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Econometrica, Vol. 64, No. 4 (July, 1996), 943-956 

EVOLUTION WITH STATE-DEPENDENT MUTATIONS 

BY JAMES BERGIN AND BARTON L. LIPMAN 1 

Recent evolutionary models have introduced "small mutation rates" as a way of 
refining predictions of long-run behavior. We show that this refinement effect can only be 
obtained by restrictions on how the magnitude of the effect of mutation on evolution 
varies across states of the system. In particular, given any model of the effect of 
mutations, any invariant distribution of the "mutationless" process is close to an invariant 
distribution of the process with appropriately chosen small mutation rates. 

KEYWORDS: Evolution, mutation, limiting distributions. 

1. INTRODUCTION 

A RECENT REFORMULATION of some simple evolutionary dynamics has led to a 
surprising result: the addition of small mutation rates leads to precise long-run 
predictions. We re-examine the robustness of this result with respect to the 
nature of the mutation process and show that this precision of prediction is 
possible only with very strong assumptions on the mutation process. 

Consider the evolution of strategic behavior in a finite population of individu- 
als who are repeatedly matched to play some finite normal form game. A variety 
of evolutionary processes have been analyzed, but to fix ideas, suppose these 
individuals only change their actions occasionally, always changing to a best 
response to the current distribution of strategies in the population. Clearly, if 
the initial distribution of strategies in the population is sufficiently close to a 
strict Nash equilibrium,2 the distribution of strategies will converge to this 
equilibrium and stay there forever. Hence any strict Nash equilibrium is a limit 
point of such a process, so these dynamics have at least as many possible 
long-run predictions as there are strict Nash equilibria for the game. Many 
evolutionary processes will have still other long-run possibilities, such as cycling 
forever. 

1 We thank Nabil Al-Najjar, Larry Blume, Richard Boylan, George Mailath, J.-F. Mertens, 
Bernard de Meyer, Yaw Nyarko, Phil Reny, Jeroen Swinkels, seminar participants at Arizona, 
Columbia, Dublin Economics Workshop, Northwestern, Penn, Queen's, Rochester, Summer in Tel 
Aviv 1994, UCLA, University of Western Ontario, Windsor, the Midwest Mathematical Economics 
Society Meetings, and the 1994 NBER/CEME Decentralization Conference, and a co-editor and 
three anonymous referees for helpful comments. Both authors also acknowledge financial support 
from the Social Sciences and Humanities Research Council of Canada. Bergin thanks UCD and 
CORE and Lipman thanks Penn for enjoyable visits during which some of this research was done. 
Angr errors or omissions are our responsibility. 

That is, a Nash equilibrium where each player's strategy is the unique best reply to his 
opponents. 
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944 J. BERGIN AND B. L. LIPMAN 

Kandori, Mailath, and Rob (1993) (henceforth KMR) and Young (1993a)3 
reanalyzed such processes, showing that the addition of small probabilities of 
mutations change the picture significantly. Suppose that there is a small proba- 
bility e > 0 that a given agent "mutates"-that is, with probability 8, he deviates 
in some fashion from the dynamic described above. (We comment on the 
interpretation of this below.) If every action can be "mutated to," we obtain a 
Markov process which has a strictly positive probability of moving from any state 
to any other. Since every such process has a unique invariant distribution to 
which the system converges from any starting point, the addition of mutations 
makes the limit of the process unique (as a function of 8)! KMR and Young 
consider a sequence of 8's converging to zero and analyze the limit point of the 
associated sequence of invariant distributions, which they call a long-run equilib- 
rium. They and many others have provided characterizations of this unique 
long-run equilibrium for various classes of games. 

Given the dramatic impact of adding mutations, one naturally wonders what 
mutations are supposed to represent. The most common answer in the litera- 
ture, experimentation, is difficult to reconcile with the assumption that the 
mutation rate is constant across states, across agents, and over time. Surely 
agents experiment less in states with high payoffs or when they have a great deal 
of experience. 

Of course, if this restriction is not important to the results, there is no need to 
provide a model of what mutations are. We explore the implications of letting 
mutation rates vary with the state of the system, but do not allow time varying 
rates. Within this seemingly slight generalization of KMR/Young, we show that 
given any long-run prediction from the system without mutations and any 
model of the way mutations affect evolution, it is always possible to find small 
mutation rates such that the long-run behavior of the system with mutations 
is arbitrarily close to the given prediction without mutations. In other words, 
any refinement effect from adding mutations is solely due to restrictions on 
how mutation rates vary across states. This result highlights the importance 
of developing models or other criteria to determine "reasonable" mutation 
processes. 

