962 REVIEW OF ECONOMIC STUDIES 

APPENDIX D. PROOF OF THEOREM 2 

Lemma 6. Suppose > has a finite additive EU representation of the form 

i j 

V(x) = V max wt (P) - V max vdP). 
i=l 7=1 

Define u by u(P) = V{{P)), so u = J^i wi ~ 
J2j vj- Suppose >- satisfies DFC. Then there are positive scalars aXy 

i = 1, ...,/, and bjj, i = 1, . . . , /, j = 1, . . . , J and scalars c,, i = 1, . . . , / such that J^. fl/ = H, ^7 = 1 for a^ J 
and 

W( = a, u + ^^ hj vj + c» I' ^*- 
j 

Proof Suppose not. Let Z denote the set of KI by 1 vectors (z\, . . . , z',Y (so each z\ is a A' by 1 vector) such 
that 

H =ajU + ^2 bU vj + ci ! ' Vi 
j 

for scalars a,, ft/y and c, satisfying the conditions of the lemma. So if the lemma does not hold, the vector 

(u/p . . . , w'jY £ Z. Since Z is obviously closed and convex, the separating hyperplane theorem implies that there is 
a vector p such that 

•(ih:h:)" 
Write p = (pi, . . . , pi) where each /?, is a 1 by K vector. So 

(Zl\ 

I z, ) 
Equivalently, 

Y^Pi • ̂ i > Xla'^' ' u + J2YlbiJPi ' VJ + J2CiPi ' X 
i i j i i 

for any a,-, ̂ ,y, and c, such that at > 0 for all i, bjj > 0 for all i and j, and J^,- a, = £,. ^,; = 1 for all j. Since c, 
is arbitrary in both sign and magnitude, we must have pi 1 = 0 for all i. If not, we could find a c, which would 
violate the inequality above. 

Also, for every choice of a, > 0 such that J2i ai = 1» 

max Pi • u >^2 ai P' ' u 

with equality for an appropriately chosen (a\, . . . , «/). Similarly, for any non-negative fc//s with £( Wj - 1» 

max p, • uy > ^ ^,; pi • Vj 
i 

with equality for an appropriately chosen (b\j, ...,bjj). Hence the inequality above implies 

^ Pi • Wi > max pi  u-\- ^ max px • i;7 . 
' j 
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DEKEL ETAL. TEMPTATION-DRIVEN PREFERENCES 963 

Write pi as (pu, . . . , Pkï)- Without loss of generality, we can assume that \pki\ < \/K for all k and i. (Otherwise 
we could divide both sides of the inequality above by K max*,, \pki\ and redefine /?, to have this property.) Let p 
denote the probability distribution (\/K, . . . , l/K). For each i, let a, = p, -\- p. Note that aki = pki + 1/K and so 

dki > 0 for all k, i. Also, a, • 1 = p, • 1 + /? • 1 = 1. Hence each a, is a probability distribution. Substituting a, - fi 
for /?/, 

^ a, • u;, - ^ /J • w, > max cti - u - ft  u + ^ max a, • uy 
- 

^ /* • uy • 
» « j J 

By definition of w, E/ w; : = m + Ey vj- Hence this is 

yjof,- 
* w, ~~ 

Y^ max a, • uy > max a, • u. 
i j 

Let x = {ai, ...,a/}. Then 

V(*) > y^of/ • ̂ i - 
y^maxa, • Vj > max a, • u = maxM(a). 

' j 

But this contradicts DFC. || 
We now prove Theorem 2. The necessity of >- having a finite additive EU representation is obvious. For necessity 

of DFC, suppose >- has a weak temptation representation. For any menu x and any i = 1, . . . , /', let a, denote a 
maximizer of u(fi) + Ey-ey. v;(j8) over )8 e jc. Then 

Vu,(*) = E/li *-[«(«i-) + E>€yf vy(«/)] " E/li * Eyey,. max^, vjtf) 
+ EL/'+i max^€Jf [-c/(^, x)] 

< E/li *[«(«/) + Eyey, M«i)l " Ef * Ey€y, ">(«*) 
= E/li «/«(«/) 
< max^€^ m(^) 

where the first inequality uses c,(£, jc) > 0 for all i, j6, and ̂  and the last one uses qt > 0 and E/=i ^/ = !• Hence 
DFC must hold. 

