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We study sequential message-sending games with an uninformed decision maker
and multiple self-interested informed agents in which the ability to prove claims is
limited. We give necessary and sufficient conditions for the existence of robust
inference rules—that is, rules which lead to full, correct inferences even if the
decision maker has very little information about speakers’ preferences or strategies.
Surprisingly little provability is needed when the decision maker only knows that
the speakers have conflicting preferences over his actions. Conflicting preferences
guarantees that someone will have an incentive to “correct” any mistaken inference.
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1. INTRODUCTION

Numerous economic, political, and legal activities involve efforts by one
or more self-interested parties to persuade uncommitted decision makers to
take certain actions. Managers issue audited earnings reports to share-
holders. Lobbyists brief legislators about pending bills. Litigants hire experts

* We thank Ed Green, Debra Holt, Steve Matthews, Georg Noldeke, Tom Palfrey, Mike
Peters, John Roberts, an anonymous associate editor and referee, and seminar participants at
Simon Fraser, Toronto, Western Ontario, the 1990 Carnegie Mellon Conference on Political
Economy, the 1993 Canadian Economic Theory meetings, and the 1993 Winter Econometric
Society meetings for helpful comments. Support for this research was provided by a Sloan
Foundation grant to the Center for the Study of Public Policy at Carnegie Mellon University
and by the Social Sciences and Humanities Research Council of Canada.
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to testify on the facts of a case. Conversely, decision makers typically try to
maximize the information elicited from such communication, recognizing, of
course, the possibility of bias due to the speakers’ self-interest. Indeed, what
an interested party wants the decision maker to do (e.g., retain incumbent
management, vote for a bill) is often independent of the variables of interest
to the decision maker (e.g., managerial quality, the bill’s merits). In some
situations the decision maker may not even know a priori exactly what the
speakers’ preferences are.

Certainly, statements which include irrefutable proof of some fact have
information content regardless of the speaker’s preferences. Unfortunately,
how much is explicitly provable 4s often limited. That is, an interested party
may be able to prove only some—but not all—of what he knows. We call
this partial provability. Limitations on the ability to prove claims arise from
at least two sources. First, there may be limitations on the number of facts
speakers can disclose. In political debates, for example, time constraints
may limit information transmission if voters are unable to absorb more
than a certain amount of information in the time available. Second,
definitive proof of some true facts simply may not exist or speakers may
not be allowed to provide it. For example, while a pianist can easily
demonstrate that he can play the piano, it is hard to imagine how a non-
musician could prove that he cannot.! Alternatively, the exclusionary rule
prohibits the introduction in trials of evidence (factual “proofs” which
prosecutors do have) obtained through illegal searches.

Economic theory, in view of the perceived pervasiveness of limits on
provability, has largely focused on information revelation through
observation of actions and/or outcomes as opposed to written or verbal
communication.> In contrast, we are interested solely in such direct
communication. We show that full revelation of all information of interest
to the decision maker does not always require speakers to prove all facts
known to them. Rather, the “burden of proof” may be much weaker in that
it involves proving only certain key facts. Of course, which facts are key
depends on what the speakers’ preferences are—that is, on which “lies”
speakers would like to tell.

We focus here on the important case of conflicting preferences where the
interested parties disagree among themselves about the relative desirability
of possible actions by the decision maker. Examples include corporate

! We thank Mike Peters for this example. In terms of the analysis that follows, this limita-
tion is a consequence of the fact that everything a nonmusician can do at the keyboard is a
subset of what a pianist can do.

* Two important exceptions are the literature on the role of cheap talk {Farrell [5]) and
the literature on political campaigns and lobbying (for example, Austin-Smith and Wright
[1]. Banks [2]. Harrington [10]). These papers focus on issues other than the role of
provability.



372 LIPMAN AND SEPPI

proxy battles, rival advertising campaigns, dispute mediation, and congres-
sional hearings. In such situations we show that the associated burden of
proof for full revelation is surprisingly weak. Moreover, the decision
maker’s inferences are robust in the sense that- they require very little
knowledge about the speakers’ preferences or strategies.

Thus it is important to include direct communication in economic
models because even minimal provability may radically affect predicted
outcomes. The following example illustrates this point.

ExaMPLE 1. Suppose there are a large number of possible “states of
nature”™—say 1000- -and that in each state the decision maker (if he knew
the true state) would take a different action. Initially the decision maker is
uninformed, but he receives advice from two lobbyists who each know
the true state. He knows that the lobbyists disagree about the relative
desirability of any pair of possible actions, but nothing else. Lobbyist 1
speaks first followed by lobbyist 2 who speaks after seeing 1’s message.
The available messages allow a lobbyist (a) to assert unverifiably that a
particular state s is true (even if it is not) and then (b) to submit a single
piece of evidence ruling out any single untrue state s'. A state cannot be
ruled out if it is actually true. We call these “not” messages since they
unambiguously prove only that a single s’ is not the true state. Thus, a not
message is the minimally informative message in terms of what it explicitly
proves.

Taken together the lobbyists’ two messages rule out at most only two of
the thousand states directly. However, despite the limited informativeness
of not messages, there is an inference rule which supports a perfectly
revealing equilibrium! It is simply to believe lobbyist 1I's assertion unless
it is disproven by lobbyist 2. In this case, believe lobbyist 2’s assertion, so
long as it is not disproven by either of the two messages. Clearly lobbyist 2,
if he can disprove I’s assertion, will do so. Furthermore, since he will make
the best possible assertion for himself, the conflict between his preferences
and those of lobbyist 1 guarantees that this is the worst possible assertion
for lobbyist 1. Hence in equilibrium lobbyist 1 will tell the truth (except
possibly in his least preferred state where lying and getting caught does not
affect the final outcome).

Intuitively, complete revelation is possible because 2’s message conveys
more in equilibrium than simply ruling out a single state. The failure of 2
to “refute” I's claim is taken as evidence of the inability to refute. More
generally, an interested party’s failure to prove certain facts may be con-
strued to mean that these facts are untrue. While this also occurs in models
with only one speaker, this example suggests that the potential informa-
tional gain with multiple speakers is substantial. This is because the inter-
pretation of a message from one speaker can now depend on what other
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speakers say.’ Thus the equilibrium interpretation of a “not state s'”
message from lobbyist 2 changes dramatically depending on whether |
initially claimed state s".

Games with communication and no provability have been widely studied
in the signaling and mechanism design literature. In this literature, agents
have different preferences depending on their private information. In
signaling models, these preference differences may take the form of differ-
ential “signaling costs” as in Spence [19]. Alternatively, the speaker’s
preferences may vary with his information in manner similar to that of the
hearer as in Crawford and Sobel [3]. In the mechanism design or imple-
mentation literature (see Harris and Townsend [11], Maskin {12], Moore
and Repullo {15], and Palfrey and Srivastava [17]), a “social planner”
uses differences in preferences across states to get informed agents to reveal
their information truthfully. As discussed above, part of our interest is in
settings where the speaker’s preferences are independent of his private
information and/or unknown to the decision maker.

The study of games with provability* is relatively new. Grossman [9],
Milgrom [13], and Miigrom and Roberts [14] study signaling in the
special case of complete provability—that is, when an interested party can
prove any true claim. Their insight is that a decision maker, by adopting
an attitude of “scepticism in the face of vagueness,” can force complete
disclosure of all information in equilibrium. As a practical matter, however,
this approach has two weaknesses. First, it makes strong assumptions
about the set of available messages. In particular, to prove the full truth
unambiguously may require exhaustive specificity in some proofs. Second,
it cannot explain the prevalence of adversarial debate among multiple par-
ties in many real-world decision-making processes (e.g., labor mediation,
trials, congressional hearings). In particular, with complete provability and
symmetrically informed speakers, all information can be elicited from a
single speaker. Thus there is no informational gain from competition
between multiple interested parties.

The idea of partial provability first appeared in Milgrom [13]. The
attraction of this idea is that, while interested parties may be unable to
prove much, it is often unrealistic to assume that they can prove nothing.
The complication partial provability introduces is that some vagueness
(1e., incompleteness in proof) is unavoidable. The key insight is that these
limitations can often be overcome because in equilibrium the failure to

> Matthews and Fertig [4) demonstrate a similar phenomenon in a Spence [19]-type
signaling model.

* We favor the term “provability” over the more widely used “verifiability” because the
former suggests that the onus is on the speaker to prove the truth of his statement, rather than
on the listener to confirm it.
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prove certain key supporting facts may be construed as evidence that
certain claims are untrue, as in Example 1. The subsequent literature on
partial provability is still small. Fishman and Hagerty [ 6] and Shin [18],
like Milgrom [13], consider the case of a single interested party in the
context of particular message structures. Okuno-Fujiwara, Postlewaite,
and Suzumura [ 16] considers multiple asymmetrically informed interested
parties with a specialized message structure. However, their assumptions
effectively decompose the game into a collection of parallel single interested
party problems. Finally, in quite a different vein, Green and Laffont [8]
considers the role of partial provability in a principal-agent context.

In this article, we study communication in a large class of games in
which interested parties speak sequentially. Our focus is on the following
question. How much provability is required to achieve full and robust
revelation in such games? We say that the decision maker’s inference rule
is robust for a set # of possible speaker preferences if it leads to correct
inference given any equilibrium responses by the speakers to this rule and
any profile of speaker preferences in #. We find that a simple condition
on the structure of provability, which we call refutability, is sufficient
for robust full revelation when the speakers have conflicting preferences
over the decision maker’s action. We also provide a necessary and sufficient
condition called weak refutability for robust full revelation in open
Sforums—games where each speaker only speaks once. As in Example 1,
a simple inference rule supports robust revelation. It is to provisionally
believe claims unless they are subsequently refuted. However, in general the
burden of proof for claims to be put “on the table” is more subtle than in
Example 1. In particular, claims must be made in such a way that they
can later be disproven if they are false. Refutability or weak refutability
simply ensure enough provability to meet this burden in each state. Either
refutability condition is weaker than complete provability or any of the
particular forms of partial provability considered in the previous literature.

