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We add small costs of changing actions and frequent repetition to finitely
repeated games, making some surprising commitments credible. Naturally, switch-
ing costs make it credible not to change action. However, this can occur for small
switching costs and gives a unique subgame perfect equilibrium in coordination
games when Pareto dominance and risk dominance coincide. In the Prisoners'
Dilemma, switching costs reduce the incentive to deviate from mutual cooperation,
but reduce the incentive to switch from cooperation to punish defection. Hence
whether switching costs enable cooperation depends on which effect dominates.
Switching costs can make complex threats credible enabling a player to earn more
than his Stackelberg payoff. Journal of Economic Literature Classification Numbers:
C7, C73. � 2000 Academic Press
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1. INTRODUCTION

In this paper, we demonstrate the surprisingly strong effects of two
seemingly small changes from the usual finitely repeated game framework.
Specifically, we add a small cost to changing actions from one period to
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another and consider the effect of repeating the game more often in a fixed
amount of time. These changes make credible certain commitments, the
nature of which depend in complex ways on the game being repeated. As
a result, all the standard results for finitely repeated games are overturned:
stage games with a unique Nash equilibrium can have multiple subgame
perfect equilibria in the repeated game with switching costs, while stage
games with many Nash equilibria can have a unique subgame perfect equi-
librium in the repeated game. Before explaining these results, we must first
describe the model in more detail.

To keep the analysis as close as possible to the standard repeated game
model, we treat the cost of switching actions as constant over time and
across players and focus on the case where it is ``small.'' There are several
reasons for studying such a cost. First, it is a simple way of capturing one
type of bounded rationality. If playing a given action is complex, then
changing from one action to another may be ``hard.'' Second, in many
economic contexts, changing actions involves real costs. For example, in
related work (Lipman and Wang [14]), we consider a game due to Gale
[9] in which firms choose between investing and not investing in each
period. It seems quite reasonable to believe that switching between such
actions incurs fixed ``set up'' or ``shut down'' costs. In price setting games,
it is natural to assume that there are menu costs associated with price
changes. Because the existence of such costs seems plausible for many
economic settings, their inclusion is a natural ``robustness check'' for the
standard finitely repeated game model.

The switching cost creates a role for the second factor we consider,
namely frequent repetition. To understand the idea, suppose that the game
is played in continuous time but that actions can only be changed at fixed
intervals. We fix the length of time the overall game is played and vary the
number of periods (or dates at which actions can be changed) and hence
the length of each period (or the length of time for which actions are fixed).
As the frequency of play increases, the length of a period and hence the
payoffs in a period shrink relative to the switching cost. To see why this is
important, note that if the length of the period is sufficiently small, even a
tiny switching cost is too large to make a change of action worthwhile if
it only leads to a one-period gain. Hence standard backward induction
arguments break down because of this ``lock-in effect.''

The key, then, to our results is that the length of a period is taken to be
small relative to the switching cost.2 We emphasize that the total length of
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time the repeated game is played is held constant throughout, so it is only
payoffs per period which shrink relative to the switching cost, not payoffs
over the entire horizon.

Note also that the finite horizon is critical to this lock-in effect. With an
infinite horizon, shrinking the length of one period never leads to a situa-
tion where there is too little time left for changing actions to be
worthwhile: there is always an infinite amount of time left. On the other
hand, as we discuss in the conclusion, switching costs can have a significant
effect in infinitely repeated games.

While the lock-in effect means that the usual backward induction
arguments don't work, the finite horizon means that backward induction
can still be used to identify the ``threats'' or ``promises'' which are credible.
The switching costs change which kind of commitments are credible in
ways that are sometimes surprising. Some of the effects are obvious: for
example, as noted, the commitment not to change actions in the last period
of the game is certainly credible if the length of a period is short enough
relative to the switching costs. The more interesting phenomenon is that
credibility of such commitments late in the game can make credible these
or other commitments earlier in the game in a way which dramatically
affects the equilibrium. For example, in some games, switching costs can
make a commitment not to change from a particular action credible even
at the very beginning of the game. In these games, a backward induction
argument translates the credibility of the commitment late in the game to
earlier stages. The reason this happens is that in these games, a player who
will be credibly committed if he plays a certain action tomorrow will, as a
consequence, refuse to change his action today. Hence the commitment is
credible today and, by induction, at all previous dates. More specifically,
we show that in a surprisingly broad class of games, one player will be able
to achieve his Stackelberg payoff this way. In particular, in a coordination
game where the Pareto dominant and risk dominant outcomes coincide,
the unique subgame perfect equilibrium is to repeat this outcome always.
In a generic Battle of the Sexes game, the only subgame perfect equilibrium
will be to repeat one of the stage game Nash equilibria every period, where
which equilibrium gets repeated depends on the payoffs. Thus games which
have many subgame perfect equilibria without switching costs may have a
unique equilibrium with switching costs.

In some games, switching costs affect outcomes in contradictory ways.
Consider, for example, the repeated Prisoners' Dilemma. Cooperation in
the Prisoners' Dilemma can only be sustained if deviation from coopera-
tion can be punished. Switching costs have two effects in this context. First,
it may eliminate the incentive to switch away from cooperation in order to
cheat the opponent, an effect which clearly favors cooperation. Second,
however, it may eliminate the incentive to switch away from cooperation
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in order to punish the opponent if he has deviated. Which effect dominates
depends on the payoffs of the game, so cooperation can be sustained in
some finitely repeated Prisoners' Dilemma games with switching costs and
not in others. When cooperation is sustainable, there is a large set of equi-
librium payoffs��in particular, always defecting is still an equilibrium.
Hence games which have a unique subgame perfect equilibrium without
switching costs can have multiple equilibria with switching costs.

A still more surprising conclusion is that switching costs can make some
very complex threats credible. We give an example in which one player is
able to credibly threaten to play a specific action until the opponent
changes his action and then to play a different action thereafter, switching
back later if the opponent goes back to the original action. Clearly, this is
a more powerful threat than simply refusing to change one's action. As a
consequence, the threatener can receive a payoff above his Stackelberg
payoff. The other player can end up with a payoff below his minmax
(though not below his pure strategy maxmin). Even more surprisingly, in
the example, this is the unique subgame perfect equilibrium and there is a
different, also unique, subgame perfect equilibrium without switching costs.
We also show that these more complex threats can lead to a situation
where the unique subgame perfect equilibrium with switching costs requires
one player to switch actions along the equilibrium path.

The rest of this section briefly comments on the related literature. The
next section contains the model. Section 3 contains the results discussed
above for the Prisoners' Dilemma. Section 4 shows how switching costs can
enable one player to credibly commit himself not to changing from a
specific action. Section 5 shows in the context of an example how switching
costs can make some very complex threats credible. Concluding remarks
are offered in Section 6. Proofs not in the text are contained in the
Appendix.

Of course, the literature on finitely repeated games (see, e.g., Benoit and
Krishna [2]) is relevant to our work, but we do not attempt a survey here.
In addition, there are several other related strands of the literature. First,
a number of economic models have studied the effect of switching costs for
consumers on competition between firms. See, for example, Beggs and
Klemperer [1], Padilla [15], or Wang and Wen [17]. Second, the
literature on delay in bargaining and the Coase conjecture (such as Gul
and Sonnenschein [10]) has studied the effect of shrinking the length of
the period. Third, there are many results on the robustness of the risk
dominant outcome in coordination games, often with emphasis on the case
where risk dominance and Pareto dominance coincide. See Carlsson and
van Damme [4], Kandori et al. [11], Young [18], and Robson [16], for
example. Fourth, our paper can be seen as studying a particular stochastic
game which is ``close'' to a repeated game and considering the effect of the
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dynamic aspect on the set of equilibrium outcomes. As discussed by Dutta
[6, 7], some standard repeated game results do not carry over to the
broader class of stochastic games, even to some games arbitrarily close to
repeated games. What is new here is the consideration of finite horizons
(instead of infinite repetition), the role of frequent repetition, and the par-
ticularly simple nature of the dynamic aspect (the switching cost). Even in
the infinitely repeated case, our results are not direct corollaries of
Dutta's��see Lipman and Wang [13] for details. Fifth, it is well known
that the addition of small amounts of incomplete information into a
repeated game can have dramatic effects, potentially enabling one party to
obtain Stackelberg payoffs, as shown by Fudenberg and Levine [8]. While
our results are reminiscent of theirs, the theorems are very different.

Finally, in more directly related work, Lagunoff and Matsui [12] con-
sider the effect of changing the usual timing assumptions of repeated games.
However, their prime focus is on the case where agents cannot change
actions simultaneously, the opposite of what we focus on, and they have no
switching costs. Despite this, their results on coordination games are
similar to ours and use similar reasoning in some steps. In Lagunoff and
Matsui [12], in Gale [9], and in our coordination game results, the key
step is to show that if one player moves to the risk dominant and Pareto
dominant outcome, he can force all subsequent play to that outcome. The
models differ in what drives this conclusion, but the analysis given this fact
is similar.3

2. MODEL

Fix a finite normal form game with two4 players, G=(A, u) where A i is
i 's set of pure strategies for i and ui : A � R i 's payoff function, i=1, 2. This
game is finitely repeated during a finite time interval of length M>0. The
length of time between periods is denoted 2, so the number of periods is
M�2 (hence all references to 2 should be understood to involve the
assumption that M�2 is an integer). Formally, for any 2 such that M�2 is
an integer, G2 is the game G repeated M�2 times where the payoffs are
taken to be total payoffs divided by 2. That is, the payoffs in a given period
are 2 times the payoff from the matrix. Let G=

2 be the same game as G2 but
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4 Of course, one could consider games with switching costs and more than two players.
However, we stick to the two player case in all of our results and so state this specifically in
our definitions.



where every change of action ``costs'' =. The assumption that both players
have the same switching cost is a normalization and hence is without loss
of generality. Throughout, we number periods from the end, so period 1 is
the last period, 2 is the next to last, etc. We use t to denote a period
number.

Most of our results have the same basic form, asserting that ``for almost
all'' = in a certain range, if 2<K=, then some particular outcome must
result. The restriction to ``almost all'' = is used only in uniqueness
arguments to avoid certain ties in payoffs. In particular, we use this to
ensure that we do not have a player indifferent between paying the switch-
ing cost and not doing so at a certain key juncture, potentially creating
additional equilibria. To understand this restriction, recall that the game is
played over the time interval [0, M] but changes of action can only occur
every 2 units of time. Given =, there is a key length of time from the end,
say l*, such that the agent would strictly prefer not changing his action
when the time remaining is strictly less than l*. Intuitively, it would be sur-
prising if the dates at which actions can be changed happened to be such
that a decision is made when the time remaining is exactly l*. The restric-
tion to almost all = is used only to ensure that this does not happen. More
formally, we remove a countable set of possible values of = to guarantee
that such ties never occur.