For sufficiency, let V denote a finite additive EU representation of >-. By Lemma 6, 

V(x) = £max[fl/i«(0) + J]^yWy(/8)] -^mzxvjiP) + ^c, 

where u(fi) = V([p}). But 

j ' i i j i 

Since E,- ai = E/ ^7 = ! for a11 h mis says 

y y ' 

so E/ c,- = 0. 
Let /+ denote the set of i such that a, > 0. For each i e /+, let qt = at. Let M denote the number of (i\ ;) pairs 

for which by > 0. For each such (i, ;), let k(i, j) denote a distinct element of {1, . . . , A/}. For each i G /+ and each 

; such that bi} > 0, define a utility function £*(/,,> = [^,-y/fl/]uy and let k(i,j)e 7,. For each i ^ /+ and each y with 

fc,-y > 0, define a utility function i>jk<f-,y-> = ^,-yUy and let k{i, j) e 7,. So for i e I+, 

Wj = fl/M + y^fbijVj 
= qdu + ^ Oy]. 

y yey,- 

For i ^ /+, 

j jzJi 
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964 REVIEW OF ECONOMIC STUDIES 

Also, 

E; maxf}€x Vj (P) = Ey- E/ bU max^€x Vj (£) 
= 

E/6/+ HjeJf * max^* Ô7 W + E/*#+ Eyey,- max/8€x £,(£). 

Hence 

V(jc)= ^^max[M(/8)-c/(/6,Jc)]+ £ max[-c, (£,*)] 

where 

cf-(jM) = ^maxi>,(£') -^i>,(£). 
JeJf 

*'** 
J yey,- 

Hence V is a weak temptation representation. || 

APPENDIX E. PROOF OF THEOREM 1 

Obviously, if > has a temptation representation, it has a weak temptation representation, so DFC and existence 
of a finite additive EU representation are necessary. Hence the following lemma completes the proof of necessity. 
Recall that 

B(x) = {a € x | {a} > {a}, Va' e x}. 

Lemma 7. If >- has a temptation representation, then it satisfies AlC. 

Let V> be a temptation representation of >^. Let f$ be an approximate improvement for x. Fix any x' ç. x and 
a € B{x') such that {a} >- {/*}. (If no such x, ft, x' and o? exist, AIC holds trivially.) By définition of an approximate 
improvement, there exists a sequence fin converging to p such that x U {/*„} >- x for all n. 

For any menu z, 

vT(z) = Yl,ai mfx «(y) + Zl w; w ~ Ylq> 12 ™fvj(y)' 

Clearly, then, the fact that Vt(x U {/?„}) > Vr(jc) implies that for each n, there is some i with 

uWn) + I] M/U > ma* "(K) + Z! u>(>/) ' 
jeJi 

YEX 
I j€Ji J 

Otherwise, all the maximized terms in the first sum would be the same at z = x as at z = x U {/*„}, while the terms 
being subtracted off must be at least as large at z = x U {fin} as at z = x. Let i* denote any such i. Because there are 
finitely many /'s, we can choose a sub-sequence so that i* is independent of n. Hence we can let i* = i* for all n. 
Hence 

M(Ai)+ Z ^(/8n)>max ii(y)+ ^ u;(y) 

for all n, implying 

u(fi) + Z vjW - me^ M(>/) + J2 "jW • 
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DEKEL ETAL. TEMPTATION-DRIVEN PREFERENCES 965 

Clearly, then, since x' ç x, 

u(P) + V Vj(P) > max u(y) + V vj(y) . 