This article is organized as follows. Section II presents the basic model.
Section III presents sufficient conditions for robust revelation in the
special case of an open forum. Section IV extends this analysis to general
sequential games. In Section V, we discuss some related issues. Concluding
remarks are offered in Section VI.

II. T MODEL

We have n+ 1 players, n “senders” of information, and one “receiver.”
Let N= {1, .., n} denote the set of senders. The senders send messages to
the receiver, who then chooses an action affecting both his own utility and
the utility of each sender. The senders are symmetrically informed with
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information which is not known to the receiver, but which affects the
receiver’s payoff and possibly their own. Messages have no effect on any
player’s utility except through any influence they exert on the decision
maker’s action.® Thus the sending of costless messages can be interpreted
as the senders’ attempts to persuade the receiver to choose actions they
like.

Let S denote the set of possible states of the world. A given state s S
specifies all facts known to the senders which affect the receiver’s payoff.®
For example, a state might specify the circumstances of a crime, the relative
merits of various brands of a good, the talent of a firm’s incumbent
management, or the costs and benefits of various health care reform
proposals. For simplicity, S is taken to be finite. The number of states
is L.

Messages sent to the receiver can include evidence such as documents
or physical items. Thus a state s also specifies the availability of such
evidence.” Letting M denote the set of all possible messages, we have a
function M{s) which for each s gives that (nonempty) subset of M con-
sisting of those messages which are available or feasible in state s. We also
define the inverse function F(m)={s|me M(s)} giving the set of states in
which a message m 1s feasible.

Our modeling approach captures at least two distinct forms of provability.
First, as noted, a message may include a presentation of documents or
other “hard” evidence substantiating some set of facts. Second, a message
can include a logical proof that known facts imply a particular conclusion.
Such a proof cannot be produced if the facts are inconsistent with this
claim.® Either way, it is precisely the fact that a message m is available
in some states and not in others that makes it useful as evidence. Thus,
a message m proves that the true state is in F(m) and rules out states in
S\F(m). We refer to F(m) as the pure information content of m. As Example |

> An alternative interpretation of our model is that the cost of sending a given message is
zero in a state in which that proof is available and infinite otherwise.

*In other words, we do not distinguish between underlying states which senders cannot dis-
tinguish. Also, note that the receiver’s information is incomplete in two respects. First, he does
not know some facts which directly affect his payoffs. Second, he may not know the senders’
preferences. A “state” here only refers to the former, but our results all have natural analogues
if we redefine “states” to include both types of uncertainty.

" For example, if a murder victim was stabbed and not shot, then there cannot be a bullet
in the corpse. Less dramatically, a (legitimate) house deed with a given individual’s name on
it exists only if that person is a homeowner. Note that what a given piece of evidence proves
depends on the state set S. For example, if deeds can be forged, then showing a house deed
rules out all states except those in which the named individual is a homeowner and those in
which the deed was forged.

® Implicit in this interpretation is the view that the receiver may be unaware of all implica-
tions of his prior knowledge.

642:66/2-5
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illustrates, however, in equilibrium messages can convey information
beyond what they prove. Thus, even a message which is in every M(s)
- -and which hence has no pure information content whatsoever—can still
have significant equilibrium information content,

To avoid trivial barriers to communication (e.g., fewer messages than
states), we assume throughout a rich language condition. Intuitively, the
language is sufficiently rich so that a sender can always include in his
message a “cheap talk” claim of any state that the message does not dis-
prove. More formally, for every message m, the number of messages with
the same pure information content # {m’' | F(m')= F(m)} is no less than
# F(m), the number of states in which m is feasible.

The receiver’s payoff depends on both his action and the true state se S.
Given the messages sent, the receiver updates his beliefs and then chooses
an action to maximize his expected utility.” The receiver’s posterior beliefs
are an inference 6 € 4 where A is the set of probability distributions over
S. His prior is some 3° € 4, where 4°(s) > 0 for all se S. When there is little
risk of confusion, we will also use s to denote the probability distribution
which puts probability 1 on state 5. Such a probability distribution is called
a degenerate inference.

In each state s, each sender 7 has preferences over the possible actions by
the receiver. These in turn induce preferences over possible inferences by
the receiver. In other words, sender ¢ prefers the inference 6 to J' in state
s if, knowing s is the true state, he prefers the action the receiver takes
given inference & to the action taken given inference &'.'° Formally, the
preference ordering of sender 7/ in state s is a complete, reflexive, and
transitive ordering >=; , over the set 4. Let >=,= (2>, ..., >, ,,) denote i’s
preferences in different states and let = = (2>, .., >=,) denote a preference
profile across all n senders. It is important to note though that we do not
exclude the possibility that a sender’s preferences are independent of the
true state, s.

We study a large class of finite extensive form games, which we call
sequential games, in which senders never speak simultaneously. That is,
every information set for every sender is a singleton. Whenever it is his turn
to speak, a sender first observes the sequence of messages from previous
senders and then chooses any one (feasible) message to send to the
receiver. The sequence of senders may be either fixed or endogenously
determined by the messages sent. Of particular interest are two special

? An alternative interpretation is that there are many symmetrically informed receivers who
choose actions in some game after observing the senders’ messages. Of course, with many
receivers, more information (our focus here) could make all receivers worse off depending on
the game they play.

' This implicitly assumes that the receiver’s optimal action is unique or that his “tie-
breaking” rule is common knowledge.
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cases. The first is a type of sequential game we call an open forum in which
each sender has exactly one turn to speak. The second, a balanced sequen-
tial game, generalizes the open forum to games in which each sender has
at least one turn to speak.

The assumption of only one message per turn is typically restrictive given
the message sets and the number of rounds of message sending in the sense
that it limits how much can be proven. Indeed, the inability to communicate
all feasible messages is an important form of partial provability in practice.
However, the one-message-per-turn assumption in no way restricts the class
of sequential games studied here. For example, a sequential game in which,
say, two messages are sent per turn is equivalent to one in which each
speaker has two successive turns to send one message. Even holding fixed
the number of rounds, the two-messages-per-turn game can be recast as a
one-message-per-turn game by redefining the message sets and letting each
speaker send one message from redefined message sets M'(s) = [ M(s)]*

We now define sequential games more precisely. For simplicity, we assume
the number of rounds of message sending is some fixed K independent of
the messages sent. Let H,{s)=[ M(s)]* be the set of sequences of exactly
k messages feasible in state s. Let h, denote the initial (empty) history when
the game begins (and no messages have been sent) and let H(s) = {h,} for
all 5. Let

K
H%(s)= J Hl(s)

c=0

be the set of possible histories of up to K feasible messages in state s and
let

HX=) HX(s)

ses

denote the set of all possible feasible histories. Given two histories
h,h' € HX, let h-# denote the sequence of messages in / followed by those
in #'. Given a history he HX, we say that &' € H¥ is a subhistory of h if
there is some h” € H* such that #'-h" = h. Also, given any h = (m,, ..., m;),
let F{h)= ’]‘f=, F(m;)—that is, F(h) is the set of states in which the history
h is possible. Using this notation, we have

DEFINITION. A sequential game is a pair (K, .#) where K is the number
of rounds and .#: H* ~! — N specifies which sender speaks on each possible
history.'!

"' More precisely, these are the “rules of play” for a game since payofls and the receiver's
actions are not included.
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A history for sender i in state s in sequential game (X, .#) is a history
he H* '(s) such that #(h)=i In other words, it is simply a feasible
history after which it is sender i’s turn to speak. Let H,(s) denote the set
of such histories for sender 7 in state s and let 2¥ denote the set of functions
ol Hi(s)— M(s). A strategy for sender 7 is a collection of functions
0,={0}},cs. Where oje X7 for each s. We define ¢'=(o},..,0}) and
o=(0,,..0,). Since we focus on the existence of separating equilibria, we
do not define mixed strategies.

Unlike the senders, the receiver does not observe the state itself, but only
the messages sent. The set of possible histories he can observe in a game
with K rounds of messages is

Hg = U [M(S)]K-

seS

An inference rule for the receiver is a function &: Hy —» 4 giving the
receiver’s beliefs as a function of the observed messages. The senders’
strategies for state s, ¢%, determine the particular history of messages /ig{o”’)
he observes in s. Also, given any state s, prior history he H,(s), and
strategies a*, let hg(h, ¢’) denote the final history the receiver would
eventually observe if the play of the game began with the sequence of
messages /.

Our equilibrium notion is essentially perfect Bayesian equilibrium
(Fudenberg and Tirole [7]). An equilibrium of (K, .#) given a preference
profile = is a pair (o, J) consisting of a vector of sender strategies o and
an inference rule J for the receiver satisfying the following. First, for each
state s and history A, every sender i’s strategy is optimal given the other
senders’ strategies and the receiver’s inference rule:

S helh, 6% 0°_ )12, 6lhe(h, 67.0°_ )], V6 eZ: heH(s), seS. (1)

Second, the receiver updates his beliefs using Bayes’ Rule whenever the
final history has nonzero probability under the strategies ¢. Thus, if a
history he Hg is on the equilibrium path in the sense that S*(k, 0)=
{s€ S| h=hg(c")} is nonempty, then

U)Xy e s oy 6087 if seS*h, o);

2
0 otherwise. (2)

(5(11)(3'):{

Third, off the equilibrium path (i.e., when S*(h, o) is empty), inferences

only need to be consistent with feasibifity in that d(h)(s) =0 for any state

s not in F(&) (ie., for states explicitly disproven by some message m in A).
Our focus here is on separating equilibria.
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DEFINITION. A separating equilibrium of a game (K, #) given 2= is an
equilibrium (o, d) in which d{s1z(c")) = s for all s so that the receiver always
learns the true state.

