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Standard economic intuition would say that private provision of public goods will be 
inefficient due to free-rider problems. This view is in contrast to the results in the literature on 
full implementation where it is shown that (under certain conditions) games exist which only 
have efficient equilibria. The games usually used to demonstrate existence are quite complex and 
seem "unnatural", possibly leading to the perception that implementation requires a central 
authority to choose and impose the game. In a simple public goods setting, we show that a very 
natural game-similar to one often used elsewhere in the literature to model private provision-in 
fact fully implements the core of this economy in undominated perfect equilibria. More specifically, 
we consider a complete information economy with one private good and two possible social 
decisions. Agents voluntarily contribute any non-negative amount of the private good they choose 
and the social decision is to provide the public good iff contributions are sufficient to pay for it. 
The contributions are refunded otherwise. The set of undominated perfect equilibrium outcomes 
of this game is exactly the core of the economy. We give some extensions of this result, discuss 
the role of perfection and alternative equilibrium notions, and discuss the intuition and implications 
of the results. 

I. INTRODUCTION 

The standard economic intuition regarding private provision of public goods has been 
largely verified by a series of recent papers on the subject.' In some of these papers, 
private provision is modeled as direct purchase-agents unilaterally put up streetlights, 
give money to the poor, or otherwise pay for some of the public good. As Bergstrom, 
Blume, and Varian (1986) observe, this is equivalent to having a "collector" whose sole 
function is to use the money contributed to purchase the largest possible quantity of the 
public good. Examples of such collectors might include the United Way, political action 
committees, and other nonprofit charitable organizations. In other papers, the collector 
takes a more active role in provision, such as refunding some contributions in certain 
circumstances. For instance, Palfrey and Rosenthal (1984) give the example of a person 
designated to collect money for an office coffee club, where contributions are refunded 
if insufficient. In all of these models, the equilibrium outcome typically has an inefficiently 
low level of the public good, confirming the standard view of the free-rider problem. 

1. See, for example, Warr (1983), Palfrey and Rosenthal (1984, 1988), Bergstrom, Blume, and Varian 
(1986), and Andreoni (1988). Related papers include Bliss and Nalebuff (1985), Cornes and Sandler (1985), 
and Bernheim (1986). 
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584 REVIEW OF ECONOMIC STUDIES 

By contrast, the literature on public provision has shown that a central authority 
with the ability to choose and administer the game can achieve efficient outcomes. In 
fact, the literature on full implementation has demonstrated the existence of games for 
which all equilibria are efficient.2 Most of the games analyzed in the implementation 
literature are constructed for the purpose of proving existence in some very general setting, 
rather than for their plausibility. For this reason, these mechanisms are often quite 
complex and appear to require a central authority for their use.3 For example, the way 
these games are usually described is that the agents send messages to a social planner or 
mediator who chooses the social decision based on the messages. In addition, these 
games often use seemingly artificial devices to guarantee efficiency. One such device is 
to have the agents name integers and, if their messages contradict one another in particular 
ways, the agent picking the largest integer is rewarded. 

We show that these parts of the literature have more in common than has been 
recognized by providing an example of an efficient mechanism which is quite similar to 
games used to model private provision. The simplest environment we consider is a 
complete information economy with a single private good and a discrete public good. 
The mechanism allows each agent to voluntarily contribute any non-negative amount of 
the private good he chooses. The public good is provided iff contributions are sufficient 
to pay for it and the contributions are refunded otherwise. Surprisingly, this game is an 
efficient mechanism in the strong sense that every equilibrium outcome is efficient. In 
fact, we will show that the set of equilibrium outcomes is exactly equal to the core of the 
economy. In our game, the collector's only role is to purchase the largest quantity of the 
public good that the contributions will cover and to refund if necessary. Hence it seems 
quite reasonable to interpret this game as a model of private provision, a view we will 
emphasize. Under this interpretation, our results imply that private provision of public 
goods can be efficient. 