M* "«I ^/* J 
Subtract J2jej* maxy€Jt'u{/3} uy(x) fr°m b°m sides to obtain 

u(P)-ci*(P,x'U{p})>m2ix[u(y)-ci*(y,xfU{p})] 
y€.xf 

where c,* is the self-control cost for state i* from the temptation representation. 
Recall that a e B(xr). Hence we have 

VT(x' U {P}) = £/ qf maxK€x/u{j8} [u(y) 
- Ci(yyxf U {£})] 

= qi*MP) - Ci*(P, x' U {p})] + £/#/.* ?, maxyer/u{)8} [ii(y) 
- c,(x, *' U {0})] 

< ?,-• ["(£) - q* (0, *' U {P})] + J^.^., 9j maxy€r/u{)8} u(y) 
= qi*[u(P) - Ci*(P,xf U {£})] + (1 - ^*)M(a) 
< qi*u(P) + (\-qi*)u(a) 
< m (a) 

where the two weak inequalities follow from c,()/, x' U {p}) > 0 and the strict inequality follows from q(* > 0 and 

{a} > {P). Hence {oc} > x' U {0}, so AIC is satisfied. || 
Turning to sufficiency, for the rest of this proof, let > denote a preference with a finite additive EU 

representation V. 
Before moving to the main part of the proof of sufficiency, we get some special cases out of the way. First, it is 

easy to see that if > has a finite additive EU representation, then it has such a representation which is non-redundant 
in the sense that no u>, or Vj is a constant function and no two of the tu, 's and v/s correspond to the same preference 
over A (B). On the other hand, this non-redundant representation could have / = 0, J = 0, or both. We first handle 
these cases, then subsequently focus on the case where / > 1, J > 1, no state is a constant preference and no two 
states have the same preference over lotteries. 

If / = J = 0, the preference is trivial in the sense that x ~ x' for all x and x' . In this case, the preference is 

obviously represented by the temptation representation 

V(x) = max[ii(0) + v(P)] - max v(p) 

where i; and u are constant functions. If / = 0 but J > 1, then we have 

V(x) = A -^maxvjiP) 
j 

for an arbitrary constant A. Let tui denote a constant function equal to A and define u = w\ -J2jvj- Then 

V(x) = max[M(j8) + J] vj(P)] -J^mazvjiP), 
j j 

giving a temptation representation. Finally, suppose J = 0. To satisfy DFC, we must then have / = 1, so V(x) = 

max^gt wi(P) + A for an arbitrary constant A. Let v\ be a constant function equal to A and define u = w\ - v\. 
Then obviously 

V(x) = max[«(£) + vi(P)] - maxui(^), 
/3e.r pex 

giving a temptation representation. 
The remainder of the proof shows the result for the case where the finite additive EU representation has / > 1 

positive states and J > 1 negative states, none of which is constant and no two of which correspond to the same 

preference over menus. Following GP, we refer to this as a regular representation. 

Lemma 8. Suppose > has a regular, finite additive EU representation given by 

V(x) = V max WiiP) - Y\ max vj W- 
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Fix any interior P and any menu x such that for some i, 

Wi(fi) = max tu,- (a). 
a€JtU{0} 

Then there exists x' such that P is an approximate improvement for x U x'. 

Proof Fix such a p, x and i. By hypothesis, the additive EU representation is regular, so wi is not constant. 
Because w, is not constant and ft is interior, for any e > 0, we can find a p within an e neighbourhood of p such 
that Wi(p) > Wi(P). Hence Wi(p) > maxa€x Wj(a). 

Let J denote the set of j such that 

max{uy(/J), Vj(P)} > msLKVj(a). 

For each j e J, we can find a y } such that Vj(y j) > Vj(fi) and Wi{y j) < Wi(P). To see that this must be possible, 
note that the selection of j implies that u;, and - Vj do not represent the same preference. By hypothesis, the additive 
EU representation is regular, so iu, and Vj do not represent the same preference and neither is constant. Hence the 

Vj indifference curve through P must have a non-trivial intersection with the Wj indifference curve through p. Hence 
such a y j must exist. 