As in Milgrom and Roberts [ 14], we are interested in situations where
the receiver has very little information about the senders. In particular, we
seek inference rules which are “robust” in the sense that the receiver can
use them and be sure, given only minimal information about the preference
profile and equilibrium strategies of the senders, that his inference is
correct.

To see the intuition, fix a sequential game (K, .#), a preference profile >=,
and an equilibrium (o, 3). In ¢ach state s, the senders in effect play a game
among themselves. Since (o, ) is an equilibrium, from (1) the senders’
strategies ¢” clearly are one equilibrium of this “subgame.” More formaily,
given ¢ and =, the induced game for state s is the game of perfect informa-
tion where sender i’s strategy set is 2 and where his preferences over final
histories of play Ae [ M(s)]% are those induced by & and =, . That is,
sender i weakly prefers the history 4 to A’ in the induced game iff 6(4) =, ,
o(h'). Let E(J, s, K, #, ) denote the set of sender strategies which are
(pure strategy subgame perfect) equilibria in the induced game.

Suppose that for some s in some equilibrium of the induced game
6*# a’, the receiver infers incorrectly given . For the receiver to know
whether his inferences are correct, then he must know which strategies in
E5, s, K, .#, =) the senders are playing. However, if his inferences are
correct for all equilibria in the induced game for each s, then he does not
have this problem. Moreover, suppose that, given a different preference
profile, there would then be an equilibrium é* in the induced game leading
him to infer incorrectly. Then the receiver must be sure of the preference
profile to know that his inferences are correct. A robust inference rule is
precisely one which avoids these two problems.

DEerFINITION. Given a sequential game (K, .#) and a set of preference
profiles #, J is a robust inference rule for # if for every = € #, there is a
o such that (g, d) is an equilibrium and if for every s and ¢’ € E(4, s, K, .#,
>), we have o(hg(c*)) =s.

More intuitively, if the receiver has a robust inference rule for 2, then he
can know that, whatever the actual preference profile is—as long as it is in
#—and whatever equilibrium is played in the induced games among the
senders, his inferences will be correct.

An obvious but useful fact about robust inference rules is the following.
Suppose # < #'. Then if J is robust for #', it must be robust for #. Hence
any condition which is sufficient for the existence of a robust inference rule
for # is also sufficient for #, while any condition which is necessary for the
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existence of a robust rule for # is also necessary for #'. For this reason,
we state our necessary conditions for “small” # sets and our sufficient
conditions for “large” sets.

Robust inference for the set of a// preference profiles is not possible in
general, even with complete provability. Consequently, the receiver must
have some prior information about the senders’ preferences for a robust
inference rule to exist. We focus here on the case of conflicting preferences
since, as noted above, adversarial debate among competing interested
parties is an important feature of many real-world decision processes.

DerFINITION.  Preference profile = satisfies conflicting preferences if for
every ¢ #s, there exists i with s>, s

Unlike the preference assumption in Example 1, this definition does not
require disagreement among senders over every pair of inferences. Instead,
the definition simply says that in state s, for any given false inference s’,
there is at least one sender who prefers the true inference s over §'. It is
perhaps more easily interpreted when preferences also satisfy a property we
call state independence—that is, where >, ;= >, . for all s and s".'? With
state independence and two senders, conflicting preferences implies that
their preferences over degenerate beliefs disagree on every comparison. With
state independence and more than two senders, conflicting preferences only
says given any pair of degenerate beliefs, there is some pair of senders who
disagree. Last, with or without state independence, this assumption says
nothing about comparisons between nondegenerate beliefs.

Let #* denote the set of conflicting preference profiles and let #}* denote
the set of state independent conflicting preference profiles. Robust inference
for classes of preferences as large as #* or 2} is clearly still a strong
property. It cannot exploit differences in preferences across particular
individuals (since they are not known) or across states (since there may be
none). In particular (and unlike the analysis of complete provability), the
trick of “punishing” a sender for sending unhelpful (i.e., vague or otherwise
incomplete) messages is not available (i.e., since the decision maker does
not know which of the feasible states the sender likes least). We show in
the next two sections that unexpectedly weak conditions are nonetheless
sufficient for robust inference in sequential games.

Readers familiar with the literature on full implementation may find a
comparison useful. In this literature {see Maskin [12], Moore and Repulio
(157, Palfrey and Srivastava [17]), one seeks a game form, say (M, O), which
fully implements a social choice correspondence. More precisely, M =[], M,
where M, is the message set for agent i. O is an outcome function mapping M

12 Milgrom and Roberts [ 14] use a similar assumption in showing that the equilibrium outcome
is unique.
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into some outcome space. The agents all have preferences over outcomes
where these preferences depend on the state of the world. A social choice
correspondence is fully implemented by this game form if, for each state,
the set of equilibrium outcomes equals the social choice set for the state. By
contrast, in our model the set of feasible messages (but not necessarily
preferences) varies with the state. Qur notion of robust inference is similar
to the notion of full implementation. With robust inference, given a state
and the inference rule, all equilibria for any preference profile in the class
have the same outcome. With full implementation, all equilibria given any
preference profile are “acceptable” in the sense that their outcomes satisfy
the social choice rule. In our model, however, the receiver is also a player
in the game and cannot commit himself to choosing suboptimally (e.g., tak-
ing an action which is optimal only in a state which was explicitly ruled out
in the course of piay). In the full implementation literature, the only
receiver is the mythical social planner who can commit to any (feasible)
outcome out of equilibrium.

I1I. SUFFICIENT CONDITIONS FOR ROBUST INFERENCE IN AN OPEN FORUM

In this section we give a simple condition on the structure of provability

-as represented by the message sets M(s)-—that is sufficient for robust
inference for #* in an open forum. This condition, in particular, is weaker
than either complete provability or the forms of partial provability used in
the previous literature.

While this analysis is a special case of results for sequential games in the
next section, the simpler structure of an open forum allows us to present
the underlying intuition more directly. An open forum is a sequential game
(n, #) in which each sender has one and only one turn to send a single
message. In other words, every final history he Hy has exactly one
subhistory A’ such that #(h')=i for each ie N.

A key to our results is the robustness of a very simple and plausible type
of inference rule which we call a believe-unless-refuted (or BUR) rule.
Intuitively, with a BUR rule the receiver provisionally believes any claim
satisfying a certain burden of proof unless it is explicitly refuted by a sub-
sequent sender.

DeriNITION.  The inference rule J in a K round game is a believe-unless-
refuted rule if for every s and every history he H,(s) with k < K, there is
a message m, , € M(s) such that 3(h-m_,-h')=sforevery ' e Hy_, _(s).

With a BUR rule, it may be that only certain messages m, ,€ M(s) can
be used to claim s—that is, lead to 6{(h-m, ,-h")=s1f h' does not refute s.
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In other words, messages must meet a burden of proof for them to be used
to claim s. In particular, as Example 1 clearly shows, any message m
used to make a believe-unless-refuted claim of s must at a minimum refute
any prior claim s with BUR status—-that is, we must require m e M(s)\
M(s"). Otherwise, the receiver could have two different inferences, s’ and s,
on the table each with BUR status. However, simply refuting prior out-
standing claims may not be enough. Determining the appropriate burden
of proof for a BUR rule in general is a key issue of the article.

As this discussion suggests, a BUR rule might not exist. A BUR rule
does not simply say that the receiver believes any claim until disproven; it
must also be true that any false claim can be refuted and replaced by claim
of the true state. For example, if nothing is provable—that is, if all states
have the same message set- -then clearly no BUR rule exists. Thus, the
existence of a BUR rule depends on the structure of provability.

DErFINITION.  An inference rule d is degenerate if for every h, 8(h) is a
degenerate inference.

ProPOSITION 1. If § is a degenerate BUR rule, then it is robust for #*
for any open forum.

The intuition is simple. Fix any conflicting preferences >> and any state
s. Suppose that there is an equilibrium * in the induced game such that the
receiver does not infer s. Because ¢ is degenerate, it must be some single
state " that is inferred instead. By conflicting preferences, some sender i
strictly prefers the true inference of s. Furthermore, because the inference
rule i1s a BUR rule, this sender i could, at his turn, disprove whatever claim
is then on the table (not necessarily s') and claim s. Since the truth cannot
be refuted, s would be inferred, making i strictly better off. This, however,
contradicts o* being an equilibrium. Thus, no equilibrium in the induced
game leads to a false inference. However, the induced game, being a finite
game of perfect information, does have a pure strategy equilibrium.’* Since
the receiver must infer correctly in every such equilibrium, the inference
rule is robust.

How much provability is needed for a BUR rule to exist? As noted
above, they do not exist in games in which nothing is provable. At the
other extreme, they exist trivially if everything is provable—in which case,
for each s there 1s a message which explicity disproves every other state and
so can play the role of m, , in a BUR rule. The interesting question then
is just how little provability is needed.