Also, even though the results state 2<K=, we generally only prove that
2 must be sufficiently small given some fixed =, not the more specific claim
that 2�= must be sufficiently small. To see why ``sufficiently small'' must
actually be below some constant times = as stated in the theorem, suppose
we have shown the result for pair of parameter values, say =1 and 21 .
Because our arguments are all based on backward induction, M is irrele-
vant and so the result holds for any M such that M�21 is an integer.
Suppose we multiply =1 , 21 , and M by a constant k. This cannot affect the
result, of course, since this simply rescales all the payoffs in the game.
Again, the irrelevance5 of M then means that the result must hold for the
original M, switching costs of k=1 , and a period length of k21 .
Consequently, we see that the only relationship between = and 2 that can
be relevant is their ratio.

3. COOPERATION IN THE PRISONERS' DILEMMA

In a way, it is unsurprising that switching costs might allow cooperation
in the finitely repeated Prisoners' Dilemma. After all, as explained in the
introduction, when 2 is small relative to =, no player will change actions in
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the last period. Hence the first step of the usual backward induction argu-
ment does not follow, so the standard proof that no one cooperates breaks
down.

On the other hand, we know that cooperation can only occur if the
threat of punishment for defection is credible. While switching costs aid
cooperation in the way they reduce the incentive to move away from
mutual cooperation, they make cooperation more difficult in the way they
reduce the incentive for moving away from cooperation to punish defec-
tion. As we show in this section, whether or not cooperation is possible in
the Prisoners' Dilemma with small switching costs is completely
determined by which of these two effects is the larger.

In this section, we consider the Prisoners' Dilemma with payoffs

C D

C a, a d, c

D c, d b, b

where c>a>b>d.6 We call c&a the incentive to cheat and b&d the
incentive to punish.

In line with the intuition suggested above, we will show that mutual
cooperation can be sustained in a subgame perfect equilibrium for small =
and 2 if and only if the incentive to punish is larger than the incentive to
cheat. On the other hand, regardless of which incentive is larger, mutual
defection is always an equilibrium.

Theorem 1. Suppose G is a Prisoners' Dilemma game. If the incentive to
punish is strictly greater than the incentive to cheat, then there is a K>0
such that for all = # (0, M(c&a)), for all 2 # (0, K=), there is a subgame
perfect equilibrium where both players cooperate in every period.

Proof. Fix = in the range specified and any 2 small enough that there
are dates t such that

(c&a) t2<=�(b&d ) t2.

Construct a strategy for player i as follows. He begins by cooperating and
cooperates in any period in which both players cooperated the previous
period. If either player defected in the previous period, then for any t such
that (b&d ) t2�=, i defects, switching to this action if need be. Finally, for
any later period, i does whatever he did the previous period.
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To see that it is an equilibrium for each player to follow this strategy, let
us verify that i 's strategy is optimal given any history. First, consider a
history such that (b&d ) t2<=. At this point, the opponent is expected
never to change strategies again. Hence the optimal strategy for i must be
to play one fixed action for the rest of the game. If i defected in the pre-
vious period, the dominant strategy property obviously implies i should
not change actions. If i cooperated in the previous period, it is optimal to
stick with cooperation as long as either at2�ct2&= or dt2�bt2&=,
depending on whether the opponent is cooperating. But by assumption,
(a&c) t2<(b&d ) t2<=, so both inequalities hold. Hence it is never
optimal to change actions at such a period.

Now suppose (b&d ) t2�=. There are three relevant cases here. First,
suppose either player defected in the previous period. Then the opponent
is expected to defect from this point onward. If i defected in the previous
period, it is clearly optimal to continue defecting. If player i cooperated in
the previous period, it is optimal to switch to defecting as (b&d ) t2�=.
Hence the specified strategy is optimal.

Second, suppose both players cooperated in the previous period and that
(b&d) t2�=>(b&d )(t&1) =. Player i expects the opponent to cooperate
from now on regardless of what he does at t. Hence i should either
cooperate from this period onward or defect from this period onward. The
former is better iff t2c&=�t2a or (c&a) t2�=. But since t is the last
period such that =�(b&d ) t2, our assumption on 2 implies (c&a) t2<=,
so this holds.

Third, suppose we are at a period t such that both players cooperated
in the previous period but (b&d )(t&1) 2�=. Then if i cooperates at t, his
payoff will be at2, while if he defects, his payoff is c2+b(t&1) 2&=.
Hence cooperation is optimal if

=�[c&a&(t&1)(a&b)] 2.

If the term in brackets on the right is negative, this must hold. If it is
positive, then this holds for 2 sufficiently small.

To conclude, consider the first period of the game. If i cooperates, his
equilibrium payoff will be aM, while if he defects, his payoff is
c2+(M&2) b. Since the latter converges to bM<aM as 2 goes to zero,
we see that it is optimal for i to begin by cooperating if 2 is sufficiently
small. Hence for small 2, these strategies form a subgame perfect
equilibrium. K

So mutual cooperation can be supported as a subgame perfect equi-
librium outcome if the incentive to punish exceeds the incentive to cheat.
On the other hand, it is easy to see that mutual defection can always be
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supported. To see this, construct an equilibrium as follows. Player i defects
in every period (including the first) unless both agents cooperated in the
previous period and (c&a) t2<= or i alone cooperated in the previous
period and (b&d) t2<=. To see that this is an equilibrium, first note that
it is clearly optimal to cooperate under the circumstances specified for
cooperation. So consider any other history. If both players defected in the
previous period, it is clearly optimal to continue with defection since the
opponent is expected to always defect thereafter. If i cooperated in the
previous period and t2 is large enough, then he expects his opponent to
defect at t and thereafter. Hence it is optimal for him to switch to defection.
Thus these strategies form a subgame perfect equilibrium.

The slightly more difficult result, proven in the Appendix, is that if the
incentive to cheat exceeds the incentive to punish, then mutual defection is
the unique subgame perfect equilibrium outcome. More specifically,

Theorem 2. If the incentive to cheat is larger than the incentive to
punish, then for all 2 and almost all =, the unique subgame perfect
equilibrium outcome of G=

2 is mutual defection in every period.

To understand these results, first note that, regardless of which incentive
is larger, mutual cooperation is stable sufficiently late in the game. That is,
if there is sufficiently little time remaining and both players cooperated in
the previous period, then both will cooperate for the rest of the game. Thus
as noted at the outset, the usual backward induction arguments do not
apply. When the incentive to punish is larger than the incentive to cheat,
then whenever it is worthwhile to cheat if one can get away with it��that
is, whenever t2(c&a)>=��it must also be worthwhile to punish a cheater
as t2(b&d )>t2(c&a)>=. Hence punishment is credible as long as there
is any possible gain to cheating. On the other hand, when the incentive to
cheat is larger than the incentive to punish, there will necessarily be a point
in the game where deviation from cooperation cannot be punished in equi-
librium. As a result, each player has an incentive to switch to defection just
before this point. Once we know that there is a date at which both players
will defect, the usual backward induction reasoning applies and shows that
both will always defect.

4. COMMITMENT TO A FIXED ACTION

As we have emphasized, when the length of a period is sufficiently small
relative to the switching cost, neither player will change actions in the last
period, regardless of the actions played up to that point. Hence in this
sense, any equilibrium involves a certain commitment to fixed actions late
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enough in the game. The more interesting situation is where this commit-
ment late in the game implies a commitment throughout the game. In this
section, we give several results on games where the switching costs create
such a credible commitment for one player and thus dramatically reduces
the set of subgame perfect equilibria relative to the game without switching
costs.

First, we give a surprisingly simple condition for this kind of commit-
ment to be possible in a two-player game. Afterward, we turn to some two-
by-two games where some interesting tighter characterizations are possible.

4.1. A General Result. Our more general result gives a condition under
which one player can ensure himself his largest feasible payoff in the game.
We say that an action profile (a1*, a2*) is defendable by i if it uniquely
maximizes the payoff of player i and for j{i satisfies

uj (a1*, a2*)&u j (ai* , aj)�ui (a1*, a2*)&u i (ai* , aj), \aj # Aj .

Intuitively, player i wants play to remain at this profile since it is the best
one for him. He can ``defend'' this position in the sense that if j changes his
action away from (a1*, a2*), then this change affects j more than it affects
i. We say a profile is defendable if it is either defendable by 1 or defendable
by 2.

Before stating the implication of this property, we note five important
facts about it. First, it may seem odd that we are comparing payoff dif-
ferences across agents. The reason such interpersonal comparisons are
meaningful here is because we have, effectively, normalized payoffs by
assuming the two players have the same switching cost. If we removed this
assumption, the appropriate restatement of the condition above is that the
change in player j 's payoff relative to his switching cost exceeds the change
in i 's payoff relative to i 's switching cost.

Second, if (a1* , a2*) is defendable by i, then it is a Nash equilibrium of the
stage game. By definition, any movement away from this profile makes
player i worse off. Hence it is obviously true that his best reply to aj* is a i*.
This assumption also implies that ui (a1* , a2*)&ui (ai*, a j)>0 for any
aj {aj*, so it must be true that uj (a1*, a2*)>u j (ai*, a j) for all aj {aj*.
Hence aj* is the unique best reply for j to a i* , so (a1*, a2*) is a (strict) Nash
equilibrium. In particular, this also implies that ui (a1* , a2*) is i 's
Stackelberg payoff.

Third, the assumption that (a1*, a2*) is defendable by i does not imply
that (a1* , a2*) is the only Nash equilibrium of the one-shot game. This con-
dition says nothing whatsoever about payoffs when player i plays an action
different from ai*, so there could be many Nash equilibria and j 's payoff
could be higher than uj (a1*, a2*) in some or all of them.
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Fourth, it is not hard to show that any game has at most one defendable
profile. To see this, suppose that (a1* , a2*) and (a$1 , a$2) are both defendable.
Since a profile which is defendable by i must be the unique best profile for
i, we can assume that (a1* , a2*) maximizes 1's payoff and (a$1 , a$2) maximizes
2's payoff. Defendability of (a1* , a2*) then requires

u2(a1*, a2*)&u2(a1* , a$2)�u1(a1* , a2*)&u1(a1* , a$2).

Because u2(a$1 , a$2)>u2(a1* , a2*) and u1(a1* , a2*)>u1(a$1 , a$2), this implies

u2(a$1 , a$2)&u2(a1*, a$2)>u1(a$1 , a$2)&u1(a1* , a$2).

However, defendability of (a$1 , a$2) requires the opposite inequality.
Finally, while not every game has a defendable profile, there are many

games which do. For example, consider a generic common interest
game��a game where both players get the same payoff as one another at
every profile and there are no payoff ties across profiles. It is easy to see
that the profile which maximizes the payoff of each player is defendable by
each. On the other hand, a constant-sum game cannot have a defendable
profile. To see this, simply note that if an action profile uniquely maximizes
the payoff to one player, it must minimize the payoff of the other. Hence
it cannot be a Nash equilibrium and, therefore, cannot be defendable.

We have the following surprisingly strong result.

Theorem 3. Suppose (a1*, a2*) is a defendable profile in G. Then there is
an =� >0 and K>0 such that for almost every = # (0, =� ), for all 2 # (0, K=), the
unique subgame perfect equilibrium outcome of G=

2 is (a1*, a2*) every period.

To see the intuition for this result, consider the following example.