Let x' denote the collection of these yfs. (If 7 = 0, then x' = 0.) Let pk = Xp + (1 - k)p. By construction, 
for all A. € (0, 1), w, ranks Pk strictly above any a € x. Also, since w/(/0 > u>/(y y) for all 7, there is a À € (0, 1) 
such that Wi(Pk) > Wj(y j) for all j for all k e (A., 1). Also, for every 7 '^ 7, u; ranks some point in x (and hence 
in x' U jc) at least weakly above both P and p and hence above pk. Finally, for every j e J, Vj(y y) > Vj(P). Hence 

there is a I' € (0, 1) such that Vjtyj) > Vj(Pk) for all ; G J and all X. e (k' \ 1). Let A.* = max{X, X'}. For A. € (A.*, 1), 
then, 

u;,()8x) > max wt(a) 
ot€x'Ux 

Vj(Pk) < max Vj(a), V;. 

Hence 

V(x; Ux U {^À}) = u;,-(^) + V max u;4(a) - Y] max Vj(a). 
j-£j azx'Ux\J{pk} jOtex'Ux 

Since the wi comparison of pk to any a € x or any yy is strict, this expression is 

> y^ max wjfc(a) - y^ max Vj(ot) = V(xf Ux). 

Hence yu^U {^x} > xf \Jx for all A. € (A.*, 1). Since pk -+ p as A. -> 1, this implies )8 is an approximate 
improvement for jc'Ujc. || 

Recall that B(x) is the set of a € x such that {a} >: {otf} for all a'a. Define a menu * to be temptation-free if 
there is an a € B(x) such that {a} ~ x. 

Lemma 9. Suppose >- satisfies AIC and has a regular, finite additive EU representation. Fix any interior p and 

any x such that x U {P) is temptation free and P £ B{x U \p}). Then there is no i with 

Wj(P) = max Wi (a). 
aejcU{/8} 

Proof Suppose not. Suppose P is interior, x U \P) is temptation free, p £ B(x U {p}), and there is an i with 

Wi(P) = max Wi(a). 
aexU[p) 
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From Lemma 8, we know that there is an x' such that £ is an approximate improvement for jcUjc'. Because 

P £ B(x U {/$}), we know that u(fi) < maxa€r w(a), where u is defined by u(y) = V({y}) as usual. By AIC, then, 
x U {ft} cannot be temptation free, a contradiction. || 

To complete the proof of Theorem 1, we use the following result from Rockafellar (1970, Theorem 22.2, pp. 
198-199): 

Lemma 10. Let Zi £ RN and Z,- e R for i = 1 , . . . , m and let t be an integer, 1 < t < m. Assume that the 

system n  y < Zi, i = I + I, . . . , m is consistent. Then one and only one of the following alternatives holds: 

(a) There exists a vector y such that 

zi-y < Zi, i = 1,...,£ 

Zi y < Zi, i =€ + l,...,m 

(b) There exist non-negative real numbers X\ , . . . , km such that at least one of the numbers k\, . . . ,\t is not zero, and 

m 

m 

X>Z/ <0. 
i=l 

It is easy to use this result to show that if we have some equality constraints, we simply drop the requirement 
that the corresponding X's are non-negative. 

Fix > with a regular finite additive EU representation which satisfies DFC and AIC. We use Lemma 10 to show 
that there exists a\ , . . . , a/, b\\ , . . . , bu , and c\ , . . . , c/ such that 

a' u + ^2 hj VJ + c» * = wi ' W 
j 

i 

-bij < 0, Vi\ j 

-at < 0, Vi. 