31t is precisely this step which fails when trying to derive an analogous result for
simultaneous message-sending games since games with simultaneous moves may, of course,
not have a pure strategy equilibrium.
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We begin by first defining complete provability. Strictly speaking, this
could mean that literally every true statement is provable. That is, for every
set $< S, there is a message mg¢ such that F(m¢) =S However, we will
define complete provability as a weaker property; namely that for every
se S, there is a message m, which proves s—that is, F{m,)={s}. We use
this weaker definition because it is the key to the separation proofs in
Grossman [9] and Milgrom [ 13]. Complete provability, as defined here,
is shown below to consist of two components. First, it requires two-way
disprovability—that is,

s#S = M(s) € M(s).

This means that, whenever s is true, a message m e M(s)\M(s') is available
disproving s’ and vice versa. Thus two-way disprovability is a natural
generalization of the not messages considered in Example 1. When relaxing
this condition, we will generally wish to maintain a weaker condition called
one~-way disprovability:

s#£ 5 = M(s)# M(s').

One-way disprovability means either that in state s there is a message
which disproves state s’ or vice versa (or both). Second, complete
provability requires that a single summary message is available in state s
which proves by itself what all messages in M(s) prove jointly. We call this
summary message the full report for state s. Formally, the full reports
condition says that for every s, there 1s a message m* such that

Fm*y= () Fm).

me Mis)

A full report m* need not prove s since if M(s) < M(s'), then & is also in
Flm¥*).

Clearly, two-way disprovability and the full reports condition are each
quite strong. As in the piano player example in the Introduction, there are
many situations where it is not possible to prove some fact which is true.
As a more economic example, it may be difficult for an agent to prove that
he has no private information of use to the receiver, as in Shin [18]. In
such situations, two-way disprovability does not hold. If complete proof
requires more time or space than is available, then the full reports condi-
tion does not hold. Candidate debates are a natural example. Previous
models of partial provability relax one but not both of these assumptions
in very specific ways. Thus the “any-k-signals” structure of Fishman and
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Hagerty [6] and Milgrom [13]'* satisfies two-way disprovability but not
the full reports condition. The “not-less-than” message structure of Okuno—
Fujiwara et al. [16]'"® satisfies the full reports condition and one-way dis-
provability but not two-way disprovability, as does the message structure
studied by Shin [18].'°

We now show that a much weaker condition than either two-way dis-
provability or full reports plus one-way disprovability is sufficient for
existence of a BUR rule. To state it, we first define a set S*(s)={s"#y|
M(s')<= M(s)} which we use to define

T(s) =M(S)\[ U M(S')} .

ste S

DEerFINITION.  The message sets satisfy refurability if for every s" and every
s¢ S*(s'), we have T(s) & M(s).

To understand refutability, recall that the rich language condition allows
us to interpret messages as including a cheap-talk (i.e., “proof-less”) claim
of a state. However, the interpretation of messages is part of the receiver’s
inference rule, so he is free to choose how he associates claims with
messages. Hence he need not interpret every message in M(s) as a claim of
s, but rather only those which meet some burden of proof in that they
explicitly rule out (i.e., disprove) certain “problem states.”

For a BUR rule, the problematic states for a claim s are those in the
set S*(s). To see why, note that a claim of s 1s irrefutable at s' if M(s') <
M(s)—that is, it is impossible to disprove s when s is true. 7{(s), then, is
the set of messages which are feasible in state s and which disprove all of
the problem states s € S*(s). In light of the preceding discussion, such
messages can be seen as frustworthy ways to claim state s in the sense that
the receiver knows that such a claim either is true or can be disproved.
Refutability then simply guarantees that a message me T{s)\M(s') is
available to claim the true state s in a trustworthy way while simultaneously
refuting any outstanding claim ', as long as s’ is refutable at s.

Figure 1 gives a simple example in which refutability holds, but neither
two-way disprovability (since M(s,)< M(s,)) nor full reports (since

"In an example, Milgrom [13] assumes that the sender observes N signals. The set of
feasible messages is the set of truthful disclosures of at most & of these signals. In Fishman and
Hagerty [6], each signal takes on one of two values, “high™ or “low.” and k = 1.

" They assume that a sender observes a signal from a finite, ordered set. The set of
messages is the set of truthful lower bounds for the signal.

16 Shin [ 18] assumes that the sender observes some randomly chosen set of signals. He can
prove what values the observed signals took on, but cannot prove which signals were not
observed.
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FiG. 1. Refutability without two-way disprovability or full reports.

sending all messages in M(s,) proves s,, but no one message does) holds.
More generally, the message properties introduced thus far are related by

PROPOSITION 2. Complete provability holds iff two-way disprovability and
the full reports condition hold. Two-way disprovability implies refutability.
One-way disprovability and the full reports condition imply refurabiliry.

Our next result confirms that refutablity does indeed ensure enough
provability for BUR rules to exist.

PrROPOSITION 3. A degenerate BUR rule exists if the message sets satisfy
refutability.

Intuitively, suppose that the first sender puts a state s on the table using
a message in 7(s). His claim then stays on the table until refuted by some
subsequent sender using a message m e T(s")\M(s) to make a new trust-
worthy claim s'. The game then continues in this fashion with whatever
claim 1s left on the table after the last speaker’s turn being the receiver’s
final inference. Refutability guarantees that senders can always replace any
false trustworthy claim on the table at their turn with a trustworthy claim
of the true state and know that their claim cannot itself be subsequently
replaced by yet another claim.

Summarizing then, refutability is sufficient for the existence of a degenerate
BUR rule and hence for robust inference for #* (or for any subset like 2 )
in an open forum. In equilibrium, the receiver is able to make an inference
of s and be confident that it is true—even though typically he will not have
seen conclusive proof to this effect (i.e., F(/)# {s}). He can do this because
refutability allows him to establish trustworthiness as a burden of proof for
making claims. This in turn guarantees that if his inference were to be
incorrect, each sender would be able to correct him. Finally, conflicting
preferences guarantees that at least one sender has an incentive to do so.

ExaMpLE 2. Trials provide a particularly nice illustration of our model.
In Fig. 2, the accused is guilty in state s, (in which he was videotaped
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Fis. 2. Message space for Example 2.

leaving the scene of the crime) and innocent in states s, (in which he was
far away walking alone in the woods) and s; (in which he was also video-
taped, but a passerby saw someone else commit the crime).!” Full reports
are usually possible at trials (since each side is free to submit any and all
material evidence they wish), but two-way disprovability may fail, as in this
example. In this case, m, is simply proof-less testimony from the accused
that he was “alone in the woods.” Message m, is the videotape while m1, is
the videotape together with testimony from the passerby. Suppose the
prosecutor speaks first and then the defense. Then there is a BUR rule
which has a natural interpretation as “innocent until proven guilty beyond
a reasonable doubt.” If the prosecutor’s case consists only of the message
m,, he has proven nothing. Under this rule, the inference is innocence,
which can be interpreted as “innocent until proven guilty.” If the
prosecutor’s case consists of m,, then the BUR rule requires a verdict of
guilt unless the defense presents m,. Note that m, does not prove guilt, only
guilt “beyond a reasonable doubt” in the sense that if the accused is inno-
cent, he can establish this. The jury relies on conflicting preferences (given
our adversarial system of justice) to provide the defense attorney with the
proper incentives to bring forward any extenuating evidence needed to
refute a false charge.

1V. NECESSARY AND SUFFICIENT CONDITIONS FOR RoBuST
INFERENCE IN SEQUENTIAL GAMES

In this section, we generalize the results in the previous section in two
ways. First, we provide necessary conditions to clarify the role of the
various assumptions made there. Second, we consider sequential games

'7 While symmetric information is not implausible in criminal cases {where concerns about
abuse of prosecutorial power are an important part of the U.S. legal tradition), it is even more
descriptive of civil cases in which both parties usually know precisely what transpired between
them.
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in general, rather than just the open forum. Our first result is perhaps
unsurprising.

ProPOSITION 4. [In any sequential game (K, £}, one-way disprovability is
necessary for the existence of a robust inference rule for any class of
preferences @ containing at least one state independent preference profile
and, in particular, for #*.

Perhaps more surprising is that one-way disprovability is not necessary
for separation per se. As a trivial example, suppose one sender is indifferent
over all possible inferences by the receiver. Clearly, there is an equilibrium
in which he tells the truth regardless of whether one-way disprovability
holds. However, holding the receiver’s inference rule fixed, this sender in
general has many best replies. If some lead to incorrect inferences, then the
inference rule is not robust. Later, we will also show that if the game itself
is a choice variable, then one-way disprovability alone is sufficient for the
existence of a game with a robust inference rule for #*.

Our next result is a characterization of robust inference rules for
sequential games. This result is the key to much of our analysis.

DEFINITION.  J s forceable in (K, .#) if for every sender i, every state s,
and every o'_,€X”’_,, there exists a}e X7 such that d(hg(c}, 0% ))=3s.

~i?

In other words, a forceable inference rule is one which allows any sender
to “force” the inference to be correct given any strategies by the other
senders.

PROPOSITION 5. & is a robust inference rule for 2 F for a sequential game
(K, F) only if it is forceable. Furthermore, if a forceable S exists for (K, .#),
then a forceable, degenerate & exists. Any forceable, degenerate 6 is a robust
inference rule for #* for (K, .#).