L C R

U 5, 3 4, 1 3, 0

D 2, 5 1, 6 4, 10

In this game, the profile (U, L) uniquely maximizes 1's payoff. Also, if 2
changes his action from L to either C or R against U, the reduction in his
payoff is larger than the reduction in 1's payoff (2 loses 2 moving from L
to C while 1 loses only 1 and 2 loses 3 moving from L to R while 1 loses
only 2). Hence (U, L) is defendable by 1. Note that (U, L) is a Nash equi-
librium, but (D, R) is as well and the latter is much preferred by 2.
However, (D, R) is not defendable by 2 because if 1 changes actions to U,
his payoff falls by only 1, while 2's falls by 10.

So suppose that the length of a period is short relative to the switching
cost, so that neither player will change actions in the last period, regardless
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of the actions played before this. Then we know that there is at least one
period t (namely the last one, t=1) in which player 1 is committed to U
at t if he played U at t+1. That is, in any subgame perfect equilibrium, if
1 played U at the next to last period, he must play U in the last period. We
now show that this sets up an induction which ensures that this is true
throughout the game.

To see this, suppose we are at period t�2. Suppose from period t&1
onward, if 1 played U at the preceding period, he will never change actions.
Suppose 1 played U at period t+1. We wish to show that 1 must play U
at period t in any subgame perfect equilibrium, giving us the desired induc-
tion. There are two cases to consider. First, suppose that if 1 sticks with U
at period t, 2 will definitely play L from period t&1 onward. Given the
induction hypothesis, 2 will certainly do this if he plays L at t or if the cost
of switching from whatever he did play is not too large relative to the gains
to be had. In this case, it is clear that 1 should not change actions at t. If
he stays with U, then his payoff must be at least 32+5(t&1) 2. If he
changes actions, his payoff certainly cannot be better than
42+5(t&1) 2&=. This calculation treats 1 as being able to get 5 from
t&1 onward even without paying the cost of switching back to U, so it is
certainly an overestimate of his payoff! Clearly, if 2<=, 1 is better off
sticking with U in period t.

So suppose that 2 will not play L from period t&1 onward even if 1
plays U at t. Because of the induction hypothesis, we know that 1 is cer-
tainly not going to change actions from t&1 onward. Hence it must be
true that 2 plays either C or R at t and does not find it worthwhile to
change actions thereafter. For concreteness, suppose 2 plays C at t (an
analogous argument covers the case where he plays R at t). So the fact that
2 won't change actions at period t&1 says that (t&1) 2>3(t&1) 2&= or
=>2(t&1) 2. So consider player 1's situation at period t. If he continues
with U, his payoff is 4t2 because neither he nor player 2 will change actions
from t&1 onward. If he switches to D, his payoff is certainly less than
5t2&=. Hence he certainly will not switch if 4t2>5t2&= or =>t2. We
saw above that we must have =>2(t&1) 2. Hence this inequality holds if
2(t&1) 2�t2 or t�2, which is true by hypothesis.

More intuitively, suppose 1 will be committed to U from next period
onward if he plays it today. If this commitment is sufficient to force
player 2 to play L from tomorrow onward, then player 1 won't switch away
from U today. Hence he is committed to it from today onward. If this com-
mitment is not sufficient to force player 2 to play L from tomorrow
onward, it must be true that 2's gain to switching to L is not large enough
to make a change of action worthwhile. But 1's gain from changing actions
must be less than the hypothetical gain calculated as if a change of action
would give him 5 from now on. Hence defendability tells us that if 2 won't
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find a switch profitable, 1 won't either. Hence, again, 1 is committed to U
from today onward. Either way, we get an induction which tells us that if
1 ever plays U, he will always play U thereafter. Hence he will start with
U, making (U, L) every period the unique subgame perfect equilibrium
outcome.

4.2. Two by Two Games. In certain two-by-two games, we obtain an
interesting tighter characterization of situations where commitment is
possible. For this case, we let Ai=[L, R], i=1, 2, and denote the payoffs
in the stage game G by

L R

L a1 , a2 d1 , c2

R c1 , d2 b1 , b2

We consider two more specific formulations. In both, there are two Nash
equilibria in the stage game, (L, L) and (R, R). Hence we assume ai>ci

and bi>di , i=1, 2. Second, we assume (L, L) is the profile which uniquely
maximizes 1's payoff so a1>b1 .

We say that the game is a symmetric7 coordination game if a1=a2=a,
b1=b2=b, etc. In such games, the Nash equilibria are Pareto ranked, with
both players preferring the (L, L) equilibrium. In such a game, (L, L) is
said to be risk dominant if it is the best reply to a 50�50 mixture by the
opponent��that is, if a&c>b&d. (R, R) is risk dominant if the opposite
strict inequality holds.

We say that the game is a generic Battle of the Sexes game if a2<b2

and a2&c2 {b1&d1 . That is, Battle of the Sexes games are where the
equilibria are not Pareto ranked, with player 1 preferring (L, L) and 2
preferring (R, R).8 Note that in this case, b2 must be 2's largest payoff in
the matrix as b2>a2>c2 and b2>d2 . We call the payoff difference b1&d1

1's incentive to blink. Similarly, we refer to a2&c2 as 2's incentive to blink.
To understand the terminology, imagine each player is playing the action
that he uses in his preferred equilibrium. Thus we are at the action profile
(L, R) with payoffs (d1 , c2). If player 1 ``gives in'' and moves to player 2's
preferred equilibrium, he gains b1&d1 . If, instead, 2 gives in and moves to
1's preferred equilibrium, he gains a2&c2 . Hence these payoff differences
can be thought of as measuring a player's incentive to surrender in such a
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confrontation. By our definition, in a generic Battle of the Sexes game, the
players cannot have equal incentives to blink.

It is easy to see that if G is either a symmetric coordination game or a
generic Battle of the Sexes game, G2 has many equilibria. In particular, any
(rational) convex combination of the payoffs to (L, L) and (R, R) can be
achieved by a subgame perfect equilibrium of G2 for 2 sufficiently small. In
addition, there are equilibria in which (L, R) or (R, L) are played for many
periods.

On the other hand, we have:

Theorem 4. Assume G is a symmetric coordination game. Then if (L, L)
is risk dominant, there is an =� >0 and K>0 such that for almost every
= # (0, =� ), for all 2 # (0, K=), the unique subgame perfect equilibrium outcome
of G=

2 is (L, L) every period. However, if (R, R) is risk dominant, then there
is a subgame perfect equilibrium in which (L, L) is played every period and
one in which (R, R) is played every period.

This result is not a corollary to Theorem 3. One obvious reason it is not
a corollary is that Theorem 4 is a statement about when the equilibrium is
not unique, not just when it is unique. Even the uniqueness part of the
theorem is not a corollary of Theorem 3, however. For example, in the
symmetric coordination game

L R

L 4, 4 0, 1

R 1, 0 2, 2

(L, L) is risk dominant, but is not defendable. In fact, this is a tighter result
(for this class of games) than Theorem 3 gives. Notice that (L, L) is
defendable by 1 if a&c�a&d. But a>b, so this implies a&c>b&d, so
that (L, L) is risk dominant. Hence defendability implies risk dominance,
but, as the example above shows, the reverse is not true.

We also have:

Theorem 5. Assume G is a generic Battle of the Sexes game. Then there
is an =� >0 and K>0 such that for almost every = # (0, =� ), for all 2 # (0, K=), G=

2

has a unique subgame perfect equilibrium outcome. If 2's incentive to blink is
larger than 1's, the unique outcome is (L, L) every period. If 1's incentive to
blink is larger than 2's, then the unique outcome is (R, R) every period.

Again, the result is not a corollary to Theorem 3. It is not hard to show
that if 1's preferred equilibrium is defendable, then his incentive to blink is
higher than 1's and similarly for 2's preferred equilibrium. However, in
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L R

L 5, 2 0, 0

R 0, 0 1, 6

2's incentive to blink is higher than 1's, but neither player's preferred equi-
librium is defendable. Hence, again, the result is a tighter characterization
for this class of games than Theorem 3 yields.

Full proofs of these results are contained in the Appendix, but it is not
hard to see the basic intuition. First, consider the symmetric coordination
game given above where (L, L) is risk dominant. It is easy to see that if 2
is small enough relative to =, then no one will change actions in the last
period. As we work backward from the end of the game, we can find the
latest date at which either player would change actions. If no one will
change actions in the future, then no one will change actions at any t with
3t2<= because 3 is the largest possible per period gain from changing
actions. Consider, then, some t with 2t2<=<3t2. Intuitively, at such a
period, the gain from switching from (L, R) or (R, L) to (L, L) is worth the
cost, but the gain from switching to (R, R) is not. Hence if the players are
``mismatched'' at t, play must move to (L, L) and remain there for the
remainder of the game.

So suppose we are at the last t such that 2t2>= and (L, R) was played
in the previous period. If 1 plays L again at t, then by the above, whatever
player 2 does at t, player 1's payoff will be at least 4(t&1) 2 since if 2
doesn't switch to L at t, he will at t&1. If 1 switches to R instead, his
payoff certainly cannot be better than 2 2+4(t&1) 2&= since this
calculation gives him his best possible payoff from R at t, his highest
possible payoff every period thereafter, and only charges him for the one
change of action at t. For 2<=�2, then, 1 will certainly play L at t. But
then 2 should switch to L at t since he knows he will do so tomorrow at
any rate and so should move to the best reply now instead of later.

This argument gives an induction which works backward to the beginning
of the game. As a result, if a player uses L in the first period, he guarantees
himself essentially 4M; while playing R in the first period must give a lower
payoff. Hence play must begin at (L, L) and remain there for the entire game.

Put more intuitively, if playing L at t commits player i to this action
from then on, he has no incentive to switch away from L just before this
time. Hence he is effectively committed to L earlier than t. By induction,
this means that playing L in the very first period commits him to playing
L always, a commitment he will wish to take advantage of since this leads
to his highest possible payoff.

The result for Battle of the Sexes is based on a similar intuition. Here
whichever player has the smaller incentive to blink is the one who can
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commit himself. To see why only this player can commit, consider the
Battle of the Sexes payoffs in the example above. Recall that 2's incentive
to blink is 2, while 1's incentive to blink is 1. Hence, we claim, player 1 can
commit himself to L but player 2 cannot commit himself to R. Very late in
the game, neither player will be willing to change actions because there is
not enough time left for the change to yield enough gains to make it worth
the costs. Hence late in the game, both players are committed not to
changing action.

The more interesting phase of the game is where the length of time left,
t2, is between = and =�2. At such a point, if a change of action yields a gain
of 1 each period, it is not worth doing because t2<=, while a change of
action yielding a gain of 2 each period is worthwhile since 2t2>=. So fix
such a t and suppose that (L, R) was played in the previous period. Note
that player 1 cannot possibly gain more than 1 per period from t onward
by switching to R since this is the largest difference between any of his
payoffs from playing R and any of his payoffs from playing L. Hence he
will certainly not switch actions at t or any subsequent date. Given this, if
player 2 does not switch to L, his payoff will be 0, while switching to L
earns 2t2&=. Hence he must switch to L in any subgame perfect equi-
librium. Therefore, player 2 certainly cannot commit himself to playing R
and not changing in this interval. However, player 1 is committed to
playing L: if he played L at the preceding period for any period in this
interval, he is committed never to switch from this action. Just as above,
this commitment works backward to the beginning of the game, ensuring
that 1 is able to force the (L, L) outcome in every period.