The intuition for this result is simple. KMR consider games with two pure 
strategy equilibria and hence two states into which the system could settle in the 
long-run in the absence of mutations. In KMR/Young, the long-run behavior of 
the system with mutations is determined by the number of mutations it takes to 
force the system from one of these states to the other. The one which is more 
easily disrupted by mutations in this sense is given zero probability as the 
mutation rate goes to zero. Here, though, the mutation rates could differ in 
these two states. So even though one state may be more robust than the other in 

3See also Blume (1993, 1995), Canning (1992), Ellison (1993), Kandori and Rob (1992), Lagunoff 
and Matsui (1994), Noldeke and Samuelson (1993), Robson (1994), Robson and Vega-Redondo 
(1994), Samuelson (1994), and Young (1993b). 
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EVOLUTION WITH MUTATIONS 945 

terms of the number of mutations, it may be less robust in terms of the 
probability of these mutations, which is, of course, the crucial factor. 

Because this reasoning quickly becomes complex as the number of long-run 
(absorbing) states increases, we do not exploit this intuition directly. Our 
approach enables us to provide a simple yet comprehensive analysis, treating the 
way mutations affect evolution very generally and allowing for any of the various 
ways mutations are added in the literature. It also enables us to highlight where 
further research is needed. The fact that our theorem holds for almost any 
formulation of how mutations affect evolution means that the qualitative prop- 
erties of the effect of mutation is irrelevant to the refinement effect of KMR 
and Young. Instead, it is their implicit requirement that the magnitude of the 
effect of mutation-that is, the mutation rate-does not vary "too much" across 
states which is crucial. More precisely, the key is their requirement that all 
mutation rates converge to zero at the same rate. Hence to generate more 
precise predictions, we must generate economically interesting conditions on the 
mutation rates. 

There are several reasons why mutation rates may vary with the state of the 
system. As noted, if mutation is intended to represent experimentation as 
suggested in much of the literature, it is only natural to allow experimentation 
rates to vary with the payoffs being earned by and the experience of the players, 
both of which vary across states. If mutations are interpreted as computational 
error, it seems reasonable to suppose that players are more likely to make 
computational errors in more complex situations. Similarly, traditional formula- 
tions of trembles (Selten (1975) and Myerson (1978)) allow tremble rates to vary 
across information sets. Also, if the underlying mutationless dynamics are 
"stronger" in some states than others (perhaps because movements in the 
direction of best replies are more obvious or more rewarding in some states), 
then the effective mutation rates may differ across states. 

Because we wish to show that it is only through restrictions on the mutation 
rates that adding mutations can refine predictions, we impose as few restrictions 
a priori as possible. In particular, we allow mutation rates for different states to 
converge to zero at different rates. As mentioned above, these differences in 
convergence rates are important to the result. If our only change to the 
KMR/Young framework were to write the mutation rate for state i as some 
fixed constant ai times a "system wide" mutation rate which is taken to zero, 
then the analysis in KMR and Young would be essentially unaffected,4 as we 
explain in more detail later. 

There are many views one can take on this aspect of our modeling. One view 
is that sequences of mutation rate vectors with equal mutation rates across 
states are "nongeneric" and hence unlikely to emerge from a robust model. 
Another is that the argument Myerson gave for properness applies with equal 
strength here, so that costlier mutations should have probabilities going to zero 
relative to the probability of less costly mutations. Yet another argument in 

4More precisely, the support of the limiting distribution would be independent of the ai's. 
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946 J. BERGIN AND B. L. LIPMAN 

favor of state-dependent and time-varying mutation rates is the fact that in 
standard Bayesian learning models, different errors go to zero at different rates 
over time.5 Alternatively, one might maintain that mutation should be "pure 
noise," suggesting that all mutation rates should be the same. 

Our view is that in the absence of a concrete model of what mutations are and 
why they arise, one cannot reject any of these arguments. Our purpose is to 
show that the "model-less" approach to mutation cannot be justified and hence 
to motivate further research on these questions. In other words, determining 
what mutation rates are reasonable is not necessary for our result to be of 
interest. To the contrary, it is the result that makes this determination 
interesting. 