An alternative interpretation of our game is that it is a simple mechanism for public 
provision of public goods, one much simpler than the mechanisms studied in the conven- 
tional implementation literature. Consequently, our results suggest that the boundary 
between mechanisms for private provision and mechanisms for public provision is not 
clear. The distinction between these classes of mechanisms is surely not the existence of 
a central figure like a collector. We would hardly view a collector like United Way as a 
"central authority". On the other hand, a mechanism which gives the collector the ability 
to alter the allocation of goods in any fashion must surely be thought of as a mechanism 
for public provision only. 

We also consider the case of a public good that can take on finitely many values. 
The most obvious extension of our game would have one round of contributions where 
the amount of the public good provided is the maximum that the contributions will pay 
for. Unfortunately, as we discuss below, this game does not guarantee efficiency. Instead, 
we consider a sequential game with potentially many rounds of contributions. In addition, 
we will see that a more complex refinement is needed to guarantee efficiency. Hence, 
our results suggest that achieving efficiency through voluntary contributions is not imposs- 
ible in this setting, but is more difficult. 

Since our sequential game works for any finite number of values for the public good, 
we can reinterpret this case as approximating the case where the public good can take 
on any value in a continuum. Interestingly, as the increment between levels of the public 

2. See Maskin (1977), Moore and Repullo (1988), and Palfrey and Srivastava (1987). 
3. There are some exceptions to this. For instance, More and Repullo give several examples of natural- 

looking games with efficient equilibria for various settings. 
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good goes to zero, the game form converges to a repeated version of the game considered 
by Bergstrom, Blume, and Varian. While the limiting outcomes are efficient, the outcomes 
at the limit are not. This occurs because efficiency requires that the sum of the agents' 
marginal rates of substitution (MRS) equal marginal cost. Of course, this implies that 
any given agent's MRS is strictly less than marginal cost and so if a $1 decrease in his 
payments reduces the level of the public good by exactly $1 worth, he is better off. To 
avoid this problem, it must be true that a small decrease in one's contribution leads to 
a relatively large decrease in the amount of the public good. As we discuss, our game 
has this property for any strictly positive increment between values of the public good, 
but does not when the increment is zero. This provides an intriguing view of the role of 
discontinuities in the game form, a point noted in a different context by Aghion (1985). 

One caveat that must be mentioned is that we assume complete information 
throughout. This is, of course, a very strong assumption and may limit the applicability 
of our results. Intuitively, incomplete information may lead to underprovision as agents 
trade off their contribution against the probability that the public good is provided. Much 
has been written regarding the problems incomplete information poses for public provision 
(see, for example, Mailath and Postlewaite (1988)) and on optimal mechanisms in such 
environments (e.g. d'Aspremont and Gerard-Varet (1979) or Laffont and Maskin (1982)). 
On the other hand, our results for the simplest case are not affected much by the inclusion 
of small amounts of incomplete information. In this case, all the equilibria with outcomes 
in the core are strong Nash equilibria. As van Damme (1983) has shown, every such 
equilibrium is "close" to an equilibrium with a small amount of incomplete information. 

In the next section, we set out the model and give definitions. In Section III, we 
consider the simplest case where the set of social decision is {O, 1}, which we interpret 
as choosing whether or not to build a streetlight. We show that the simple game described 
above fully implements the core. In Section IV, we extend these results to the case where 
the set of social decisions is {0, 1,. .., M} for some finite M. We interpret this case as 
the choice of the number of streetlights to build. This analysis extends trivially to the 
case where the decision set is {0, 8, 28, . . ., M(8)} where 8 > 0 and M(8) is the largest 
multiple of 8 less than or equal to M. Viewing this decision set as an approximation of 
[0, M], this fact gives us a way to approximately fully implement the core. In Section V 
we offer some concluding remarks. All proofs are in the Appendix. 

II. THE ECONOMY AND DEFINITIONS 

We consider an economy with I agents indexed by i c J = {1, . . ., I}. There is one private 
good, which we will refer to as wealth. Agent i's endowment of wealth is denoted w, 
and the vector of endowments w, where we assume w E RI+. The agents must choose a 
decision d from the set D c R+, where we assume 0 c D. For the moment, we will not 
impose extra structure on D. A state of the economy, which we will denote co, specifies 
each agent's utility function. The set of possible states will be denoted Ql. We will write 
the utilty function for the i-th agent in state cv as uj(d, wi I c). We assume that ui is strictly 
increasing in d for all i and all c c fl. We also assume that ui is continuous and strictly 
increasing in wi for all i and co. We will impose some further conditions on fQ in the 
subsequent sections. 