The intuition for sufficiency is much the same as in Proposition 1.
Consider any forceable, degenerate & together with conflicting preferences.
Fix any equilibrium of the induced game in any state s. If the inference is
not s, it must be some other degenerate inference s'. But then conflicting
preferences guarantees that some sender ¢ prefers that the receiver infer s.
Because J is forceable, there must be an alternative strategy for this sender
which makes the inference s. Hence the original strategies could not have
been an equilibrium. Thus a forceable, degenerate rule must be robust
for #*,

To see why forceability is necessary, suppose it does not hold. Intuitively,
the other senders may then be able to “gang up” on sender i and prevent
him from making s the inference even when s is the true state. Furthermore,
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there are preference profiles in #} such that they would do so. Hence an
inference rule which is not forceable cannot be robust for #* or #* One
particular way in which this could occur would be if some senders can be
prevented from speaking altogether. Thus, the only games which permit
robust inference are those which are balanced in the sense of:

DEFINITION. A sequential game (K, #) is balanced if for every s, every
he[ M(s)]¥ such that F{/) is not a singleton, and every sender i, there is
a subhistory /' of & such that #(h'}=1i.

That 1s, a game is balanced if every sender gets at least one chance to
speak, regardless of what messages the other senders use.

COROLLARY L. If a robust inference rule exists for #F for (K, #), then
(K, .¥) is balanced.

Balanced games are a natural generalization of the open forums studied
in Section IIl. There is also, as one might imagine, a close connection
between forceable inference rules and BUR rules. In the special case of an
open forum, these notions are equivalent.

PROPOSITION 6. If d is a forceable inference rule for an open forum, then
it is a BUR rule. If & is u BUR rule, then it is forceable for any balanced
sequential game.

Hence Propositions 5 and 6 provide the following restatement of
Proposition 1 along with a partial converse:

CoroLLARY 2. If § is a degenerate BUR rule, then it is a robust
inference rule for 2* for any open forum. If & is a robust inference rule for
P* for an open forum, then it must be a BUR rule.

Note that Corollary 2 is a partial converse because it only establishes
that a robust inference rule for an open forum must be a BUR rule, not
that it must be degenerate.

A forceable rule is not necessarily a BUR rule in balanced sequential
games other than open forums for two reasons. First, in a balanced game
a sender might send several messages without “yielding the floor.” Second,
a sender may get nonconsecutive chances to speak. For example, after
initially claiming a state he may later be asked to “back up” his claim
if subsequently challenged by another sender. In such a game, robust
inference may well involve disbelieving the initial claim—even if it is never
explicitly refuted—if later the sender does not provide this back-up
evidence.
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Although refutability ensures existence of a degenerate BUR rule, it can
be relaxed to a condition which—if less straightforward to check—is both
necessary and sufficient for such a rule to exist. To present this condition
we use the following construction. For any s and any h with se F(h), let
7,{s | k) = M(s) and then recursively define!®

tds | hy={meM(s)|3s'e Flh-m), s #s, witht, _ (s | h - m) EM(S)}.

Recalling that F(h,) =S, we define t*(s)=14(s ]| hy).

DefiNiTION.  The message technology satisfies weak refutability in a
game (K, #) if t*(s)# ¢ for all s.

Figure 3 gives an example in which refutability does not hold (since
T(s;)={m;} = M(s,)), but weak refutability does (ie., t*(s;)={m;},
T*(s,) = {my, m,} and t*(s;)={m,, m,} for K=3).

PROPOSITION 7. A degenerate BUR rule exists iff the message technology
satisfies weak refutability.

Intuitively, 7.(s| /) describes the minimum amount of provability
needed with a degenerate BUR rule to ensure that the & th speaker from the
end can make a trustworthy claim of state s after a history 4.'° That is,
using a message in 7,(s | #)\M(s'), he can simultaneously refute whatever
claim s’ is on the table and replace it with s. To see why, note that the last
sender to speak cannot “block” later challenges since there are none.
Hence, aside from requiring him to refute the claim on the table in making
a new claim, there is no need to restrict him to trustworthy claims or to
satisfy any other burden of proof. Hence 7,(s | #) = M(s). At earlier stages,
however, we must prevent senders from making claims in ways which block
later feasible challenges. That is, 7,(s | #) includes only those messages m
which rule out enough other states so that if any of the remaining states in
F(h - m) were true, the next speaker could disprove the claim of s and claim
the true state s’ using a message in 7, ,(s' | h-m)\M(s). This is precisely
what the recursive definition of 7.(s[#) requires. In short, for a BUR
rule to exist, we must be able to constrain senders in this fashion and so
need the t*(s) sets to be nonempty for all s. As we show in the Proof of
Proposition 7, it then follows that all the 7, sets are also nonempty.

It is not hard to show that if K =2, then 7*(s) = T(s). Hence we have the
following corollary:

" We thank Debra Holt for suggesting a recursive approach to obtaining a neccssary
condition.

' This intuition suggests that z,(s | &) is only relevant for histories with k stages left to go.
1t is more convenient. however, to define r.(s | h) for every s and & such that se F(h).
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M(s,)

M(s,)

FiG. 3. Weak refutability without refutability.

COROLLARY 3. [If K=n=2 and T(s)# J for all s, then there is a robust
inference rule for #* for any balanced sequential game.

We conclude by relating weak refutability to refutability. As the names
suggest, the latter is stronger. Each condition enables us to meet a certain
burden of proof which is sufficient to generate robust inference. The two
burdens differ in two ways. First, the burden of proof that refutability
allows—that is, requiring claims to be trustworthy—may require a sender
to rule out certain states even though they have already been disproved by
the messages of previous senders. The burden of proof associated with
weak refutability avoids such redundancies. In this regard, the burden
associated with refutability is stricter. Second, though, the burden asso-
ciated with weak refutability may require a sender to rule out a state in
order to “help out” a later sender---that is, to enable a later sender to
satisfy his burden of proof.?’ However, when refutability holds, this “help”
is never needed. Thus whenever the burden of proof associated with
refutability can be satisfied, the burden of proof associated with weak
refutability can also be satisfied. That is:

ProrosITION 8.  Refutability implies weak refutability.

V. COMMENTS AND EXTENSIONS

1. Optimal Mechanisms

Proposition 4 shows that one-way disprovability is necessary for any
sequential game to have a robust inference rule for #*. More surprisingly,

" For example. this might involve requiring a sender who claims s to rule out s' even
though M(s') ¢ M(s) because otherwise a later challenge to s” would be blocked because
M(s'ye M(s") and M{s")\M(s'} = M(s).
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it is also true that given any message structure satisfying one-way dis-
provablity, there is always some game (K, .#) for which a robust inference
rule for 2* exists. Thus if the game itself is a choice variable (as may be
true for congressional hearings, trials, etc.) and if conflicting preferences
and one-way disprovability hold, a decision maker can ensure robust
inference.

We can also give an upper bound on the number of stages needed for
robust inference. Let

Z =max #{s #s| M(s') S M(s)}.

PrROPOSITION 9. [If one-way disprovability holds, there is a sequential
game with n(.¥£ + 1) stages for which a robust inference rule for #* exists.

To see the intuition, consider the following game. First, sender 1 is
allowed to send any % 4 | messages, then sender 2 sends ¥ + I, etc., for
a total of n(.Z + 1) stages. We again interpret the receiver’s inference rule
as if each sender attaches a cheap-talk claim of a state with his set of
messages. We extend the notion of trustworthiness to collections of
messages by saying that a claim of s is weakly trustworthy if the & + 1
messages accompanying it rule out every s" with M(s") < M(s). Thus, if a
false weakly trustworthy claim is on the table, it can clearly be refuted and
the true state claimed in a weakly trustworthy fashion using no more than
# + 1 messages. Finally, it is easy to show that this inference rule is
forceable and degenerate, so that it must be robust for 2*.

In essence, this construction involves satisfying refutability with vectors
of messages, rather than single messages. Although these vectors may be
long, we are not, however, creating a “back door” form of complete
provabilty. Indeed, such a vector may well prove less than a full report
would prove, since it only disproves “subset™ states as well as any false
claim on the table.

It 1s not difficult to derive tighter bounds on the number of stages. For
example, the last sender does not really need to make his claim in a weakly
trustworthy way since there are no later claims that he might block. Hence
we can reduce the number of stages to (n— I)}(% + 1) + 1. Also, it may not
always require the full ¥ + 1 messages to refute an existing claim and make
a new one in a weakly trustworthy way.

Nonetheless, the number of stages in this approach can still be quite
large. Realistically, one of the most important restrictions on provability is
precisely constraints on time—the receiver simply cannot listen to messages
for a long period of time. Hence results with a relatively small number of
stages seem to us more important. In particular, recall that Corollary 1
states that a robust inference rule exists for #* only if the game is

642:66.2-6
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balanced. Since balancedness requires that each sender have a turn to
speak, the number of rounds of message-sending K must at least equal the
number of senders, n. Thus, our results on open forums, where K=n, can
be seen as sufficient conditions for robust inference with the minimum
possible number of stages to the game.

2. Robust Inference with More Information about Preferences

To this point, all the receiver knows about the senders’ preferences is
that they satisfy conflicting preferences. If more is known, weak refutability
may no longer be necessary for robust inference in an open forum. For
example, suppose that he also knows that the first sender’s preferences
satisfy an ordered subset condition

M(syc M(s'y=>s5>, .8

[t is not hard to show that for any message sets, such a preference order
exists. With this additional knowledge, one-way disprovability becomes the
only necessary and sufficient condition on provability for robust inference.
Put differently, if the receiver has this additional information, robust
inference is possible with only » stages if and only if one-way disprovability
is satisfied.

ProposiTiON 10. Let 2%y be any set of preference profiles satisfying
ordered subsets for sender 1 and conflicting preferences. If one-way dis-
provability holds, then a robust inference rule exists for #Eg for any balanced
sequential game in which sender | speaks first.