In Section 2.1, we give an example to illustrate our results. In Section 2.2, we 
present the general model. Our main result is stated and proved in Section 3. 
We conclude in Section 4. 

2. THE MODEL AND MOTIVATING EXAMPLES 

2.1. Examples 

The insight of KMR and Young, following on Foster and Young (1990), is that 
adding small probabilities of mutation to an otherwise standard evolutionary 
process can yield a unique long-run prediction. To see this more concretely, 
consider the following game: 

1 2 

1(8,8 0,4 e 
2 4,0 6,6J 

Suppose N agents play this game. In each period, each player must choose a 
single action which he uses when playing against each of the other N - 1 agents. 
Suppose the action chosen is a best reply given the actions chosen by the other 
players in the previous period. 

It is not hard to see that the number of agents playing each strategy in a given 
period completely determines the future evolution of the strategies chosen. 
Hence we can represent this evolutionary dynamic as a Markov process with a 
state space given by the number of agents playing, say, strategy 2. So let 
S = {0,1,..., N}. It is easy to calculate the transition matrix P describing how 
the system moves between states. Letting pij denote the probability of moving 
from state i one period to state j the next, there is an integer i* such that 
Pio = 1 if i <i*, PiN = 1 if i > i*, and Pi*,N-i* = 1.6 Intuitively, if few agents play 
strategy 2, then all switch to strategy 1, while if many play strategy 2, all switch 
to 2. 

An invariant distribution is a probability distribution on S, say q, which 
satisfies q = qP. Such a distribution may be viewed as a "steady state" for the 

5See Blume (1995) for analysis of time-varying mutation rates. 
6 This calculation assumes that (2N - 2)/5 is not an integer for simplicity. 
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EVOLUTION WITH MUTATIONS 947 

population. For this process, the set of invariant distributions is {q I q = 08o + 
(1 - 0)8N1, where 8i is a probability distribution S putting probability 1 on state 
i. Note that the invariant distributions correspond to probability distributions 
over states 0 and N-that is, over the two strict Nash equilibria. 

Now let us introduce mutations. KMR, Young, and others assume that the 
probability of a mutation is some fixed e, independent of time, the current state, 
or the agent. If an agent does not mutate, he changes strategy or not according 
to the dynamic described above. If he does mutate, he changes strategies with 
some fixed probability. For simplicity, we assume that a mutating agent chooses 
the opposite strategy from what the dynamic without mutations would specify. 
Mutations are independent events across agents and over time. It is not difficult 
to calculate the implied transition probabilities as a function of e. One can use 
these and Lemma 1 of KMR to show that the unique distribution, say q*= 
(q*,* , q*), has lim,5 0q* = 1. 

Suppose we relax these assumptions by letting the mutation rate vary with the 
state. If mutation is intended to model experimentation by the players, then it is 
difficult to see why the mutation rate in state 0 would be as large as the 
mutation rate in other states. In state 0, all agents play strategy 1 and so all 
always earn the highest possible payoff in the game. So why would players 
experiment in this state? By contrast, in state N, players may experiment in 
hopes of reaching the other (Pareto preferred) Nash equilibrium. While we do 
not wish to claim that this is a necessary property of mutation rates, a 
reasonable model of mutations would surely allow this possibility. 

In line with this intuition, suppose that the mutation rate in states i*, 
i* + 1,...,N is e, while the mutation rate in states 0,1,...,i* - 1 is a for 
some positive constant a. The interesting case is where e a < e or a> 1, 
although we do not impose this yet. Except for this change, we maintain all the 
assumptions from above. It is not difficult to show that the unique invariant 
distribution, say q', satisfies 

q? ,-*fXi kl[l +fl(s)] 

qN k2[1 +f2( e)] 

where fi and f2 go to zero as e 0. Also, q -0 as e-0 for all i # 0 or N. 
Clearly, if a > (N - i * + 1)/i* at*, then the exponent is negative, so this ratio 
goes to oo. Hence q' -* 1. If a < a*, then q l -* 1. Finally, if a = a*, then 
qOlqN - kl/k2 as e and g go to zero.7 One can show that a* converges to 3/2 
as N ?o. Hence for N large, setting a > 3/2 reverses the KMR/Young 
prediction. 