It is natural to wonder why we get multiple equilibria in some symmetric
coordination games. The key to understanding the risk dominance condi-
tion is that the risk dominant profile is the one which either player can
commit himself to in the ``middle'' phase of the game. That is, we know no
player would change actions very late in the game so any action, once
played, is an action the player is committed to. Earlier, though, this effect
will continue for only one of the two actions��specifically, the action in the
risk dominant profile. Hence there will necessarily be a point late in the
game at which any ``mismatch'' of actions leads the players to the risk
dominant outcome. That is, analogously to the reasoning above for the
Battle of the Sexes, in this critical phase of the game, if one played L and
the other played R in the previous period, the one who used the risk domi-
nant action will never change actions, so the other player must switch.
When risk dominance and Pareto dominance coincide, each player has an
incentive to play the risk dominant action in order to achieve precisely this
effect. When risk dominance and Pareto dominance differ, each has an
incentive to avoid the risk dominant action to avoid this effect. On the
other hand, if the opponent is expected to play the risk dominant action,
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there is no gain to avoiding it oneself, so there are multiple equilibria in
this case. Put differently, the players can commit themselves in a certain
phase of the game to (R, R) but have no incentive to do so.

Hence we find the surprising conclusion that it is easier to get uniqueness
when the players have different preferences over equilibria than when they
agree on which equilibrium is best. One way to understand this is to note
that the introduction of switching costs tends to favor certain outcomes
because of the way switching costs create a commitment to some profiles
earlier than for others. When players agree on which profile is best, it may
be that the switching costs favor a different outcome. In this case, we can-
not obtain uniqueness. On the other hand, when the players disagree, one
of the players must have an incentive to exploit the effect created by the
switching costs, so we do get uniqueness.

It is worth noting that these result do not require a ``large'' deviation
from the usual finitely repeated game model. Returning to the coordination
game payoffs used above for illustrative purposes, it is not hard to show
that the unique subgame perfect equilibrium outcome is (L, L) in every
period whenever =>22. In other words, we only require that periods are
short enough that a change of action which increases one's payoff from the
worst Nash equilibrium payoff (2) to the best (4) but does so only for a
single period is not worthwhile.

5. MORE COMPLEX COMMITMENTS

In this section, we show how switching costs can make some much more
complex commitments credible, leading to some very surprising results. In
particular, we give two examples of games with a unique equilibrium out-
come with no switching costs and a different unique equilibrium outcome
with such costs. In one example, the unique equilibrium outcome requires
actions to be changed along the equilibrium path, despite the switching
costs. In the other example, the unique outcome with switching costs is
independent of the exact level of the switching cost, as long as it is small.
As we explain in Remark 1, this result demonstrates a failure of both upper
and lower semicontinuity of the equilibrium correspondence, though this
failure is more subtle than it may appear.

For both examples, the stage game G is

L R

U a1 , a2 d1 , c2

D c1 , d2 b1 , b2
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In both, player 2 has a dominant strategy of L, so a2>c2 and d2>b2 . In
both, player 1's best reply to L is U or a1>c1 , making (U, L) the unique
Nash equilibrium of the stage game. Hence in the finitely repeated game
with no switching cost, the unique subgame perfect equilibrium outcome is
to repeat (U, L) every period. The key to both examples is that player 2
had an incentive to try to force player 1 to play D instead of U. More
specifically, d2 is 2's largest possible payoff.

While there are important differences between the two examples, the
reason 2 is able to move play away from (U, L) is similar in both. First,
if 2 moves to R, he has little incentive to move back if 1 plays U. That is,
a2&c2 will be small. In this sense, 2's threat not to move back to L is
credible late in the game. Second, if 1 responds to 2's move by changing to
D, 2's incentive to return to L will be large. That is, d2&b2 will be large.
Third, because it will induce 2 to move to L, 1 will gain by moving to D
in this situation. In other words, c1&d1 is sufficiently large. Because this
threat is credible, it induces 1 to play D. Finally, 2 has a large incentive to
force play from (U, L) to (U, R) even though he will have to change
actions twice to get to (D, L). That is, (d2&a2)�2 is sufficiently large.
Hence even when (U, L) is being played, at a certain point, 2 can credibly
threaten to switch to R, stay there as long as 1 stays at U, and then switch
to L once 1 switches to D.

More specifically, both examples assume

d2&b2>a2&c2 , a1&c1 , |b1&d1| , c1&d1 , (1)

c1&d1>a2&c2 , a1&c1 , (2)

and

(d2&a2)
2

>c1&d1 . (3)

The key difference between the two examples is the effect this has on 1.
Suppose (U, L) were played in the previous period and suppose that 1
knows that if (U, L) is played one more time, 2's threat to switch to R and
force play to (D, L) will become credible in the next period. Note that once
2 moves to R, 1 is best off moving to D in the same period to speed the
movement to (D, L). In light of this, should 1 go ahead and play D now
or wait? By waiting, 1 gets a1 in the current period, b1 in the next, and c1

thereafter, minus = for the change of actions. By moving now, 1 gets c1

from the current period onward minus =. Hence waiting is better if
a1+b1>2c1 , while moving now is better if the reverse strict inequality
holds. The difference between the two examples is that we assume that
waiting is better in the first, while moving is better in the second. As we will

166 LIPMAN AND WANG



see, this difference means that 2's threat is credible for the entire game in
one case but only for the last part of the game in the other case. In the
former situation, then, (D, L) will be played the entire game, while in the
latter, it is only played toward the end.

5.1. First Example. As stated above, here we assume that L is strictly
dominant for player 2 and that U is 1's unique best reply to L. Also, d2 is
2's largest payoff in the matrix. Finally, we assume (1), (2), (3), and that
a1+b1>2c1 .

As mentioned earlier, the unique subgame perfect equilibrium without
switching costs is to repeat (U, L) every period. In stark contrast, the result
with switching costs is:

Theorem 6. Given the payoff assumptions above, there is an =� >0 and
K>0 such that for almost every = # (0, =� ), for all 2 # (0, K=), G=

2 has a unique
subgame perfect equilibrium. In this equilibrium, (D, L) is played every
period.

To see the intuition, consider the payoff matrix

L R

U 5, 2 0, 0

D 3, 10 4, 4

It is easy to see that these payoffs satisfy all of our assumptions for this
subsection. Note that the largest unilateral payoff gain is when 2 moves
from (D, R) to (D, L). Hence there is a phase of the game where this is the
only change of actions any player would undertake. As we work backward
from this phase, the next change of actions a player would consider is that
at t such that

42+3(t&1) 2>=,

when 1 would be willing to move from (U, R) to (D, R), knowing that this
will lead 2 to move to (D, L).

Unfortunately, at this point, the analysis becomes more complex. To give
a somewhat misleading intuition first, let us simply suppose that in this
phase of the game, 1 would move to (D, R) from (U, R). Note that at this
point, for 2 sufficiently small, we must have 3t2>= or 6t2>2=. This
implies that 2 would move from (U, L) to (U, R) to start this process. This
would end up leading 2 to change actions twice, but the gain of
(approximately) 8t2 exceeds the 2= switching cost. Hence we see that if
(U, L) were played, we will end up moving to (D, L). This means that if we
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are at (D, L), even very early in the game, 1 will not change actions to
move to his apparently better action of U. While this would give him a one
period payoff gain of 1, he would end up having to switch actions again
soon to complete the move back to (D, L) and so this would not be
worthwhile. Anticipating this, 1 finds it optimal to begin the game with D,
rather than U, to avoid incurring switching costs. In short, 2 is able to
threaten credibly that if 1 switches from D to U, he will then retaliate with
R and remain at this action until 1 switches back to D.

This intuition is misleading in one respect: The movement from (U, L)
to (D, L) must involve mixed strategies. However, one can show that as 2
gets small, the sequence of actions described above must occur ``soon'' with
``large'' probability.

Notice that Theorem 6 implies that 2's payoff is higher than his
Stackelberg payoff. If d1>b1 , then 1's best reply to R is U, so that 2's
Stackelberg payoff would be a2 . If b1>d1 , 2's Stackelberg payoff would be
the larger of a2 and b2 . However, by assumption, d2>max[a2 , b2]. Hence
2's payoff in this equilibrium exceeds his Stackelberg payoff, precisely
because the switching costs enable 2 to make credible a much more serious
threat than the threat not to change actions.

To see this in the matrix above, note that 2's Stackelberg payoff is 4 in
that matrix, while he gets a payoff of 10 in the equilibrium. Intuitively, 2
is able to do better than the Stackelberg payoff because he is able to force
1 away from his myopic best-reply. He is able to do this by credibly
threatening to move from (U, L) to (U, R), forcing 1 to earn a lower payoff
until he incurs the switching cost necessary to move play to (D, L).

In the particular numerical example above, it is also true that 1's payoff
is below his minmax. It is not difficult to show that 1's minmax payoff is
10�3, while his payoff in the unique equilibrium is 3. On the other hand,
this minmax is achieved only in mixed strategies and this randomization
every period by 1 would lead to a high probability of many changes of
action and hence is costly. The more natural comparison is to 1's pure
maxmin (that is, where he must choose his strategy ``first'' and must choose
a pure strategy). It is easy to see no player can do worse than his pure
maxmin payoff. In this example, player 1's pure maxmin payoff is 3,
precisely his equilibrium payoff.

Remark 1. The result of Theorem 6 demonstrates a violation of both
upper and lower semicontinuity of the equilibrium correspondence in = and
2. The result implies that we can take a sequence of (=, 2) converging to
(0, 0) satisfying the conditions of the theorem such that the set of equi-
librium payoffs converges to the singleton [(3, 10)]. On the other hand,
consider the game when ==2=0. While it is clear what it means to define
the game for ==0, it is less immediate how our definitions apply to the
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case where 2=0. We believe the most natural definition of the game at this
point is the infinitely repeated game where payoffs are evaluated by the
limit of means criterion. To see why, fix ==0 and consider the effect of tak-
ing 2 to zero. Payoffs for any 2>0 are defined to be the average payoffs
when the game is repeated T=1�2 periods. It seems natural then to take
the limiting payoff function to be the limit of these average payoffs. Given
this definition of the game at the point ==2=0, it is clear that the set of
equilibrium payoffs at this point is the full feasible, individually rational set.
Since player 1's minmax payoff is 10�3, the point (3, 10) is not contained in
this set. Hence the set of payoffs at the limit is disjoint from the limiting set
of payoffs, indicating that the equilibrium correspondence is neither upper
nor lower semicontinuous.

5.2. Example 2. In this subsection, we make the same assumptions as
for Example 1 except that we now assume that 2c1>a1+b1 in place of the
reverse strict inequality assumed above. Here the unique equilibrium
requires changing actions along the equilibrium path.