For convenience, we define the cost function for the social decisions as a function 

c:R,->R+. Of course, c is only relevant on D. We assume that the cost function is 
strictly increasing and convex and that c(0) = 0. Finally, we assume complete information 
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586 REVIEW OF ECONOMIC STUDIES 

so that all of the above (including the state) is common knowledge among the I agents 
at each state. 

We will refer to a social decision and an allocation of the private good among the 
agents as an outcome. More precisely, an outcome is a point, 0, in D x RI and the set 
of feasible outcomes is 

0 = {(d, x) c D x RI |i xi- wi w.-c(d)} 

The core of this economy is a mapping C: fl - P(O) where P(A) is the power set of A. 
To define the core, we must first define what a coalition can achieve. We will write OT 

as the set of feasible outcomes for coalition Tc J. That is, 

OT={(d, X) DXR' 
|is+ Xi 

-EieT 
wi-c(d)} 

In the usual terminology, we will say that the coalition T c P(s) can block the outcome 
0 c 0 in state cv if there exists some 0'= (d', x') c OT such that 

ui(d' x'|c)_ui(d,xiJI) 

for all i E T with a strict inequality for some i c T An outcome 0 is in C(cw) iff there is 
no coalition that can block it in state cv. 

A game form, G, is a pair (S, O) where S = S1 x ... x S, and O: S - 0. A game form 
together with a state define a game in normal form where the payoffs associated with the 
strategy combination o- c S are given by u (O(O-) Icv ). We will say that the normal form 
game F(c) =(S, u(O cI )) is induced by G in state cw. Thus, for a given G, the set of 
equilibrium strategies must be defined as a correspondence from fl into S. (We will be 
more explicit about the definition of this correspondence below.) For our purposes, a 
more useful correspondence is the set of equilibrium outcomes. For a game form G, let 
E* (C) be the set of equilibrium strategy tuples in S. Then the set of equilibrium outcomes 
under G, EG, is defined by Ec(Cw) = O(E* (C)). We say that G fully implements the 
core iff EG(CW) =.C(CN) for all c c fl. That is, a game fully implements the core if the set 
of equilibrium outcomes exactly coincides with the core. 

Most work in implementation theory uses the notion of Nash equilibrium to define 
the set Ec(Cv). One important part of our analysis is that we work with refinements of 
Nash equilibrium. To make as clear as possible the role that the exact choice of refinement 
plays, we will discuss the outcomes under various equilibrium notions, the definitions of 
which are given below. To be as precise as possible in our statements about implementa- 
tion, when the correspondence EC has been defined using (for example) perfect equi- 
librium and EG(C) = C(Cv) for all cv, we will say that G fully implements the core in 
perfect equilibrium. 

We work with two basic concepts: elimination of dominated strategies and perfect 
equilibria. This may seem redundant since a dominated strategy cannot be played in a 
perfect equilibrium. However, a perfect equilibrium can be supported by trembles to 
dominated strategies so that performing this elimination explicitly before applying perfec- 
tion does affect the set of equilibria.4 Our theorems use two different ways of combining 
these concepts. Theorem 1 uses what we will call undominated perfect equilibrium or 
UPE for brevity. This equilibrium concept eliminates dominated strategies and applies 
the notion of (trembling-hand) perfection to the resulting game. This result, as we discuss 
below, also holds for many stronger equilibrium concepts, including the one used in 
Theorem 2. There we use successive elimination of dominated strategies and then apply 

4. See the classic example in Myerson (1978). 
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strict perfection to the resulting game. We will refer to this as successively undominated 
strictly perfect equilibrium or SUSPE.s 

To define our equilibrium notions completely rigorously requires a great deal of 
cumbersome notation. To avoid this, we will sketch the ideas.6 Our purpose is to define, 
for an arbitrary game form, a correspondence from fl to S giving the equilibrium strategy 
tuples. So for a given game form and state, consider the induced game, say F = (S, u). 
In Section III, we will consider a simultaneous move game and so will work with the 
normal form. In Section IV, we will have a multistage game. To define perfection for 
such games, it is customary to work with the agent-normal form. That is, one replaces 
the original set of players with the "agents" who represent the players, where each player 
has a different agent working for him at each information set. So when the definitions 
below are applied to this game, F is taken to be the agent-normal form. 