To understand these results, consider the process without mutations. Regard- 
less of where the system starts, it will ultimately converge to either state 0 
forever or state N forever. The key to the KMR/Young analysis is the 
comparison between the basin of attraction for state 0-that is, the set of states 

7If we took the mutation rate in the lower states to be 3s a, we could vary 18 to trace out all 
possible probabilities over states 0 and N. 
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948 J. BERGIN AND B. L. LIPMAN 

from which the system must ultimately converge to state 0-and the basin of 
attraction for state N. It is easy to see that the basin of attraction for state 0 
consists of the states from 0 up to iP - 1, while the basin of attraction for state 
N contains the remaining states. It is not hard to show that iP < N/2, so the 
latter basin contains more than half the states. 

When mutation rates are small but nonzero, the system will spend most of its 
time in either state 0 or state N. For concreteness, suppose the system begins in 
state 0. It will stay there until mutations shift the system into the basin of 
attraction for state N. Then the system will drift to state N where it will remain 
until mutations shift it over to the basin of attraction for state 0. Consider the 
case where the mutation rates are the same in every state. Because the basin of 
attraction for state N is larger than that for state 0, the system will shift out of 
state 0 more quickly than it shifts out of state N. Hence the system will spend 
most of its time in state N. As the mutation rate goes to zero, the fraction of the 
time spent in state N converges to one. 

When the mutation rates vary across states, the size of the relevant basins of 
attraction is no longer enough to determine where the system is most of the 
time. In particular, even though the basin of attraction for state 0 is smaller, it 
may be "deeper" in the sense that mutations out of this basin are less likely. In 
this case, the system may well spend most of its time in state 0 instead of state 
N, reversing the KMR/Young result. 

Unfortunately, a general characterization along these lines is quite difficult. 
The KMR/Young approach is combinatoric, involving the calculation of 
"minimum cost" paths from one absorbing state to another. As the number of 
absorbing states increases, the approach rapidly becomes very complex. Instead, 
we take a more general approach which simplifies the analysis. 

2.2. The Model 

Our theorem does not require a detailed specification of the evolutionary 
process without mutations. We assume only that it is a finite Markov process. As 
in Section 2.1, any system with finitely many agents each with finite memory and 
a finite strategy set can be written as a finite state Markov process. The state 
space is S = (1,..., s} and the transition matrix P, where p1j is the probability of 
a transition from state i to state j. We refer to P as the mutationless process. 

Let A denote the set of probability distributions on S. A long-run prediction 
about the mutationless process is an invariant distribution. 

DEFINITION 1: An invariant distribution of P is a vector q E A such that 
q =qP. 

Note that q is a row vector. Denote by >J(P) the set of invariant distributions 
of P. 
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EVOLUTION WITH MUTATIONS 949 

Intuitively, if q is our belief about the state of the system and we learn that a 
period of time has passed (without learning anything directly about the state), 
then our updated beliefs qP will be unchanged if q is invariant. 

The following definitions allow us to characterize the invariant distributions. 

DEFINITION 2: A subset C of S is absorbing in P if for all i E C, j ? C, pij = 0. 
C is a minimal absorbing set of P if it is absorbing in P and no subset of it is. 

DEFINITION 3: A state i E S is transient in P if it is not contained in any 
minimal absorbing set of P. 

It is easy to see that a state i E S is transient if there is a j such that pij > 0 
but j is either transient or in an absorbing set which does not include i. 

A well-known fact about Markov processes' is the following. 

FACT: There are numbers Ai for each nontransient state i such that q E A is an 
invariant distribution of P if and only if (a) q, = 0 for every transient state j and (b) 
for every minimal absorbing set C, either qj = 0 for all j E C or qi/E fE c qj =i. 

In other words, all probability is concentrated on the nontransient states. 
Furthermore, given any invariant distribution, the restriction of the distribution 
to a minimal absorbing set, if well-defined, is unique. Hence all differences 
between invariant distributions correspond to differences in the relative proba- 
bilities of different minimal absorbing sets. 

Most mutationless evolutionary dynamics in the literature have the property 
that every strict Nash equilibrium corresponds to a minimal absorbing set, as in 
the example in Section 2.1. By the Fact, we see that for any game with more 
than one strict Nash equilibrium, these dynamics have more than one minimal 
absorbing set and hence have infinitely many invariant distributions. 