Consider an inference rule ¢ which lets sender 1 use any message in M(s)
to claim state s. Messages in M(s) from subsequent senders are interpreted
as confirming the current claim s while messages in M(s')\M(s) replace the
current claim s with a new claim ¢'. Thus the only burden of proof for
claims is feasibility. Whatever claim is on the table at the end of play is the
receiver’s inference. To see that this inference rule is robust for these
preferences, fix any true state s and a profile >> from #¥g and suppose
there is an equilibrium in the induced game in which s’ #s is the receiver’s
final inference. There are only two possibilities. First, we could have
M(s)c M(s"). However, by the ordered subset condition, sender 1 would
have been strictly better off claiming the truth which would make s the
final inference. Alternatively, we could have M(s) ¢ M(s"). However, then
by conflicting preferences, there is some sender i for whom s>, , s". If this
is sender 1, then he again should have claimed s instead. If i is not sender
1, then at i’s turn to speak, he would want to refute the current claim on
the table, say s”, and replace it with s. For this not to have happened,
challenges to s” must be blocked in the sense that M(s)< M(s"). In this
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case, s” is also the final inference (that is, " = ') since no challenges to s”
are possible. However, this contradicts our assumption that M(s) & M(s').
Thus the receiver always infers correctly. More colloquially, with this
inference rule the only lies by | which the other senders cannot refute are
lies sender 1 would not want to tell.

3. Robust Inference without Conflicting Preferences

Robust inference with respect to all possible preference profiles is
unachievable except under very stringent conditions. For example, if
M(s)= M(s') and all senders have s as their favorite inference in every
state, then there is no separating equilibrium. To see this, suppose there
were and let 4 be a history for which d(h)=s. Since M(s)< M(s"), the
history & must also be feasible in state s". It is not hard to see then that
the only equilibrium outcome in the induced game in state s” has s as the
inference.

Conlflicting preferences are not, however, necessary for robust inference.
If the set of preference profiles # does not satisfy conflicting preferences but
is sufficiently small, then robust inference with respect to # is still possible.
On the other hand, it may require strong conditions. To illustrate this, we
consider the polar opposite case to conflicting preferences—the case where
all senders have identical preferences. To simplify further, we restrict atten-
tion to state independent preferences.”!

DeriNiTION.  The message sets satisfy ordered provability if we can
number the states so that

[M(s)1"\NU [M(s)]"# D, I=1,2,..,L

k>t

In other words, message sets satisfy ordered provability if we can number
the states so that there is an n vector of messages feasible in state s, which
proves that s, is the true state, an » vector of messages feasible in 5, which
proves that either s, or s, is the true state, etc. Clearly, this is a very special
structure. While it holds if provability is complete, it is not implied by
either two-way disprovability or the full reports condition alone. Hence the
following proposition indicates that robust inference is unlikely to be
possible when all senders have identical preferences.

ProeposiTION 11, Suppose 3> € # has the property that =, .=z, . for
all i, j, s, and s'. Then a robust inference rule for 2 for an open forum exists

> When all senders have the same preferences, we are effectively in the one-sender case. The
structure of separating equilibria with state dependent preferences in the one-sender case and
no provability is already well understood, so our focus is to emphasize what is unusual here.
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only if (a) the message sets satisfy ordered provability and (b) given the num-
bering of the states for which ordered provability holds, the profile =
satisfies s, >, .5, for all k > 1. If this condition holds, if s' +, ,s" for all i, §',
and 5" (with s’ #5"), and if # = { =}, then a robust inference rule does exist.

In short, robust inference with identical state independent preferences is
possible, but only under strong conditions on the message sets and only for
relatively special sets of preferences.

VI. CoNCLUSION

This article has investigated the ability of an uninformed decision maker
to elicit private information from self-interested parties. We find that with
more than one speaker, conflicting preferences can lead to the revelation
of a surprising amount of information—even with only very limited
provability and with lhttle information on the part of the decision maker
about the speakers’ preferences or strategies. Since even minimal amounts
of provability may radically affect predicted outcomes, it is important to
take account of communication with partial provability in models of
economic and other decision making.

In many real-world settings, speakers may be asymmetrically informed.
Our modeling choice of symmetric information is based on the view that
the informational asymmetries between speakers and decision makers are
typically more substantial than those among the speakers themselves (e.g.,
consider competing car salesmen vs car buyers, hitigants in a law suit vs the
judgefury, rival management teams vs small shareholders). While the more
general model with asymmetrically informed senders is an interesting topic
for future research, the symmetrically informed sender model is likely, in
our opinion, to capture much of what is important in many practical
applications.

Our analysis does generalize to certain special cases of asymmetric infor-
mation. In particular, our results have straightforward analogues in the
case where (a) the senders’ preferences are state independent and (b) the
senders’ message sets are the same. The latter assumption says that some
senders may have more information but do not have more ability to
provide proof. The case of asymmetric access to proof, with or without
asymmetric information, is another intriguing area for further research.

APPENDIX

Proof of Proposition 1. Implied by Propositions S and 6. |
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Proof of Proposition 2. First, we show that complete provability holds
only if two-way disprovability and the full reports condition hold. Given
complete provability, for each s there is a message m, e M(s) such that
F(m,)={s}. Thus for any s and s, s #s', we have m ¢ M(s'), so M(s) &
M(s') and hence two-way disprovability holds. Full reports also holds
since

Fim)={s}= () Fm).

nre M(s)

To show the converse, suppose two-way disprovability and the full
reports condition hold. Fix any s and let m* be the full report for state s.
Could we then have s' € F(m*) for any state s’ # s? If there is any m' € M(s)
such that m' ¢ M(s’), then

s'¢ () Fm),

me M(s)

so s ¢ F(m¥*). But by two-way disprovability, M(s) & M(s’), so such a
message m’ must exist. Hence s’ ¢ F(m*), so F(m*) = {s}. Hence complete
provability holds.

Next, we show that two-way disprovability implies refutability. Clearly,
two-way disprovability implies that 7(s)= M(s) for all 5. Hence T(s)<
M(s') iff M(s)= M(s"), precisely what two-way disprovability rules out.
Hence two-way disprovability implies refutability.

Last, suppose that one-way disprovability and full reports hold. Fix two
states, s and s', such that M(s) ¢ M(s"). Let m* be the full report for state s.
Clearly, if T(s)= M(s), then T(s) & M(s"). So suppose 7T(s)# M(s)—that
is, there is some s” such that M(s") € M(s). Since one-way disprovability
implies that the inclusion is strict, there is a message m € M(s)\M(s"). Since
the full report must have at least as much information content as m, it must
be true that m* ¢ M(s"). Since this holds for any s” with M(s") < M(s), we
must have m* e T(s). Also, since M(s) ¢ M(s'), there must be a message
m' e M(s)\M(s’). Again, m* must prove at least as much as »7, so that
m* ¢ M(s"). Hence T(s) € M(s"). Hence refutability holds. ||

Proof of Proposition 3. Implied by Propositions 7 and 8. [

Proof of Proposition 4.  Suppose one-way disprovability fails. Specifically,
suppose §, #5, but M(s,)= M(s,). Fix any state-independent preference
profile and any sequential game. Clearly, if there is no separating equi-
librium, there is no robust inference rule. So suppose (o, d) is a separating
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equilibrium. Consider the strategies 4, then, where &} =o¢7 for every s #s,
and 4*=0?. Since M(s,)= M(s,), these strategies are feasible. Further-
more, by definition, (1) holds for every 7 for ¢ which implies that the same
is true of 6. Clearly, though, d(h(6"))=d(hg{o"))=s,. Hence § is not a

robust inference rule for this game and preference profile. ||

Proof of Proposition 5. First, suppose ¢ is a robust inference rule for
2} for sequential game (K, .#), but is not forceable. Then there is a state
s, sender 7, and 67 ,eX”_; such that there is no strategy o)eZ? with
d(hglo}, é6°_))=s. Fix a preference profile =€ 2} such that all senders
other than / have identical preferences with s being the best inference for sender
i and the worst for the other senders. Clearly, many such profiles exist. Fix an
equilibrium in the induced game at state s, say, (&5, 6°_,). Since & is robust, we

must have d(hg(ai, 6°_,)) =s. However, the facts that all senders other than i

have identical preferences and that the induced game is a finite game of perfect
information imply (by backward induction) that any equilibrium of the
induced game must also be an equilibrium when all senders other than ; are
joined together into one player. But these other senders can deviate to 6°_; and
guarantee a better inference for themselves than s as / has no strategy against
&*_, which leads to an inference of s. This contradicts the assumption that ¢* is
an equilibrium of the induced game at state 5. Hence & must be forceable for it
to be robust for 2} and thus for 2*.

Clearly, if a forceable ¢ exists, then we can construct a forceable, degenerate
6 simply by changing & on any history ~ such that 4(k) is nondegenerate
to any feasible degenerate inference. This change will not interfere with
forceability, since forceability only refers to the parts of é which specify
degenerate inferences. We complete the proof by showing that any
forceable, degenerate J is a robust inference rule for 22*.