Theorem 7. Given the payoff assumptions above, there is an =� >0 and
K>0 such that for almost every = # (0, =� ), for all 2 # (0, K=), there is a
unique subgame perfect equilibrium. In this equilibrium, (U, L) is played in
every period up until period t*(=, 2)+2 where t*(=, 2) is the smallest t such
that

c1(t&1) 2+b1 2&d1 t2>=.

At period t*(=, 2)+2, 1 changes actions to D and (D, L) is played in all
succeeding periods.

Note that as 2 a 0, (t*+2) 2 converges to =�(c1&d1). Hence the limiting
outcome as 2 goes to zero has (U, L) played from the beginning till a
length of time of =�(c1&d1) left to go, at which point play moves to (D, L)
for the rest of the game. As = a 0 as well, the length of this second phase
goes to zero. Hence the outcome here is ``close'' to the outcome in the game
without switching costs when = and 2 are small.

To understand the intuition of this result, consider the payoffs

L R

U 5, 2 0, 0

D 3, 10 &1, 4

It is not hard to see that this matrix satisfies the assumptions of this sub-
section. Just as in the previous subsection, it is not hard to see that there
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is a phase late in the game where the only change of actions is from (D, R)
to (D, L). Again, as we back up from this phase, we reach a phase where
1 would move from (U, R) to (D, R). The t* defined in Theorem 7 is
precisely the last date at which 1 would consider this move.

As with Theorem 6, a precise description of the equilibrium requires con-
sidering mixed strategies. For simplicity, then, what follows is an imprecise
intuition regarding what happens in this phase of the game. At period t*,
if (U, R) were played in the previous period, we move to (D, R) (with high
probability) and then onto (D, L) in the following period. So consider the
previous period, t*+1. Suppose (U, L) were played in the period before,
t*+2. Then 2 will move across to (U, R) to trigger the movement to his
favorite outcome. Anticipating this, 1 will simultaneously move to D, so the
outcome shifts to (D, R) the next period and then onto (D, L) where it will
remain the rest of the game.9 In other words, 2 will trigger his threat to
move to R until 1 moves to D.

Next consider period t*+2 and suppose (U, L) were played at the
preceding period. We know that 2's threat to move to R the next period if
1 does not change to D is credible from the above analysis. Hence if 1 does
not change actions, we see that the outcome will move to (D, R) the next
period and (D, L) thereafter, giving 1 a payoff of

52&2+3t*2&==42+3t*2&=.

On the other hand, if 1 moves to D at this period, his payoff is

3(t*+2) 2&==62+3t*2&=.

Hence 1 should give in to 2's threat and move to D at period t*+2. In
light of this, 2 will remain at L.

Hence we see that play must move from (U, L) to (D, L) at t*+2, as
asserted in the theorem. It is not hard to use this to show that play must
be at (D, L) at period t*+2 no matter what actions were played in the
preceding period. This conclusion is stronger than what we obtained in the
previous example where we could only conclude that play must move to
(D, L) ``soon'' with ``high'' probability. However, 2's apparently greater
ability to force the outcome to (D, L) unravels as we work backward from
t*+2.

To see the point, consider period t*+3 and suppose that (U, L) were
played in the preceding period. Now player 2 knows that he will play L in
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the next period, so he certainly will not pay to switch to R, knowing he
would have to pay to switch back again tomorrow. Hence he will certainly
play L at t*+3. But then 1 has no incentive to switch to D early. By stay-
ing at U, he gets a payoff of 5 one more time before having to switch to
getting 3. Hence we remain at (U, L). In other words, because play will
move to (D, L) at the next period, 2 cannot credibly threaten to play R at
this period. Hence he cannot force the outcome away from (U, L) at t*+3.
Put differently, because his threat is both credible at a certain point in time
and very powerful, it is not credible a moment earlier.

Similar reasoning shows that if (U, R) were played in the previous
period, then we move to (U, L) at t*+3. To see this, note that 2 has no
incentive not to move to L now. He knows he will move to L in the next
period regardless and so may as well switch now to get the best possible
payoff in this period. In light of this, again, 1 will not switch to D until the
next period.

This reasoning continues backward. At any earlier period, if 1 played U
in the previous period, he has no incentive to change his action before
t*+2. Hence 2 will play L, switching to this action if need be. In short, in
any earlier period, if 1 played U in the previous period, they play (U, L).
This reasoning works all the way back to the beginning of the game, so
that play must start at (U, L).

Intuitively, in both examples, 2 can force 1 to move to D by credibly
threatening to play R until he does so. In the second example, though, this
threat can only be credible at a particular point in the game, making
it optimal for 1 to play U in the meantime. Hence (U, L) is played up
until this point. In the first example, the threat is credible for the entire
game, forcing 1 to begin with D and making (D, L) the outcome every
period.

6. CONCLUSION

In summary, switching costs and frequent repetition have some unexpec-
ted effects in finitely repeated games. If the length of a period is short
relative to the switching cost, standard backward induction arguments
break down. Hence it is natural to conjecture that this can allow coopera-
tion in the finitely repeated Prisoners' Dilemma. On the other hand,
switching costs can interfere with achieving cooperation since we need to
maintain the credibility of the threat to switch actions to punish defection.
As a result, we get cooperation in the finitely repeated Prisoners' Dilemma
with small switching costs only under certain conditions on the payoffs.
Also, while it seems clear that switching costs might enforce a commitment
not to change actions, it is more surprising that very small switching costs
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can make such a commitment credible even at the very beginning of the
game. As a result, repeated games which have multiple equilibria without
switching costs can have a unique equilibrium with small switching costs.
Finally, switching costs can make credible some surprisingly complex
threats, leading to unexpected outcomes.

A natural question is whether the results carry over in some fashion to
infinitely repeated games. We discuss this question in more detail in
Lipman and Wang [13], but give a brief answer here. The key to whether
small switching costs affect play in infinitely repeated games is whether we
think of each period as being ``very small'' in the infinitely repeated game.
To understand this, suppose we consider a simple variation on the usual
discounting formulation, evaluating paths of play by the discounted sum
over periods of the payoff in a period minus a switching cost if incurred in
that period. More specifically, suppose player i 's payoff to a sequence of
action profiles a1, a2, ... is

:
�

t=1

$t&1[ui (at)&=I(a t&1
i , a t

i)],

where I(a, a$)=0 if a=a$ and 1 otherwise. This formulation gives no
obvious way to shrink the payoff in a period relative to the switching cost.
The only way in which period length can be thought of as entering this for-
mulation is through the discount rate $, which affects game payoff and
switching costs in the same way. Because we need to be able to vary the
relationship between per period payoffs and the switching cost, our results
will not generalize to this form of the infinitely repeated game.10

By contrast, consider the opposite extreme where we use the limit of
means to evaluate the payoffs from the game and subtract from this limit
the total switching costs incurred. In other words, suppose i 's payoff to the
sequence of action profiles a1, a2, ... is

_ lim
T � �

1
T

:
t=1

ui (at)&&=*[t | a t
i {at&1

i ],

where * denotes cardinality. In this case, the payoff in a single period is
certainly small relative to the switching cost since a gain in only a single
period has no effect! In other words, in this setting, even with a ``small'' =,
the switching cost exceeds the gain that can be earned in any finite number
of periods. In this case, the switching cost has a very large effect, dramatically
changing the equilibrium payoff set.
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APPENDIX

A. A Useful Lemma

Lemma 1. Let g* denote the largest gain in payoff possible from a
unilateral change of action. That is,

g*=max[ max
a1 , a$1 , a2

u1(a$1 , a2)&u1(a1 , a2), max
a1 , a2 , a$2

u2(a1 , a$2)&u2(a1 , a2)].

Then for any t such that t2g*<=, both players must use the action played
at the previous date in any subgame perfect equilibrium.

The proof is by induction. So consider t=1 and assume that t2g*<= for
this t. Then in this subgame, it is a strictly dominant strategy for each
player not to change actions since for any action by the opponent, the gain
in payoff must be strictly less than the switching cost. Hence the claim is
certainly true at t=1. So consider any t such that t2g*<= and suppose we
have proved the claim for all smaller t. Then we know that whatever
actions are played at t will be played at all subsequent dates. But then just
as above, whatever action the opponent plays at t, it must be strictly
optimal not to change actions.

B. Proof of Theorem 2

Clearly, c&a�b&d implies that the largest unilateral gain in payoffs is
from switching to D against C. Hence by Lemma 1, neither player changes
actions for any t such that t2(c&a)<=. Assume that = is such that there
is no integer t satisfying t2(b&d )==.

Let t* denote the smallest integer t such that t2(b&d )>=. We first show
that unless t*=1, both players defect at t* and thereafter. There are two
cases to consider. First, suppose 2 is such that there are no values of t
satisfying (b&d) t2<=�(c&a) t2. In this case, we must have
(c&a)(t*&1) 2<=. Hence whatever actions are played at t are played in
all subsequent periods. So suppose i defected at t*+1. Clearly, the domi-
nant strategy property implies that it cannot be optimal for him to pay to
switch to cooperating, so i will defect at t*. Suppose then that i cooperated
at t*+1. If his opponent cooperates at t*, i should defect at t* as long as

ct*2&=>at*2,

or (c&a) t*2>= which holds as (c&a) t*2�(b&d ) t*2>=. Similarly, if
his opponent defects at t*, i should defect at t* as long as (b&d ) t*2>=
which also holds. Hence i should defect at t*. Hence both players defect at
t* and every subsequent period.
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The case where 2 is small enough that there are values of t such that
(b&d) t2<=�(c&a) t2 is slightly more complex. To show the statement
claimed, we must first characterize behavior in this interval. We claim that
for any period t such that (b&d ) t2<=�(c&a) t2, any player who defec-
ted at period t+1 must defect at t and from then on. Furthermore, if i
cooperated at t+1 and his opponent defected, then i continues to
cooperate. We show this by induction, so first consider the last t in this
interval. By definition, (c&a)(t&1) 2<=, so whatever actions are played
at t will be played in all succeeding periods. So suppose i defected at t+1.
Clearly, the dominant strategy property implies that it cannot be optimal
for him to pay to switch to cooperating, so i will defect at t. Suppose
instead that i cooperated at t+1 and his opponent defected. We have just
shown that his opponent will continue to defect. So it is optimal for i to
cooperate if dt2>bt2&= which holds by assumption.

To complete the induction, suppose we are at a period t such that
(b&d) t2<=<(c&a) t2 and that we know that at all future periods, any
player who defected in the past will continue to do so and that any player
who cooperates against a defector will continue to do so (so the next
period need not be inside this interval). Suppose i defected at t+1. If the
opponent defects at t, i is clearly best off defecting as well because whatever
actions are played at t will be repeated thereafter. If the opponent
cooperates at t and i defects, this is repeated thereafter, yielding a payoff of
ct2 for i. Clearly, this is the highest possible payoff i could get, so it must
be optimal for i to defect in this case as well. Hence i defects at t. Given
this, suppose i cooperated and his opponent defected at the previous period
t+1. Then the opponent will defect from t onward. Because (c&a) t2<=,
i will continue cooperating.