The Fact also implies that if the only minimal absorbing set is S, then there is 
a unique invariant distribution. In this case, P is said to be irreducible. When P 
is irreducible, the empirical frequency distribution over states converges to the 
unique invariant distribution with probability 1 from any initial condition. While 
the mutationless processes considered in the literature are typically not irre- 
ducible, the processes generated by adding mutations are. This effect is quite 
intuitive: adding mutations makes it possible for the system to eventually move 
from any one state to any other. 

We call a procedure for determining transition probabilities from mutation 
rates a "model of mutations." We emphasize that a model of mutations simply 
describes how mutations affect evolution, not why mutations occur. Rather than 
adopt a specific model of how the addition of mutations affects evolution, we 
prove our theorem for any model of mutations. In other words, the model of 

8 See, e.g., Iosifescu (1980) for proof. 
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mutations is held fixed, just as the mutationless process is-the only variable we 
use in approximating a particular long-run prediction is the vector of mutation 
rates. 

Our theorem will cover any model of mutations satisfying a few simple 
properties. First, the process with mutations must be irreducible. Second, the 
process with mutations converges smoothly to the mutationless process as 
mutation rates go to zero. Third, the mutation rates may be state dependent 
with only the probability of a mutation in state i relevant for determining 
movements out of state i via mutation. 

To understand the motivation for the third condition, consider the process 
with mutation and suppose the current state is i. How are the probabilities of. 
transition to other states determined? By assumption, the state summarizes all 
relevant aspects of the system-the information the players have, the payoffs 
they receive, etc. For this reason, if a player does not mutate, his behavior is 
completely determined by the state. Similarly, if a player does mutate, his 
behavior conditional on this event is completely determined by the state. Finally, 
it is the state i mutation rate which determines the relative probabilities of these 
two events. Hence no mutation rate other than the state i mutation rate is 
relevant for transitions from state i. Technically, this is not necessary for the 
result-transition probabilities out of one state can depend on the mutation 
rates for other states. However, the interpretation of mutation rates is less clear 
in this case. See Remark 2. 

Let Xr denote the set of Markov matrices on S. We will call a vector 
8= ( e1,***, E) with ei E [0,1] for all i a vector of mutation rates. 

DEFINITION 4: A model of mutations for P is a continuous function M: 
[0, l]l s such that (a) M(0) = P, (b) M(e) is irreducible for all 8 >> 0, and (c) 
the elements of the ith row of M(e) depend only on ei. 

These three assumptions have KMR and Young as special cases, as well as all 
the other models we are aware of in this literature. 

To determine the importance of restrictions on mutation rates, we character- 
ize the set of predictions one can generate with arbitrary small mutation rates 
given some fixed model of mutations. This motivates the following definition. 

DEFINITION 5: A probability distribution q E A is achievable with mutation 
model M if there exists a sequence of strictly positive mutation rate vectors 
8? -*0 such that qn - q where {qf} = A(M(en)). Let Vf(M) denote the set of 
achievable distributions with mutation model M. 

Intuitively, an achievable distribution is a q solving q = qP which is "robust" 
in the sense that we can find a sequence {Mk} of irreducible transition matrices 
converging to P such that the sequence of distributions {qk} uniquely solving 
qk =qkMk converges to q. An important point to note is that the mutation 
model acts as a constraint on our-choice of {Mk} in that we require each Mk to 
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equal M(8k) for some ek >> O, where 8k -> 0. Proving our theorem without this 
restriction is very straightforward. 

KMR and Young require ei to be independent of i. Hence they, in effect, 
consider only a single sequence of e vectors. We do not impose this restriction 
and so have many sequences. 

REMARK 1: The reader may find an analogy useful. When defining trembling- 
hand perfect equilibria, one first calculates e-perfect equilibria where agents 
may make mistakes. One then considers the limit as these mistake probabilities 
go to zero. Any sequence of mistake probabilities converging to zero is allowed. 
An e-perfect equilibrium is analogous to an invariant distribution with mutation 
rate vector 8 and an achievable distribution is analogous to a perfect equilib- 
rium. As with perfection, we allow for any sequence of mutation rate vectors 
going to zero. 

3. THE MAIN RESULT 

Our main result is that with state-dependent mutation rates, any invariant 
distribution of the mutationless process is achievable with any mutation model. 

THEOREM 1: If M is any mutation model for P, then i(M) = >J(P). 