Because DFC implies that a weak temptation representation exists, the part of the system with only weak inequality 
constraints is obviously consistent. To state the alternatives implied by the lemma most simply, let Xik denote the real 
number corresponding to the equation 

aiu(k) + ^bijVjik) + c, = Wi(k) 
j 

where k denotes the k\h pure outcome. We use Jl for the equation J^i ai = 1. My for the equation ]Tf bi} = 1, (ptj for 

-b^ < 0, and V, for -at < 0. Hence Lemma 10 implies that either the a,'s, fc;/s, and c,'s exists or there exists kik, 
JZ, lAj, (pjj, and \frj such that 

<Pij 
> 0, Vi, j 
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xf/j > 0, Vi, strictly for some i 

£a,*m(*)+ 71-^=0, i = l 
			 / 
it 

£x,-*w;(*) + nj -<pu=0, i = 1, . . . , /; j = 1, . . . , J 
k 

Y^hk =0, i = 1,...,/ 
k 

££*i*u>i(*) + M + $^ <0 
i k j 

Assume that no a,-'s, &,/s and c,'s exist satisfying the conditions postulated, so a solution exists to this system 
of equations. Note that we cannot have a solution to these equations with A.,* = 0 for all i and k. To see this, note 

that the third equation would then imply /Z = V/ f°r aU i and hence /I > 0. Also, from the fourth equation, we would 

have /a j = (pjj and hence [i} > 0 for all j. But then the last equation gives ~jl+ J^- /iy < 0, a contradiction. Since 

J2k ^ik = 0, this implies max/,* A.,-* > 0. Without loss of generality, then, we can assume that A.,-* < 1/A^ for all i and 
/:. (Recall that there are K pure outcomes.) Otherwise, we can divide through all equations by 2K max,,* |A.,-*| and 

redefine all variables appropriately. 
Rearranging the equations gives 

^ A.,-jtii(ik) +]ï = xffj > 0, Vi with strict inequality for some i 

J] A/* i;;(*) + My- = <pu > 0, Vi, j 
k 

/ * j 

For each /, define an interior probability distribution a, by a,-(fc) = (I/A") - A.,-*. Because A.,^ < 1/Â" for all i and k, 
we have (*,-(*) > 0 for all i and â:. Also, J2k a'(k) = 1 - ^^ A./it = 1. Letting p denote the probability distribution 

(l/K, . . . , \/K), we can rewrite the above as 

w(/S) + /Z > m (of,-). Vi with strict inequality for some i 

Vj(P) + iXj >Vj(ai), ViJ 

J^w/W + ïT+^My <J]wi(ai). 

The first inequality implies 

u(P) +]Z > max ii (a,-) (El) 

with a strict inequality for some i. The second inequality implies 

Yl VJW + 12^1-11 mfx vJ(0li)- (E2) 
j j j 
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Turning to the third inequality, recall that Yli wi : = u + Jlj vj • Hence the third inequality is equivalent to 

u(P) + J2 VJ W + * + H ^J - 12 w' (a')- 

Summing equations (El) and (E2) yields 

u(P) + ^vj(P) + M + X^M; - max"(«/) + ^TmaoiVj(<Xi) 
j j j 

so 

^iu,(a,)-^ maxima/) > u(P) + ^Vj(P) +JZ+ ^fij 
- 

^maxv_/(a/) > maxM(a,). (E3) 
' ; j j j 

Let x = {«i, ...,«/}. Then 

VU) > y^Wi(of,-) 
- Y^ max uy (of,- ) > maxw(a/). 

' j 

By DFC, max, m (a,) > V(x). Hence 

V(x) = y^iu,-(a/) - y^maxi;y(a/) = max m (a,). 
' j 

Hence jc is a temptation-free menu. Note that the first equality in the last equation implies that a, maximizes Wj for 
all i. Also, the second equality together with equation (E3) implies that the weak inequalities in equations (El) and 

(E2) must be equalities. In particular, then, 

u(p) + /Z = maxw(a,). 
j 

However, recall that 

u(P) + Jï > u((Xj), Vi with strict inequality for some i. 

That is, there must be some k for which u(ak) < max, «(a,). Hence jc # B(x). But a, maximizes tu, for every /, 
contradicting Lemma 9. 