We now use this to show our claim that if t* is the last period t satisfying
(b&d) t2>= and is not the first period, then both players defect at t* and
thereafter in any subgame perfect equilibrium. The restriction to values of =
such that there is no t with (b&d ) t2== implies that (b&d)(t*&1) 2<=�
(c&a)(t*&1) 2. Hence unless both players cooperate, whatever actions are
played at t* will be played in every subsequent period. First, suppose i
expects his opponent to defect at t*. Then he expects the actions at t* to be
repeated in all periods. Clearly, then, if i defected at t*+1, he should not pay
to switch to cooperating. Similarly, it is easy to use (b&d ) t*2>= to show
that if he cooperated in the previous period, he should defect at t*. Suppose
then that i expects his opponent to cooperate at t*. To consider the worst
case for proving i should defect, suppose he cooperated at t*+1. If he defects
at t*, these actions are repeated thereafter so his payoff is ct*2&=. If he
cooperates, his payoff is certainly no larger than

max[at*2, a2+c(t*&1) 2&=].
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Hence defection is optimal if ct*2&=>at*2 (which must hold) and
ct*2&=>a 2+c(t*&1) 2&= (which is implied by c>a). Hence i is
better off defecting at t* regardless of what the opponent is expected to do.
Hence both players defect at t* and in every subsequent period.

The induction from here is straightforward. First, if there is at least one
period other than the first such that (b&d ) t2>=, then at the period
before t*, we can use backward induction to see that both players start by
defecting and defect in every subsequent period. To see how the induction
goes, note that by the induction hypothesis, both players are expected to
begin defecting from the next period onward. Hence the dominant strategy
property implies that if i defected at the previous period, he should cer-
tainly defect at the current period. If i cooperated at the previous period,
he may as well pay the switching cost now to switch to defection and get
the higher payoff today as he will certainly do so tomorrow otherwise. If
this is the first period so there was no previous period, switching costs are
irrelevant and the domination implies that i should defect. Second, suppose
the second period t has (c&a) t2<=. In this case, whatever actions are
played in the first period are played the rest of the game, so it is like there
is only one period. Obviously, in this case, both players defect always.

C. Proof of Theorem 3

Suppose (a1* , a2*) is defendable. Without loss of generality, assume that
this profile is defendable by 1, so it uniquely maximizes 1's payoff and

u2(a1*, a2*)&u2(a1* , a2)�u1(a1* , a2*)&u1(a1* , a2), \a2 # A2 .

Let u� 1 denote the maximum of u1(a1 , a2) over (a1 , a2) # A1_A2 subject to
a1 {a1*.

The key to the theorem is to prove that that if 1 plays a1* at some period,
he will never change again, so that 2 will either choose his best reply or not
switch from his current action, depending on whether there is enough time
remaining to make the gain from switching exceed the cost. That is, for all
t, if (a1*, a2) were played at t+1, then 1 plays a1* at t and 2 plays a2* if

t2[u2(a1* , a2*)&u2(a1*, a2)]>=

and 2 plays a2 otherwise. We assume that = is such that we never have
equality in this equation.

To show this, let g* be the largest unilateral gain in payoffs as defined
in Lemma 1. Define t* to be the smallest t such that

t2g*�=.
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We assume that = is such that t*2g*>=. Note that as 2 a 0, t* � �. By
Lemma 1, we know that in any subgame perfect equilibrium, neither player
changes actions at any date t<t*.

Hence the claim we wish to show is trivially true for t<t*. So consider
any t�t* and suppose we've demonstrated the result for all smaller t. Sup-
pose (a1* , a2) were played at t+1. We now show that no matter what
player 2's strategy at t is, player 1's optimal action at t must be a1*. So let
2's strategy at t be a$2 .

First, suppose a$2=a2*. In this case, the claim is obvious. If player 1 plays
a1*, then the induction hypothesis tells us that his payoff will be
t2u1(a1* , a2*), the highest payoff he can possibly get. Changing actions must
lower his payoff.

Next, suppose that a$2 {a2* but

(t&1) 2[u2(a1*, a2*)&u2(a1*, a$2)]>=.

Again, the claim is obvious. The induction hypothesis tells us that if 1
doesn't change actions, his payoff is

2u1(a1*, a$2)+(t&1) 2u1(a1*, a2*)

while if he does change, his payoff certainly cannot be more than

t2u1(a1* , a2*)&=,

which is obviously smaller if 2 is sufficiently small.
Finally, then, suppose that a$2 {a2* and

(t&1) 2[u2(a1*, a2*)&u2(a1*, a$2)]<=. (4)

In this case, 1's payoff to a1* is t2u1(a1*, a$2). His payoff to changing actions
cannot exceed

max[t2u� 1&=, t2u1(a1* , a2*)&2=].

Hence he certainly does not switch if

t2 max {u� 1&u1(a1*, a$2),
u1(a1*, a2*)&u1(a1* , a$2)

2 =<=.

Let R(a$2) be the term in brackets on the left-hand side. Note that

R(a$2)<u1(a1* , a2*)&u1(a1*, a$2)�u2(a1* , a2*)&u2(a1*, a$2).
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Let D(a$2)>0 denote u2(a1*, a2*)&u2(a1*, a$2)&R(a$2). Then we see that 1
will not change actions if

2R(a$2)&(t&1) 2D(a$2)+(t&1) 2[u2(a1*, a2*)&u2(a1*, a$2)]<=.

By (4), a sufficient condition for this is R(a$2)<(t&1) D(a$2). Because
t�t*, a sufficient condition is R(a$2)<(t*&1) D(a$2). The only place 2
appears in this equation is that t* depends on 2. As 2 a 0, t* � �. Hence
this must hold for 2 sufficiently small.

Summarizing, we have shown that if the induction hypothesis holds for
all later dates, then the description of 1's strategy holds at t. Given this, it
is obvious that the description of 2's strategy also holds at t.

In light of this, consider 1's choice of action in the first period. If 1 plays
a1* in the first period, his payoff must be at least (M&2) u1(a1* , a2*)+
2 mina2 # A2

u1(a1* , a2), while starting with any other action cannot give him
a payoff larger than max[Mu� 1 , Mu1(a1* , a1*)&=] which must be smaller if
2 is sufficiently small. Hence 1 must begin with action a1* and so never
changes actions. Clearly, 2's best reply is a2* in every period.

D. Proof of Theorem 4

First, assume (L, L) is risk dominant, implying a&c>b&d, so a&c is
the largest unilateral payoff gain. So by Lemma 1, neither player changes
actions at any t such that (a&c) t2<=. Fix any = # (0, M(a&c)).

Assume for the remainder of the proof that = is such that there is no
integer t satisfying (a&c) t2==. Also, assume that 2 is sufficiently small
that there are values of t satisfying

(b&d ) t2<=<(a&c) t2.

We now show that for any t such that (a&c) t2>=, the following two
facts are true. First, if either player used L in period t+1, he never changes
actions again. Second, if (R, L) or (L, R) were played at t+1, then the
player who used R previously switches to L at t and the two play (L, L)
from then on. The proof of this claim is by induction.

To begin, let t* be the smallest t such that (a&c) t2>=. By our choice
of =, then, (a&c)(t*&1) 2<=, so we know that whatever actions are used
at t are used in every later period. Suppose player i used L at period t+1.
Then i 's continuation payoff as a function of his period t action and the
period t action of his opponent is

L R

L at*2 dt*2

R ct*2&= bt*2&=
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Because a>c, it is obvious that at*2>ct*2&=. Also, by assumption,
(b&d) t*2<=, so dt*2>bt*2&=. Hence i must play L at period t*,
establishing the first claim. To show the second, suppose that player i used
L and player j used R at period t+1. From the previous argument, i will
not change actions ever again. Hence j will switch to L if at*2&=>ct*2
or (a&c) t*2>= which is true by the definition of t*.

To complete the induction, fix any t>t* and suppose we have shown
our claim for all later periods. Suppose i played L at t+1. Then the worst
payoff i could get from playing L at t is d2+a(t&1) 2 because j will
necessarily play L (switching to it if need be) in the next period and from
then onward by the induction hypothesis. Suppose instead that i uses R at
t. His payoff certainly cannot exceed max[c, b] 2+a(t&1) 2&= since this
calculation gives him the highest possible payoff for this period, the highest
payoff in the matrix thereafter, and only charges him the switching cost
once (even though he'd have to switch actions twice to earn a). For 2 small
enough, this latter payoff is strictly smaller. Hence i will play L at t. To
show the second fact, then, is simple. If i played L and j played R at t+1,
then we know from the above i plays L from this point on. Because
(a&c) t2>=, j will switch to L and (L, L) is played from then on. By
induction. then, we see that the two facts above are true for the entire
game.

Finally, consider the first period of the game. If i plays L, his payoff must
be at least d2+a(M&2). For 2 close to zero, this is close to Ma. If he
plays R instead, his payoff cannot be larger than

max[bM, b2+a(M&2)&=, c2+a(M&2)&=],

which converges to max[Mb, Ma&=] as 2 a 0. Clearly, Ma is strictly
larger than this, so for 2 sufficiently small, i must play L in the first period.
Hence both must play L in the first period and every period thereafter.

This completes the proof of the implications of (L, L) being risk domi-
nant. So suppose (R, R) is risk dominant. We construct subgame perfect
equilibria as follows. For any history such that (L, L) or (R, R) was played
in the previous period, no player changes actions. If (L, R) or (R, L) were
played, the player who used L changes to R as long as (b&d) t2�=. If
(L, R) or (R, L) were played and this inequality is not satisfied, then
neither player changes actions. This specifies actions in all periods except
the first. To construct a subgame perfect equilibrium with outcome (L, L)
in every period, complete the strategies by specifying that both begin with
L. To construct an equilibrium with outcome (R, R) every period, have the
strategies begin with R. To see that either specification gives us a subgame
perfect equilibrium, first consider any period other than the first. If (L, L)
were played in the previous period, clearly neither player has an incentive
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to change since this gives the highest possible payoff. If (R, R) were played
in the previous period, a deviation away from this outcome leads to (L, R)
or (R, L). According to the strategies above, this leads either to no further
changes (in which case the deviator is worse off) or to the deviator moving
back to (R, R), in which case the two switching costs again imply that the
deviator is strictly worse off. Finally, suppose either (L, R) or (R, L) were
played in the previous period. If it is early enough in the game, the player
who played L is supposed to change actions. Given this, his opponent cer-
tainly does not change since he will only have to change back. Given that
the opponent will not change, the player who played L previously finds it
optimal to change actions. If it is too late in the game for the player who
played L to change actions, then b&d>a&c implies that it is too late for
the other player to change actions also. Hence in this situation, neither
player will change, just as specified by the equilibrium strategies.

Finally, consider the first period. If the opponent is expected to play L,
clearly L is the optimal strategy for i since this leads to a payoff of Ma
while playing R leads the opponent to change the next period giving i a
payoff of approximately Mb. Hence given the play in the subgames, it is an
equilibrium for both to start with L. Similarly, though, it is an equilibrium
for both to start with R. If i expects his opponent to start with R, then
starting with R gives him a payoff of Mb, while starting with L gives a
payoff approximately Mb&= which is clearly worse.