To understand the proof intuitively, suppose that P is the identity matrix, so 
.J(P) = A. Note that any mutation model M defines a correspondence from 
vectors of mutation rates to A giving the set of invariant distributions as- a 
function of the mutation rates. Given any q > 0, we can analyze this function for 
the set of 8 vectors summing to qj. Given this restriction, we can "rescale" the 
mutation rates by q so that they add to 1, changing this to a correspondence 
from A to itself. Call this correspondence G. and a typical "rescaled" mutation 
rate vector x. We show that G. is onto-that is, for every q E A, there is an x 
such that q = GW(x). Hence we can find a vector of mutation rates, summing to 
as small a number as desired, which generate q as the unique invariant 
distribution. 

An important point is that we use very little information about how G 
behaves on the interior. This is a necessary aspect of the proof because it is 
difficult to characterize how the invariant distribution varies with e for e >> 0. 

PROOF OF THEOREM 1: Let A denote the interior of A (the set of distribu- 
tions with strictly positive probability on all points) and dA the boundary (the set 
of distributions with at least one state given zero probability). Lemma 1 gives 
sufficient conditions for a correspondence to be onto. 

LEMMA 1: If G: A --,A is an upper semicontinuous correspondence which maps 
dA to itself, is single-valued on A and convex-valued on dA, and has no fixed 
points on the boundary, then G( A) = A. 
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PROOF: Suppose G( A) # A. Clearly, since G is upper semicontinous, G( A) is 
closed. Hence A\ G( A) is open. Choose any element, say b, from the interior of 
this set. 

Define a function Pb: G(A) -> dA as follows. Given any x E G(A), draw a 
straight line from b through x to the boundary and let Pb(X) be the point where 
this line intersects the boundary. Clearly, Pb is a continuous function on G( A). 
Note also that for any x e dA, Pb(X) = x. 

Define a correspondence Gb: A -* A by Gb(x) = Pb(G(x)). Since G is upper 
semicontinuous and Pb is continuous, Gb is upper semicontinuous as well. 
Furthermore, since G is single-valued on A', Gb is as well. For any x E dA, 
G(x) c dA. Hence Gb(x) = G(x) for any x e dA. Since G(x) must be convex, we 
see that Gb is convex-valued. 

By the Kakutani fixed point theorem, then, there is some x* such that 
x* E Gb(x*). Since Pb maps to the boundary of the simplex, we must have 
Gb(x*) C dA, so x* E dA. But as just argued, for any x E dA, Gb(x) = G(x). 
Hence x* E dA and x* E G(x*). But by hypothesis, G has no fixed point on the 
boundary. Hence G( A) = A. Q.E.D. 

To complete the proof, we focus first on the case where all minimal absorbing 
sets are singletons. At the end of the proof, we explain the extension to the 
general case. We prove the theorem by constructing a particular correspondence 
which satisfies the conditions of Lemma 1. 

Let Nc S denote the absorbing states of P and let T = S \N. For conve- 
nience, we often write 8= (eN, eT). Let AN denote the set of probability 
distributions on N. Also, let AN denote the interior of AN and dAN its 
boundary. Fix any mutation model M. Given any ? >> 0, let I(e) E A denote the 
unique invariant distribution for the process M(e). 

Lemma 2 will be used to establish upper semicontinuity of the correspon- 
dence we will construct shortly. 

LEMMA 2: If ek - *, 8k >> 0 for all k, then for every convergent subsequence 
{I(ekj)} of {I(ek)}, 

iim If skj) E >_,(M( 8*)). 
J _) 00 

Therefore, W(M) c>(P). 

PROOF: Let q k = I(ek ) and Mk = M(.e k). Without loss of generality, suppose 
qk q. Because M is continuous, Mk M(e*) (entry by entry). By definition, 
qkMk = qk, so passing to the limit, qM(8*) = q or 

lim I(8k) c_Y(M(8*)). Q.E.D. 
k--oo 
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Lemma 3 will be used to show that the correspondence we will construct will 
satisfy the boundary properties required in Lemma 1. 

LEMMA 3: If se = O for some i E N and el > O for all I E T, then for all j with 

ei> 0and all q e-_(M(e)), we have qj= 0. 