Fix any such ¢ and any preference profile = e #*. Suppose there is an
equilibrium in the induced game at state s, say ¢* with d(hx(G")) # s. Since
d is degenerate d(Ax(6°)) =+ for some state s'. By conflicting preferences,
s>, 8 for some sender i. But since & is forceable, i has an alternative
strategy, say 67 e X" such that §(hn(d,, 6°_,)) =5 which is strictly better for
him. This contradicts the assumption that ¢° was an equilibrium in the
induced game at state 5. Hence there is no equilibrium in the induced game
at s in which the receiver’s inference differs from s. Since the induced game
is a finite game of perfect information, there must be a pure strategy equi-
librium. Since every such equilibrium has the receiver inferring s, we see
that ¢ is robust for 2*. ||

Proof of Corollary 1. Suppose not. Then there is a sender / and a
feasible history 4 e Hy such that F(h) is not a singleton and #(4')#i for
every subhistory A’ of h. Let s and s’ be distinct states in F(h). Suppose
is robust for 2} for (K, .#). Then by Proposition 5, ¢ is forceable. Let o°_,

i
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be any vector of strategies for the senders other than i which is feasible in
both s and s’ and produces the history A. Since both s and s’ are in F(h),
such a strategy must exist. By forceability, there must be strategies o and
g3 such that d(hg(of, ¢°_,)) =5 and d(hg(63, 6°_)) =s'. But since sender i is
never able to send a message when the other senders use ¢°_,, we must have
hilo], 6°_,) =hgl(63, 6°_,), a contradiction, |}

Proof of Proposition 6. The condition that é be a BUR rule is nothing
more than the translation of forceability for an open forum, implying the
first statement. As to the second, suppose J is a BUR rule. In any balanced
sequential game, either the sequence of messages proves what the state is
or every sender has at least one turn to send a message. The fact that J is
a BUR rule implies that each sender can, at his turn, force the inference to
be s if all other senders are restricted to strategies which are feasible in
state s. This is precisely what forceability requires. |}

The proof of Proposition 7 uses the following lemma.

LEMMA 1. For any h and h' with F(hy<s F(h'), for all k, and for all
se Flh), t.(s| )<t (s|h). Also, for all k, h, and se Flh), 7, . (s|h) S
(s | h).

Proof of Lemma 1. Both statements are proved by induction. To show
the first statement, note that 7,(s | k) =1,(s | A’) = M(s), so the statement
holds trivially for k= 1. So suppose we have demonstrated that the state-
ment holds for k <j. We now show that it holds for k=j. So suppose
met(s|h'). Then for all s"e F(#'), s'#5s, we have 7, ,(s'| h') & M(s).
But F(h)yc F(k') and, by the induction hypothesis, 7, ,(s'|h')<
7,_,(s" | h). Hence for every s’ € F(h), s #5s, we have 7;,_(s" | h) & M(s), so
met;(s|h). Hence t,(s|h')S1,(s| h).

To show the second statement, note that (s | h) € M(s) =1,(s | h), s0
that the statement holds trivially for k = 1. Suppose we have shown that
the statement holds for k < j. We now show that it holds for k& = j. Suppose
met;, (s|h). Then for all s'e Flh-m), s’ #s, 1,(s' | h-m) & M(s). By
the induction hypothesis, though, z,(s'|h-m)<=<t; ((s'|h-m). Hence
for all s'eF(h-m), s'#s, 1,_,(s'|h-m)Z M(s). Hence met,(s|h), so
Lals|het(sih). |

Proof of Proposition 7. First, suppose a BUR rule exists. Fix any
feasible history /&, up to the last message to be sent—that is, with K—1
messages. Suppose F(%,) is not a singleton. Then by the definition of BUR,

Vse F(hy), 3Im, , € M(s) such that é(h,-m, ,)=s. (A1)

Note also that this property holds trivially if F(4,) is a singleton.
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Now consider any feasible history A, up to the next to last round—that
1s, a history with K —2 messages. Suppose F{(h,)} is not a singleton. By
definition of BUR,

Vse Flhy), 3Im,,,e M(s) suchthat 6(h, -m,,,-m)=s5VmeM(s).
(A2)

As before, if F(h,) is a singleton, this property holds trivially.

We claim that for every h, with K—2 messages and every se F(h,),
m, ., €T,5(5 | h,). To see this, first, suppose F(4,) is a singleton. Then there
are no s #s with s € F(h, -m) for any m. Hence t,(s | h,) = M(s). Hence
the requirement follows trivially from (A2). So suppose F(h,) is not a
singleton. Suppose m ,, #7,(s | h,). By definition, then, there is a state
s' € F{h,) such that m, ,, e M(s'yc M(s). Let ki =h,-m_, . Since M(s') <
M(s), we must have m, , € M(s). But by (Al), 8(hy-m, ,,-mg ) =5,
while (A2) implies that 6(h,-m, ,-m ) =s, a contradiction.

Given this, BUR requires that for every h, with K —2 messages and
every s€ F(h,), 7,(s | h,) must be nonempty. Otherwise, it is impossible to
find m_,, satisfying (A2) and allowing (A1) to be satisfied.

From here, the rest of the necessity proof is by induction. Fix any
feasible history /4; with exactly K —j messages, so there are j rounds left
counting this turn. By BUR,

Vse F(h), 3m,, e Mls,) suchthat é(h;-m,, -h')y=s, VI withseF(h')
(A))

Suppose that we have shown for j<k—1 that for every feasible A, with
K —j messages, each m, , satisfying (Aj) must be an element of 7,(s | A)).
{This is what we have shown for £ =2.) We now show that the same must
hold for j=k.

Suppose that for some history A, with K —k messages, there is a state
se F(h;) such that the m,_, satisfying Eq.(Ak) is not an element of
(s | hy). Let Ay, _y=h, m,, . By definition of 7,, then, there must be
some §' s such that s'eF(h;_,) and 7,_,(s'|h;_,) = M(s). Hence
m,. ;. € M(s) (using the induction hypothesis). But then fix any 4" feasible
in both M(s) and M(s"). (Since m, .  is feasible in both states, such a
history must exist.) By Eq.(Ak), do(h,-m,, -h")=s, but Eq. (Ak—1)
implies that é(h, _,-h")=1y", a contradiction.

Hence for every k, every A, with K —k messages, and every s € F(h,), the
message m, , of Eq. (Ak) must be an element of 7, (s | 4,). Hence for every
k and every such h, and s, we must have z,(s | A,) +# . Since this also
applies for k=K, we must have 1.(s| hy)—that is, r*(s)—nonempty for
every s. Hence weak refutability must hold.
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To complete the proof, suppose t*(s) # J for all s. First, note that the
second statement in Lemma 1 implies that (s | hy) S 7,(s | hy) for all &
and all s. Hence, using the first statement of Lemma 1, t.(s]|h,) <
1.(s | hy) S 1,(s | h), for all k, all A, and all s F(h). Hence t*(s) # & for all
s implies that t,(s | h)# & for all k, all A, and all se F(h).

Next, suppose that met,(s | #) and m' has the same pure information
content as m—ie., F(m)=Fm'). By definition, for all s' € F(h-m), we
have 7, _ (s | h-m) & M(s). But since F{m)= F(m'), we have F(h-m)=
F(h-m'"). By the first statement of Lemma 1, we also have 7, (s’ | h-m)=
T, (8" | h-m"). Hence m' € 7,(s | h).

We next claim that our rich language condition, # {m'|F(m')=
F(m)} = # F(m), implies that:

LEMMA 2. For any feasible h with K —k messages, there exists a set of
messages {m_ , | s€ F(h)} such that

m, et {s|h), VseF(h)and m_,#m, , whenever s #s'. (3)

Furthermore, for any feasible h with K —k messages and any s' such that
(s | h) & M(s') for all se F(th)\{s'}, there is a set of messages {m, , |
se Flh)\{s'}} such that

m, et (s | D\M(s"), Vse F(h\{s'} and

my , #m, , whenever s #s'. (4)

Proof of Lemima 2. We demonstrate both statements by the following
algorithm.

Step 1. Fix any s, € F(h) (or F(h)\{s'} for the second statement). Since
(s, | h) is nonempty {(and, for the second statement z,.(s, | A)\M(s') #
by assumption), we can choose any message from 1.(s, | #) (or 7,(s; | A)\
M(s’)) and call it m, ,,.

Step 2. Let S, denote the set of se F(h), s#s, (and s#s for the
second statement), such that m, ,et,{(s|h). Clearly, if m, ,et.(s]|h), we
must have m,, , € M(s). Hence by our rich language condition, there must
be at least # S, different messages with the same pure information content
as m,, ,. By the above argument, these messages must all be elements of
7.(s | k) (and, for the second statement, not in M(s")) for each se$,.
Furthermore, none of them can be elements of 7,(s| /) for s¢ S, since
m,, , is not an element of any of these sets. Hence we can choose distinct
messages from each of the 7,(s | #) (or 7,(s | A)\M(s')) sets for ses,.
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Step 3. Let s, denote any se F(h)\S, which is different from s, (and,
for the second part, different from s'). We can proceed exactly as in
Step 1 to find a message m,, , and as in Step 2 to find messages m, , for
each state s with m,, ,€7,(s|h) (or 1,(s|h)\M(s')). Since none of the
messages used in Steps 1 and 2 are in 7,(s | &) for these states, we cannot
be choosing any message for two different states.

Clearly, we can continue this procedure until we have found messages
m,_, satisfying our requirements for any given £ (and, if appropriate, 5'). |

We use Lemma 2 to recursively construct a BUR rule. First, fix messages
{m,,, | s€S8} satisfying (3). Let H} =¥ and let H; denote the set of
feasible histories with exactly j messages.