E. Proof of Theorem 5

For concreteness, assume a2&c2>b1&d1 . The case where the reverse
strict inequality holds is entirely symmetric.

Fix any = # (0, M min[a1&c1 , b1&d1 , b2&d2]). We show by induction
that if 2 is sufficiently small, then for all t such that (a2&c2) t2<=, no one
changes actions at t if the action profile at t+1 was (L, L), (R, R), or
(L, R). Obviously, if 2 is sufficiently small, this is true at t=1. So consider
any period t satisfying this inequality and suppose the result has been
shown for all smaller t.

First, suppose player 1 used L at t+1. Given the induction hypothesis,
we see that his continuation payoff as a function of the period t profile of
actions is

L R

L a1 t2 d1 t2

R y1t&= b1 t2&=

where we do not know what y1t is. However, note that a1 is 1's highest
payoff in the matrix, so a1 t2� y1t , so a1t2> y1t&=. Also, d1 t2>b1 t2&=
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iff (b1&d1) t2<=. By assumption =>(a2&c2) t2>(b1&d1) t2, so this
holds. Hence 1 must use L at t and, by the induction hypothesis, in every
later period. Given this, we see that if (L, L) were played at t+1, 2 will
never change actions again either.

So suppose 2 played R at t+1. Then 2's continuation payoff as a
function of the period t actions is

L R

L a2 t2&= c2 t2

R y2t&= b2 t2

Again, the induction hypothesis does not tell us what y2t is, but the fact
that b2 is 2's highest payoff in the matrix tells us that b2 t2> y2t&=. Also,
c2 t2>a2 t2&= because (a2&c2) t2<= by assumption. Hence 2 must play
R at t and, by the induction hypothesis, in every subsequent period. Given
this, we see that if (R, R) were played at t+1, 1 will never change actions
again either.

Assume = is such that there is no integer t such that (a2&c2) t2==. We
claim that if 2 is sufficiently small, then for all t such that (a2&c2) t2>=,
if player 1 used L at t+1, then the outcome is (L, L) at t. The proof of this
is again by induction. So first consider the smallest t in this range. Because
(a2&c2)(t&1) 2<=, no one will ever change actions from t&1 onward if
the profile at t is (L, L), (L, R), or (R, R). Suppose 1 played L at t+1. The
same calculations as above show that his best reply to either action by 2
at t is to play L. Hence 1 plays L at t. Clearly, if both played L at t+1,
2's best reply is to play L as well. So suppose (L, R) was played at t+1.
Then 2's best reply is L iff a2t2&=>c2 t2, which is true by assumption.

To complete the induction, then, consider any t such that (a2&c2) t2>=
and suppose we have demonstrated the result for all smaller t. Suppose 1
played L at t+1. If he plays L at t, his payoff is, at worst,
d1 2+a1(t&1) 2. If he plays R instead, his payoff certainly cannot be
larger than max[b1 , c1] 2+a1(t&1) 2&=. Hence L is certainly optimal if
2 is sufficiently small. If 2 played R at t+1, he switches to L at t. If he did
not, he would switch at t&1 anyway, so the only effect not switching
would have on his payoff is to give him a lower payoff in period t. Hence
the outcome at t must be (L, L), completing the induction argument.

To complete the proof then, we see that if 1 plays L at the first period,
his payoff must be approximately Ma1 , while the approximate payoff to
playing R at the first period cannot be larger than max[Mb1 , Mc1 ,
Ma1&=]. Clearly, a1>b1 , c1 implies that 1's equilibrium strategy must be
to play L in the first period. Given this, 2 must play L in the first period
as well and the outcome is (L, L) in every period.
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F. Proof of Theorems 6 and 7

F.1. Preliminaries. We first establish some results which hold for both
examples. Throughout this subsection, we do not assume either a1+b1>
2c1 or the reverse. Assume = is sufficiently small that each of the t*'s defined
below is less than M�2.

By Lemma 1, assumption (1) implies that no player changes actions for
any t such that (d2&b2) t2<=. Assume that there is no integer t such that
(d2&b2) t2==. Define t1* to be the smallest integer t such that
(d2&b2) t2>=. Note that t1*2>=�(d2&b2) for all 2. Hence it is bounded
away from zero as 2 a 0. It is easy to see that, at period t1*, the only change
of action any player would make is that if (D, R) were played at the
previous period, 2 will change actions to L. It is not hard to extend this to
show by induction that the same is true for all t�t1*+1 such that

(c1&d1) t2+(b1&c1) 2<=, (5)

if 2 is sufficiently small.
Hence the only change of action which occurs at any t�t1*+1 satisfying

(5) is that 2 changes from (D, R) to (D, L). Assume that there is no integer
t such that

(c1&d1) t2+(b1&c1) 2==.

Let t2* be the smallest integer t such that

(c1&d1) t2+(b1&c1) 2>=.

(Note that t2* is the t*(=, 2) defined in Theorem 7.) It is easy to see that
t2*>t1* if 2 is sufficiently small.

The only change at t=t2* is that if 1 played U at the previous period, his
best reply if 2 plays R at t is to play D. To see this, note that the payoffs
to the two players from t=t2* onward as a function of the period t2*
actions, not counting switching costs incurred at t2* are

L R

U a1 t2, a2 t2 d1 t2, c2 t2

D c1 t2, d2 t2 b12+c1(t&1) 2, b22+d2(t&1) 2&=

By the definition of t2* , 1's best reply to R if he played U (or by implication
D) in the previous period is D. It is still true at t=t2* that if 1 played D
at the previous period, we must have (D, L) played at t2*, while if (U, L)
were played at the previous period, it is played again at t2*.
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Putting this together, suppose (U, R) were played at the preceding
period. We know from the above that U is 1's best reply to L and that D
is his best reply to R. Also, it is easy to see that 2's best reply to U is R,
while his best reply to D is L. Hence we must have mixing at period t2* if
(U, R) were played in the previous period. Let :t

2
* denote 1's probability of

playing U at this subgame and ;t
2
* denote 2's probability of playing L. Let

V t2*
i denote i 's expected payoff in this subgame. So we must have

V t2*
1 =c1 t2*2+(1&;t

2
*)(b1&c1) 2&=

=a1 t2*2;t2*
+d1 t2*2(1&;t2*

)

and

V t
2
*

2 =:t
2
*a2t2*2+(1&:t

2
*) d2t2*2&=

=:t
2
*c2 t2*2+(1&:t

2
*)[b22+d2(t2*&1) 2&=].

It is straightforward to solve for ;t
2
* and :t

2
* and to show that both con-

verge to zero as 2 a 0. Hence for 2 small, V t2*
1 is approximately b1 2+c1

(t2*&1) 2&=, while V t
2
*

2 is approximately d2 t2* 2&=.
So consider period t=t2*+1. Now the payoffs from t onward as a

function of the period t actions (not counting switching costs incurred at
t) are

L R

U a1 t2, a2 t2 d1 2+V t
2
*

1 , c22+V t
2
*

2

D c1 t2, d2 t2 b12+c1(t&1) 2, b22+d2(t&1) 2&=

Again, if 2 is sufficiently small, then if 1 played D at the previous period,
the outcome at t2*+1 is (D, L). Also, if (U, R) were played, we must again
have mixing. The change from the previous case is that we must also have
mixing if (U, L) were played. The reason for this is that now 2's best reply
to U is R, not L, if 2 is sufficiently small. To see this, note that from the
above, if 2 is sufficiently small, 2's payoff to switching to (U, R) is
approximately

c22+(b2&d2) 2+d2 t2*2&2=,

while his payoff to continuing with L is a2(t2*+1) 2. The former is larger if

(d2&a2) t2*2+(b2&d2) 2+(c2&a2) 2>2=.
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For 2 small, this holds if

(d2&a2)
2

t2*2>=.

Recall, though, that for 2 small, t2*2 is approximately =�(c1&d1), so this
holds for 2 small if

d2&a2

2
>c1&d1 ,

which holds by (3).
It is not hard to see that 2's randomization must be the same whether

(U, L) or (U, R) was played at the previous period. Since 1's payoffs are
unaffected by the difference between these histories and since 2's ran-
domization is chosen to make 1 indifferent, the fact that the randomization
that makes 1 indifferent is unique implies that the same randomization
must be used on either history. Let ;t

2
*+1 denote 2's probability of L on

either history. Let :t
2
*+1(a) be 1's probability of U if (U, a) were played at

the preceding period, a=L, R. Also, let V t
2
*+1

1 denote 1's expected payoff
in either of these subgames and let V t

2
*+1

2 (a) denote 2's expected payoff in
the subgame following (U, a), a=L, R. Then we must have

V t
2
*+1

1 =c1(t2*+1) 2+(1&;t
2
*+1)(b1&c1) 2&=

=a1(t2*+1) 2;t
2
*+1+(1&;t

2
*+1)[d12+V t

2
*

1 ],

V t2*+1
2 (L)=a2(t2*+1) 2:t

2
*+1(L)+(1&:t

2
*+1(L)) d2(t2*+1) 2

=:t
2
*+1(L)[c22+V t

2
*

2 ]+(1&:t
2
*+1(L))[b2 2+d2 t2*2&=]&=,

and

V t
2
*+1

2 (R)=a2(t2*+1) 2:t
2
*+1(R)+(1&:t

2
*+1(R)) d2(t2*+1) 2&=

=:t
2
*+1(R)[c22+V t2*

2 ]+(1&:t
2
*+1(R))[b2 2+d2 t2*2&=].

It is again not hard to show that ;t
2
*+1 converges to zero as 2 a 0.

F.2. Proof of Theorem 7. Because the proof of Theorem 7 relies on less
information about these value functions, we complete it first. So we now
assume that a1+b1<2c1 . Given the results above, 1's payoffs from t2*+2
onward as a function of the actions at this period are

L R

U a12+V t
2
*+1

1 d12+V t
2
*+1

1

D c1(t2*+2) 2 b12+c1(t2*+1) 2
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From above, we know that for 2 small, V t
2
*+1

1 is approximately

b1 2+c1 t2*2&=.

So suppose 1 played U in the previous period. Then D is the best reply to
L for 2 sufficiently small if

a1 2+b1 2+c1 t2*2&=>c1 t2*2+2c12&=

which is implied by a1+b1<2c1 . Also, D is the best reply to R for 2
sufficiently small if d12<c1 2 which also holds. Hence if 1 played U at the
previous period, he must play D at t2*+2 if 2 is sufficiently small. Clearly,
if it is optimal to pay a switching cost to switch to D, it must be optimal
to play D if this requires no switching cost. That is, if 1 played D at the
previous period, he continues to play it at t2*+2. In short, 1 must play D
at period t2*+2 if 2 is sufficiently small, regardless of the history.

We know that L is 2's best reply to D at this point, so this implies that
if 2 is sufficiently small, then regardless of the history, (D, L) will be played
at t2*+2 and every period thereafter in any subgame perfect equilibrium.

Given this, it is easy to show by induction that for all t�t2*+3 such that

a1(t&t2*&2) 2+c1(t2*+2) 2&2=<c1 t2, (6)

player 2 plays L at t and player 1 plays whatever action he used the
previous period.