PROOF: Suppose that si =0 for some i e N and 61 > 0 for all 1 E T. By 
assumption, the jth row of M(e) depends only on ej. Since M(O) = P, ei =0 
implies that the ith row of M(e) is identical to the ith row of P. Because i E N, 
this row must contain a 1 in the ith place and 0's elsewhere. Therefore, i must 
be an absorbing state of M(e). Consider any j with ej > 0. Fix any 8* >> 0 such 
that e* = el for all 1 with e, > 0. By our assumptions on mutation models, 
M(e*) is irreducible, so the probability of transiting from state j to state i in a 
finite number of periods is strictly positive in M(e*). If every state in this 
sequence has a strictly positive mutation rate in 8, then M(e) still gives this 
sequence of states strictly positive probability since the relevant rows must be 
the same as the corresponding rows of M(e*). In this event, state j must be 
transient in M(e). If some state in this sequence has a zero mutation rate, then, 
since it must also be in N by hypothesis, it, too, is absorbing, again establishing 
that state j is transient in M(e). Hence, for any q e- _(M(e)), Fact 1 implies 
that qj = 0. Q.E.D. 

We are now ready to construct the key correspondence. Define a: A -4 AN by 

1 
ai(q) = qi+#T E qj 

#T]e T 

Next, for any q > 0 and 8T >> 0, we construct a correspondence G, ST: 'AN -4 AN 

by 

G 'l,ST(x) = aC(9(M(r7x, 8T)).) 

For notational simplicity, we often omit the 'q, 8T subscripts. In other words, fix 
the mutation rates for the transient states at 8T and fix the total of the mutation 
rates for the nontransient states at 'q. Given a vector x in AN, we construct a 
vector of mutation rates by "rescaling" x by 'q and then adding to the vector the 
mutation rates for the transient states. We then use this to calculate the set of 
invariant distributions associated with these mutation rates. Finally, we use a to 
convert these distributions to probability distributions on N. For convenience, 
we occasionally write _>(x) for >9(M(Gx, 8T)), so that G(x) = a(G(x)). 

It is not hard to show that G satisfies the requirements of Lemma 1. It is 
single-valued on the interior because (7qx, 8T) >> 0 when x >> 0. Lemma 2 and 
the continuity of a imply that G is upper semicontinuous. 

To characterize G at some x E dAN, note that there must be some i E N with 
xi = 0. Hence by Lemma 3, for every j E T and every j with xj > 0, we must have 
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qj = 0 for all q EC>(x). But then for i E N and q EC>(x), 

ai(q) = qi + *E qj = qi. 
jeT j E- T 

That is, for q EC>(x), a(q) is simply the identity mapping projecting q onto N, 
since q is zero off N. Because the set of invariant distributions for any given 
transition matrix is convex, this means that G is convex-valued on the boundary. 
Furthermore, fix any j such that xj > 0. Lemma 3 implies that qj = 0 and so 
aj(q) = 0 for all q e->(x). Hence G maps the boundary to the boundary and 
has no fixed points on the boundary. Therefore, by Lemma 1, G is surjective. 

To complete the proof of the Theorem, note that the assumption that all 
minimal absorbing sets are singletons implies that 

9(P) = {q E a I qi = 0, Vi E T} . 

Clearly, then, Y(P) can be viewed as one-to-one with AN. We first focus on 
strictly positive distributions, so fix any q Ec AN. 

Since G maps the boundary of AN to the boundary, surjectivity implies that 

Gn, T(A j) = AN for every q > 0 and ST >> 0. Fix any sequences qk and ET going 
to zero from above. Clearly for each k, there is an xk >> 0 such that {q} = 

G-,k k(Xk) = a(I(qkXk, e)). For i E N, let e6k = rkxk. Then 

qi = lim ai(I(ek)) = lim j1(8k) + _ E L(k) = lim Ii(8k) 
k--oo k--oo #T jET k--oo 

where the last equality follows from e8k-+ 0. Hence any q E AN is achievable. 
Therefore, the interior of _J(P) is contained in W(M). It is easy to see from 

the definition of W(M) that it must be closed. Hence this establishes that 
_J(P) C v(M). Since the converse was established by Lemma 2, this shows that 
the two sets are equal. 