Hence there must exist such a, , 6,7 and c, . From here, the proof follows that of Theorem 2. || 

APPENDIX F. PROOF OF LEMMA 1 

Proof. (Necessity.) We show that if >- has a finite additive EU representation V with only one positive state 
and x > y, then jc >: x U y. Clearly, 

V(xUy) = max|maxu;i(/S),maxu;i(/S)| - Y^max 1 max v ,•(/?), maxi>,(/3) [ . 

Hence 

V(xUy) < max I max^€v w\ (P), max^€>, it;i (P) \ 

- max 
J £, max^€x uy(,3), ̂  max^€y Vj(P) J 

< max I max0€.r w\ (P) - 
J^j max^* vj (P), 

max^€J wi(/3) - 
J^j max^€y uy(/3) J 

= max{V(x),V(y)) = V(x). 
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Hence ^>:JcUy. 
(Sufficiency.) Suppose >- has a finite additive EU representation and satisfies positive set betweenness. Assume, 

contrary to our claim, that this representation has more than one positive state. So >- has a representation of the form 

/ j 

V(x) = yy max wi (P) - V* max v . (P) ~ fa* ~ 0€Jt 

where / > 2. Without loss of generality, we can assume that w\ and wi represent different preferences over 
A (B) -otherwise, we can rewrite the representation to combine these two states into one. Let Jc denote a sphere 
in the interior of A (B). Let 

x = f){0 e A(B) | wtifi) < max^OS')} f] f]{p e A(B) \ Vj(P) < mzxvj(p')} . 

Because x is a sphere and because / and J are finite, there must be a to, indifference curve which makes up part 
of the boundary of jc for i = 1, 2. Fix a small s > 0. For / = 1, 2 and k = 1, ...,/, let e[ = 0 for k ^ i and e\ = e. 

Finally, for i = 1,2, let y, equal 

f ' 1 f J 1 
p|{)8 € A(5) | wk(P) < maxwk(P') -e^l f] f){p e A(B) \ Vj{fi) < max vytf')} . 

Because / and J are finite, if e is sufficiently small, 

max Wk(P) = max Wk(fi), Vk ̂  i 
fieyi p&x 

and 

max v , (6) = max v , (6) , V /. 

Hence j: ~ yi U y2. Also, 

max Wi (ft) < max Wj (ft). 

Hence x >~ y, ; , i = 1 , 2. Hence yi U y2 ^ y, , / = 1 , 2, contradicting positive set betweenness. || 

APPENDIX G. PROOF OF THEOREM 4 

Proof. Necessity is obvious. For sufficiency, assume >- has a finite additive EU representation and satisfies DFC 
and negative set betweenness. We know from Lemma 2 that it has only one negative state. Using this and Lemma 6, 
we see that >- can be represented by a function V of the form 

/ 

V(x) = Y*max[a/K(0) +bM0)] - maxu(0) 

where a, > 0 and bi > 0 for all i and £, a, = J2i h = I. 
We can assume without loss of generality that at > 0 for all i. To see this, suppose a\ = 0. Then we can write 

/ 

V(x) = yymax[aiu(P) + btv(P)] - max(l - b{)v(P). 
1=2 

If b\ = 1, then bi = 0 for all i ^ 1. Because a\ = 0 and £, a, = 1, we then have V(x) = max^* u(P). This 

is a Vus representation with 7 = 1 and y{ = 0. So suppose fci < 1. Let v = (\ - b\)v and for i = 2, ...,/, let 

bi =bi/{\ -b\). Note that J2i=2^i = ^ Hence we can rewrite V as 

/ 

V(x) = rmaxkM^ + MdS)] - maxv(p). 
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Continuing as needed, we eliminate every i with a, = 0. 
Given that a, > 0 for all i, let q{ = at and let y( = bi/ai. With this change of notation, V can be rewritten in 

the form of Vus- II 
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