Let t3* be the smallest integer t violating (6). For simplicity, assume there
is no integer t satisfying this equation with equality. It is easy to show that
the induction above implies that 2 will play L at t3* and that 1 will play U
at t3* if he played it in the previous period. However, if 1 played D at the
previous period, he will change to U at t3* since it is better to earn a1 until
t2*+2 even at the cost of having to change actions twice. Hence no matter
what happened in the previous period, (U, L) is played at t3*. It is not hard
to show by induction that this implies that (U, L) is played in every
previous period, including the first period of the game. This completes the
proof of Theorem 7. K

F.3. Proof of Theorem 6. We now assume 2c1<a1+b1 . One implica-
tion of this which we use is that it implies b1>d1 . To see this, note that
(2) implies 2c1>a1+d1 , so we must now have a1+b1>a1+d1 or b1>d1 .

The rest of the proof is by induction. We show that for all t�t2*+2, if
1 played D at t+1, then the outcome at t is (D, L), while if 1 played U at
t+1, then both players must randomize at t where this randomization is
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uniquely defined. More specifically, we show by induction that if 2 is
sufficiently small, then for all t�t2*+2,

c1 t2&=<a1 2+V t&1
1 <c1 t2+=, (7)

d12+V t&1
1 <b12+c1(t&1) 2&=, (8)

and

a2 2+V t&1
2 (L)<c2 2+V t&1

2 (R)&=. (9)

To understand these claims, note that given our statement of what happens
in subsequent periods, payoffs from period t onward as a function of the
period t actions, not including costs of switching incurred at t, are

L R

U a1 2+V t&1
1 , a22+V t&1

2 (L) d12+V t&1
1 , c22+V t&1

2 (R)

D c1 t2, d2 t2 b12+c1(t&1) 2, b22+d2(t&1) 2&=,

where V t&1
1 is 1's expected payoff from period t&1 onward and V t&1

2 (a)
is 2's expected payoff from t&1 onward given that (U, a) is played at t. As
explained above, 1's expected payoff from t&1 onward must be the same
if (U, R) or (U, L) is played at t. Given this, (7) implies that 1's best reply
to L is whatever action he played in the previous period. That is, the dif-
ference in payoffs is below =. Equation (8) says that 1's best reply to R is
D even if he has to pay a switching cost to play D. Hence this is his best
reply regardless of the action he played at t+1. Similarly, (9) states that
2's best reply to U is R regardless of what action 2 used at t+1. It is
immediate from the payoffs above that 2's best reply to D is L regardless
of the action he used at t+1.

Hence these inequalities imply that if 1 played D in the previous period,
he must play D at t and hence 2 must play L at t. If 1 played U in the
preceding period, however, both players must randomize.

Defining :t(a) analogously to :t*+2(a) and ;t analogously to ;t*+2 , we
see that for t�t2*+2,

V t
1=c1t2+(1&;t)(b1&c1) 2&=

=;t[a12+V t&1
1 ]+(1&;t)[d1 2+V t&1

1 ],

V t
2(L)=:t(L)[a22+V t&1

2 (L)]+(1&:t(L)) d2 t2

=:t(L)[c22+V t&1
2 (R)]+(1&:t(L))[b2 2+d2(t&1) 2&=]&=,
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and

V t
2(R)=:t(R)[a2 2+V t&1

2 (L)]+(1&:t(R)) d2 t2&=

=:t(R)[c22+V t&1
2 (R)]+(1&:t(R))[b2 2+d2(t&1) 2&=].

V t
2
*+1

1 , V t
2
*+1

2 (L), and V t
2
*+1

2 (R) were defined earlier, completing the recur-
sive definitions. For future use, we note that if we define V t

2
*

2 (R)=V t
2
*

2 and
V t

2
*

2 (L)=a2 t2*2, then the equations for 2's value functions also hold for
t=t2*+1.

We now show by induction that (7), (8), and (9) must hold for all
t�t2*+1 if 2 is sufficiently small. We have already shown the conclusion
for t=t2*+1, establishing the basis for the induction. So fix any t�t2*+2
and suppose that we have shown the result for all smaller t.

To see that (7) holds, substitute for V t&1
1 using

V t&1
1 =c1(t&1) 2+(1&;t&1)(b1&c1) 2&=

into (7) and rearrange to obtain

0<(a1&c1) 2+(1&;t&1)(b1&c1) 2<2=.

The latter inequality obviously holds if 2<2=�[a1&c1+max(0, b1&c1)].
Hence we only need to show the former inequality. This inequality is

a1&c1>(1&;t&1)(c1&b1).

Since a1>c1 , this holds if b1�c1 . So suppose c1>b1 . Then a sufficient
condition for this is a1&c1>c1&b1 or a1+b1>2c1 , which holds by
assumption.

To see that (8) holds, substitute for V t&1
1 as above and rearrange to

obtain

d1 2+(1&;t&1)(b1&c1) 2<b12

or

c1&d1>;t&1(c1&b1).

Recall that c1>d1 . Hence this certainly holds if b1�c1 . So suppose
c1>b1 . Then a sufficient condition is c1&d1>c1&b1 or b1>d1 which
holds, implying (8).

The proof of (9) is more involved. For t�t2* , let

Zt=V t
2(R)&V t

2(L)&(a2&c2) 2&=.
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It is not hard to show by substituting from the definitions of V t
2(R) and

V t
2(L) for t�t2*+1 that

Zt=[:t(L)&:t(R)][(b2&c2) 2+d2(t&1) 2&=&V t&1
2 (R)]

&(a2&c2) 2. (10)

Solving from definitions of the :'s, we obtain

:t(L)=
(d2&b2) 2+2=

Zt&1+(d2&b2) 2+2=

and

:t(R)=
(d2&b2) 2

Zt&1+(d2&b2) 2+2=
.

Hence for t�t2*+1,

Zt=
2=

Zt&1+(d2&b2) 2+2=
[(b2&c2) 2+d2(t&1) 2&=&V t&1

2 (R)]

&(a2&c2) 2. (11)

We show that there is a 2� >0 such that for all 2 # (0, 2� ), Zt>0 for all
t�t2*+1.

We first develop a lower bound on Zt by deriving an upper bound on
V t&1

2 (R). We claim that if 2 is sufficiently small, then

V t
2(R)�b22+d2(t&1) 2&=, (12)

for all t�t2*. This proof is by induction. For t=t2*, the claim follows if

c2 t2*2<d2 t2*2+(b2&d2) 2.

This holds if

t2*2>
(d2&b2) 2

d2&c2

.

As shown above, for 2 small, t2*2 is approximately =�(c1&d1)>0. Hence
this must hold for sufficiently small 2.

So consider V t
2(R) for t�t2*+1 and suppose we have demonstrated the

claim for all smaller t. By definition of V t
2(R), the claim holds if

b2 2+d2(t&1) 2&=�c22+V t&1
2 (R),
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or

d2 2+[b22+d2(t&2) 2&=]�c2 2+V t&1
2 (R).

This follows immediately from d2>c2 and the induction hypothesis. Hence
(12) holds.

Substituting this upper bound on V t
2(R) into Eq. (11), we see that for

t�t2*+1,

Zt�
2=

Zt&1+(d2&b2) 2+2=
(d2&c2) 2&(a2&c2) 2.

Hence Zt>0 if

Zt&1<2= \d2&a2

a2&c2 +&(d2&b2) 2. (13)

Note also from (10), the definition of :t(L), a2>c2 , and Zt&1>0 (so
:t(L)�1),

Zt<[1&:t(R)][(b2&c2) 2+d2(t&1) 2&=&V t&1
2 (R)] (14)

for t�t2*+1.
We complete the proof by showing by induction that there is a B>0

such that if 2 is sufficiently small, then Zt>0 and

[1&:t(R)] Yt #[1&:t(R)][(b2&c2) 2+d2 t2&=&V t
2(R)]<B 2

for all t�t2*+1. We showed earlier that Zt
2
*+1>0, so to complete the

basis, we find a B>0 such that [1&:t
2
*+1] Yt

2
*+1<B 2. We also showed

earlier that :t
2
*+1 # (0, 1), so it is sufficient to show that Yt

2
*+1<B2.

Substituting the definition of V t
2
*+1

2 (R) into the definition of Yt
2
*+1 and

rearranging,

Yt
2
*+1=(d2&c2) 2+:t

2
*+1(R)[(b2&c2) 2+d2 t2*2&V t

2
*

2 &=].

We showed in Subsection F.1 that for 2 small, V t
2
*

2 is approximately
d2 t2*2&=. Choose any B strictly larger than the maximum of d2&c2 and
d2+b2&2c2 . Using :t

2
*+1(R)<1 again, we see that the result holds.

To complete the induction, fix t�t2*+2 and suppose we have shown the
result for all smaller t. Because [1&:t&1(R)] Yt&1(R)<B2, we see from
(14) at t&1 and (13) that Zt>0 as long as 2 is less than [2=(d2&a2)]�
[(B+d2&b2)(a2&c2)]. To show the bound on [1&:t(R)] Yt , substitute
the definition of V t

2(R) into the definition of Yt to obtain

[1&:t(R)] Yt=[1&:t(R)][(d2&c2) 2+:t(R) Yt&1].
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Using the induction hypothesis (which implies :t(R)�1),

[1&:t(R)] Yt�(d2&c2) 2+
:t(R)

1&:t&1(R)
B2.

Recall that

:t(R)=
(d2&b2) 2

Zt&1+(d2&b2) 2+2=
.

Since Zt&1>0 by hypothesis,

:t(R)<
(d2&b2) 2

(d2&b2) 2+2=
.

Hence it is sufficient to show that

(d2&c2) 2+
(d2&b2) 2

(d2&b2) 2+2=
B2

1&:t&1(R)
<B2.

Substituting for :t&1(R) from the definition and rearranging gives

d2&c2+
(d2&b2) 2

(d2&b2) 2+2= _1+
(d2&b2) 2
Zt&2+2= & B<B.

From the induction hypothesis,11 Zt&2>0, so it is sufficient to show

d2&c2+
(d2&b2) 2

(d2&b2) 2+2= _1+
(d2&b2) 2

2= & B<B.

Recall that B was chosen to be strictly larger than d2&c2 . Since the second
term on the left converges to 0 as 2 a 0, we see that this must hold for 2
sufficiently small, completing the induction. Hence Zt>0 for all t�t2*+2.

To complete the proof, then, we see that if 2 is sufficiently small, then
in all periods after the first, we move to (D, L) if 1 played D in the previous
period and both players randomize otherwise. So consider player 1's
payoffs for the game as a function of the first period actions. They are

L R

U a12+V T&1
1 d1 2+V T&1

1

D c1T2 b1 2+c1(T&1) 2
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2
* which is not covered by the induction

hypothesis. However, it is straightforward to show by direct calculation that Zt
2
*>0.



By (7) and (8), 1's best reply to both L and R is to play D. Hence 1 must
begin by playing D. Now 2's best reply to this is to play L, so (D, L) is
played in the first and therefore in all subsequent periods. K
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