To see how to handle the case where the minimal absorbing sets are not 
singletons, recall from Fact 1 that the invariant distributions within each 
minimal absorbing set are uniquely defined. Hence we only need to ensure that 
we can achieve any distribution across minimal absorbing sets. To do so, 
redefine N above to be the collection of minimal absorbing sets instead of the 
set of absorbing states and replace S with S* = N U T. We can then focus on 
mutation rates with the property that for any two states i and j in the same 
minimal absorbing set of P, ei = ej. Instead of generating invariant distributions 
on S, we can focus only on the induced distributions on S*. It is not hard to 
rewrite Lemma 3 and the construction of G to conclude that any distribution 
across minimal absorbing sets is achievable, so that any invariant distribution of 
P is achievable. Q.E.D. 

In short, with no restrictions on how mutation rates vary across states, 
mutations have no refinement effect at all. Hence the "model-less" approach to 
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mutations does not seem justifiable. We have argued that without a model, there 
is no obvious reason to impose any particular constraints on mutation rates, 
including the constraint that mutation rates all go to zero at the same rate. 

Different rates of convergence are important to the result. To see why, 
suppose that we follow KMR/Young in assuming that the mutation model M is 
polynomial in the mutation rates. More precisely, the transition probability from 
state i to state j given mutation rate vector e is some polynomial in ei. Suppose 
we impose the restriction that the mutation rates go to zero at the same rate in 
the simplest possible way by requiring the mutation rates to be constant 
multiples of one another-that is, that ei = ai 6 for some constant ai > 0 where 
6 converges to zero. It is not hard to show that the "resistances" computed by 
KMR/Young in their analysis of the limiting behavior of the system are 
independent of the ai's. Hence the support of the limiting invariant distribution 
as 6 goes to zero must be independent of the ai's. (This is essentially the proof 
Samuelson (1994) gives for his Theorem 4.) 

This fact can be interpreted in a variety of ways. On the one hand, one might 
argue that the mutation rates should all go to zero at the same rate and that the 
polynomial restriction is not unreasonable. If so, one would conclude that 
the KMR/Young technique is quite robust. On the other hand, as noted in the 
introduction, there are many possible views on the "reasonableness" of various 
assumptions on mutation rates, none of which seem to have any priority over the 
others in the absence of a concrete model describing what mutations are and 
why they occur. For example, it seems quite natural to adapt Myerson's (1978) 
argument to conclude that more costly "experimentation errors" should have 
probabilities going to zero more quickly. 

Also, Blume (1995) finds a similar multiplicity of long-run outcomes when the 
mutation rate for a state is quickly decreasing in the number of times the system 
has visited that state. Intuitively, if the system stays in one state for a long time, 
we would expect very little further experimentation while there, so that state's 
mutation rate would be very low. Hence the states that get visited often in the 
early periods may have much smaller mutation rates from then on. This will 
have an effect very similar to what we get by computing invariant distributions 
for a fixed vector of mutation rates and then taking these rates to zero with 
some mutation rates going to zero more quickly than others. 

REMARK 2: Our assumptions on mutation models can be substantially relaxed 
with minor changes in the proof of Theorem 1. First, the assumption that M(e) 
is irreducible for all e >> 0 can be weakened to requiring only that for every 

>> 0, M(8) has a unique minimal absorbing set containing all nontransient 
states. Second and more importantly, our assumption that the ith row of M(8) 
only depends on ei can be relaxed to the following less intuitive requirement: If 
A, B c S are disjoint, absorbing sets in P, then 

(i) ei = 0, Vi EA =A is absorbing in M(e), and 
(ii) 8i>0, ViEAUT and ei=0, ViEB=*i is transient in M(e), ViEA, 
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where T is the set of transient states of P. This condition essentially assumes 
the result of Lemma 3. 

4. CONCLUSIONS 

We have shown that if mutation rates can vary in any fashion with the state, 
then, regardless of what one assumes about how mutation affects evolution, 
adding small mutation probabilities does not refine the set of long-run predic- 
tions at all. In this sense, it is only restrictions on the mutation rates that can 
allow mutation to refine predictions. One could interpret this result as saying 
that it is futile to try to refine the set of long-run predictions by adding 
mutation. An alternative interpretation is that the nature of the mutation 
process must be analyzed more carefully to derive some economically justifiable 
restrictions. Blume (1995) provides some ideas along these lines. It is an open 
question whether and what kinds of interesting restrictions will emerge. 

Dept. of Economics, Queen's University, Kingston, Ontario, Canada, K7L 3N6 
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