To carry the recursion forward, suppose we have defined sets H}X, ..,
HY | with HX* < H, for each j and functions ¢, ..., &, _, where ;: H* — S.
(Since HF =, there is no need to define a function £, since its domain
would be empty.) Suppose also that for each history /# with k — 1 or fewer
messages, we have also defined a set of messages with the following
properties. First, if h¢ H* for any j, then we have a set of messages
{m, , | seF(h)} satisfying (3). If, instead, he H}, then we have a set of
messages {m, , | se FIhW\{,;(h)}} satisfying (4). Given these objects, we
define an appropriate H} and £, and then sets of messages for each feasible
history with A messages if k <K — 1.

For the first part, let

HY={heH | h=h -mwithm=m,,

for some s or W' e Hf | and me M(&, _(h'))}.
Also, define &, HY — S by

5, lf m= ms, i ;
Ep ol otherwise.

Elh-m) = {

Next, fix any he H,. f k=K, we are done. If k< K— 1 and h¢ H}, choose
a set of messages {m, ,|seF(h)} satisfying (3). By Lemma 2, this is
possible.

To complete the argument, consider 1€ H}. We claim that there is no
se F(h)\{&,(h)} such that 1, _ (s | k)= M(&,.(h)). To see this, suppose the
contrary, so s€ F(h)\{&,(h)} but

T {81 h) S M(s")
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where s =, (h). By construction, we can write h=h -m, , -h, where
s'e Flh) and m, , etx_; (5| h,) where j<k is the number of messages
in h,. Because K—j— 1> K—k, Lemma 1 implies that

T s Ste 4 (s|h).
Clearty, F(h)= F(h,-m, ). Hence Lemma 1 also implies that
T ds|hy-me St ; ((s|h)
Hence
Tx_j ol | hy-my ) s M(s).

But this contradicts the definition of 7, ;_,. Hence, as asserted, there is no
se FUM\{s'} with 7,_(s|h)<= M(s'). Hence by Lemma 2, we can find a
set of messages {m, , | se F(h)\{s'}} satisfying (4).

This procedure gives us a set Hy< Hg and a function &4 HE— S.
Define 6 so that d(h)=¢(h) if he HY. The choice of 6 for ¢ HY is
arbitrary. It is easy to see that ¢ is well defined and a BUR rule. |

Proof of Proposition 8. Suppose refutability holds. We show by induc-
tion that this implies that 7(s)< (s} /) for all &, all 5, and all A with
s€ F(h). First, note that this holds trivially for & =1 since t,(s | #)= M(s).
So suppose we have shown that this holds for all &£ < j. We now show that
it holds for k =j. So fix any h and any se F(h). Suppose m € T(s). For any
s #s with M(s’)< M(s), we have s'¢ F(m) and hence s’ ¢ F(h-m). For
any s with M(s') & M(s), refutability implies that 7(s') ¢ M(s). By the
induction hypothesis, for every s'e F(h-m), T(s') <1, ,(s'|h-m). Hence
7, (s | h-m) & M(s), as otherwise we would contradict refutability.
Hence me (s | k), so T{s) S t,(s| k).

We complete the proof by showing that refutability implies that
T(s) # & for all s. Since T(s) < t*(s), this clearly implies weak refutability.
So suppose refutability holds but that for some s, 7(s) = . Clearly, this
mplies that there is at least one s’ # 5 with M(s") < M(s). Hence we cannot
have M(s)< M(s'). Therefore, by refutability, it must be true that
T(s) € M(s'). But if T(s)= (7, this cannot hold, a contradiction. Hence
Tis)# & forall s. |

Proof of Proposition 9. Consider the game where #(h)=i for every
history of length & with (i—1)}(Z + 1)<k <i(Z +1). That is, sender 1
speaks on the first # +1 turns, sender 2 on the next % +1, etc. Let
M*(s)=[M(s)]¥ "', where m* will denote a typical element of M*(s) for
some s. Clearly, this game is equivalent to an open forum where we replace
the original message sets with the M *(s) sets. It is also easy to see that the
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fact that the M(s) sets satisfy one-way disprovability implies that the
M*{s) sets also satisfy this condition. That is, if s#s', then M*(s)#
M*(s'). We now show that the M *(s) sets satisfy refutability. By Proposi-
tions 1 and 3, this will imply the existence of a robust inference rule.

To see this, first note that M*(s) < M*(s") if and only if M(s)< M(s').
Let

*(s) = M*(S)\[ U M*(s’)}

s e S*(y)

where, as before, S*(s)={s" #s | M(s') = M(s)}. Fix any s’. We claim that
for every s ¢ S*(s'), we have t*(s) € M *(s'). Obviously this is true if every
s is in S*(s'). So suppose this is not the case. Let s be any state satisfying
s¢S*(s') (that is, M(s) & M(s')). Let m, denote any me M(s)\M(s'). By
definition, we must have # S*(s) < .. For each s" € $*(s), s” #5’, there is
a message m,- € M(s)\M(s"). Let m* be any vector of % + 1 messages con-
taining m, for each 5" € S§*(s), s" #s', and also containing m,;. Clearly,
regardless of whether s’ € S*(s), we must have m* e r*(s)\M*(s'). Hence
™*s) g M*(s'). 1

Proof of Proposition 10. Fix any balanced sequential game, (K, .#). To
aid with intuition, we will describe the inference rule as though each
message is interpreted as a claim of a particular state, where the claim may
depend on the history to that point. Formally, this is just a step in the
construction of the rule. We take this specification to have the following
properties. Suppose on history A, sender .#(h) sends message m. The claim
s(h, m) associated with message m on this history must be feasible—that
18, s(h,m)e F(h-m). Second, every claim is possible. More precisely, if
s€ F(h-m), then there is a message m' with the same pure information
content as m (ie., F(m)= F(m')) such that s =s(h, m'). The rich language
condition implies that there are enough messages with the same pure
information content for this to be possible.

The receiver’s inference rule is as follows. Fix any s(-) function satisfying
the above and let the vector of messages be m=(m,, ..,my). We can
associate with this sequence of messages a sequence of claims (s, ..., s%)
defined by s' = s(h,, m,), s> =s(m,, m,), etc. If s' € F(m), then the inference
is s'. Otherwise, let k, be the smallest k such that m, ¢ M(s'). If s*' e F(m),
then the inference is s*'. Otherwise, let k, be the smallest ¥ > k, such that
m, ¢ M(s*"), etc.

We claim that for any s, there is no equilibrium in the induced game
given this inference rule and any preference profile in %4 such that the
receiver’s inference differs from s. Suppose, to the contrary, that such an
equilibrium exists. Let the receiver’s inference in this equilibrium be 5" # .



COMMUNICATION GAMES 403

Suppose M(s)c M(s"). By the ordered subset condition on sender 1I’s
preferences, s>, , s'. Clearly, if sender 1 had claimed s, this would be the
inference since it could not be refuted. Hence he would have been better off
claiming s, contradicting the assumption that we have an equilibrium.

Hence, using one-way disprovability, it must be true that M(s) & M(s').
Furthermore, precisely the argument above shows that s’ >, . s. By con-
flicting preferences, there must be some sender 7 such that s >, ; s". Clearly,
we cannot have i = 1. Since the game is balanced, sender i must have a turn
to speak. Let s” be the state on the table at sender i’s turn. (That is, if 4
is the history up to sender i’s turn and s' € F(h), then s” =s'. If not, define
k, as above. If s*'e F(h), then s" =s*' etc.) If M(s) & M(s"), then there
must be some message me M(s)\M(s") which sender i could send which
would guarantee that the final inference is s. Since s>, , ', this deviation
would be strictly better for i, again contradicting the hypothesis that we
have an equilibrium. Hence it must be true that M(s)} < M(s"). But then no
sender following i can refute s” either, so s” must be the final inference.
That is, we must have s =s'. But M(s) € M(s') and M(s)< M(s"), a
contradiction.

Therefore, there is no equilibrium in the induced game for any state s in
which the receiver’s inference differs from s. As before, the induced game
must have a pure strategy equilibrium, so the inference rule is robust. |

Proof of Proposition 11. Fix any preference profile > such that =, (=
7 - forall i j, s, and s'. Let =*= 2=, . A key fact about equilibria of the
induced game with this preference profile and any inference rule is that
equilibria of this game are the same as the equilibria where there is only
one sender and he has preferences >* We will use this fact repeatedly.

Suppose = € # and suppose ¢ is robust for & for the open forum. For
each s, let A(s) denote any sequence of messages feasible in s such that
d(h(s))=s. Since J is robust, such sequences must exist for every s. Suppose
there are states s and s, s#s', such that A(s)e[M(s')]* and s=*s.
Clearly, there is an equilibrium of the induced game at state s’ in which the
history h(s) is generated. But this contradicts the robustness of J.

Without loss of generality, number the states so that s; =% s, >=* ... >=*g,.
By the above reasoning, A(s,) must not be feasible in states s,, ..., s,. But
this says exactly that there is an / in

M(sy\ M(s).
/

=2

Similarly, A(s,) must not be feasible in states s,, .., s,, etc. The implied
condition is precisely ordered provability with the states numbered as
stated in the proposition.
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If ordered provability holds and s, >* s, >* ... >*gs, then it is easy to
show that a robust inference rule for { >} for the open forum exists. For
any history h, let d(h)=s, for the largest k such that

he M(sp)\ ) M(s)).

1>k

If no such & exists, let d(/#) be the worst degenerate inference according to
>=* It is easy to see that in any state s, the best inference (according to
>=*) which can be generated by a feasible 4 is 5. Hence there is an equi-
librium in the induced game in s in which all senders choose the messages
in h. If s =35, , there is no other inference which can be generated, so there
is no other equilibrium outcome. If s+#s,, then every inference different
from s which can be generated is strictly worse than s. Hence there is no
other equilibrium. |
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