The set of actions available to each player (or each agent as the case may be) will 
be an interval of the real line and thus uncountable. Since perfection and its variations 
are generally defined for games with finite strategy sets, we must necessarily either consider 
a sequence of approximating finite games or accept some technical complexities in defining 
completely mixed strategies. We adopt the former approach.7 We approximate the game 
by replacing the uncountable strategy sets with finite ones. The way we choose these 
finite sets is by picking a grid size, u(, and for each i, a smallest element, ai(n), within 
,u(, of the smallest element of the uncountable strategy set, Si. The finite set, Si(n), will 
be ai(n) plus any point of the form ai(n) + ku, which is less than the largest element of 
Si. We require that ,u, I 0 as n -> oo. Call the approximating game r(n). For each 
equilibrium notion we use, we will say o- is an equilibrium of F if it is the limit of a 
sequence {u(n)} of equilibrium points of a sequence of approximating games {F(n)}. 

So now we only need to define our equilibrium notions for normal form games with 
finite strategy sets. We will say that a strategy for i, o-i c Si, is dominated if there exists 
o-i c Si such that for all o-i E S_i_ 

Ui (0-i 5 --i)_ Ui (0i, 5 --i) 

with a strict inequality for some o,i c S-i. (As usual, o-i refers to a vector of strategies 
for the players other than i.) Let R (Si) denote the set of strategies for i which are not 
dominated and let R1(S)=R1(Sj)x ... xR1(SI). Then let R1(F) denote the game 
(R1(S), u). An undominated perfect equilibrium of F is a perfect equilibrium of R'(F). 
Similarly, when we refer to an equilibrium notion such as undominated proper equilibrium 
or undominated strictly perfect equilibrium, we will mean the proper or strictly perfect 
equilibria of R1(r). For n_ 2, recursively define R'(Si) as the set of strategies for i 
which are not dominated in R"1(F) where R'(F) is defined analogously to R1(F). Finally, 
define R*(Si) as the set of strategies in R'(Si) for all n and R*(F) analogously to the 
above. (Notice that R*(Si) must be nonempty for all i.) A successively undominated 
perfect equilibrium of r is a perfect equilibrium of R*(IF) and similarly for a successively 

5. It may be useful to provide some relationships among these concepts and other familiar ones. The 
UPE's are a subset of the perfect equilibria. In turn, the proper equilibria are a subset of the UPE's. The 
SUSPE's are also a subset of the UPE's and the strictly perfect equilibria are a subset of the SUSPE's. While 
one may suspect that the SUSPE's are a subset of the proper equilibria, this is not true. In fact, one can show 
that the proper equilibria are a subset of the SUSPE's in the game we consider in Section III for the case where 

. vi =C. 
6. The reader interested in more detail is referred to our 1987 working paper. 
7. For an example of the latter approach, see Chatterjee and Samuelson (1986). Their analysis is quite 

related to ours in that they consider essentially a two-agent economy where the decision set is {0, 1} and a 
provision date. 
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undominated proper equilibrium or a successively undominated strictly perfect equili- 
brium. 

We are now ready to define the perfect and strictly perfect equilibria of an arbitrary 
game with a finite strategy set. So, again, consider an arbitrary game F = (S, u) where 
each Si is finite. A completely mixed strategy for i is a mixed strategy which places 
strictly positive probability on each of i's pure strategies. A perfect equilibrium is a vector 
o- c S such that vi is best reply to some vector of completely mixed strategies for the other 
players which is close to v--i. By close to o--i, we mean that oi is a best reply to each 
point in a sequence of completely mixed strategies converging to o--j. 

Strict perfection requires much more-that oi is a best response to every vector of 
completely mixed strategies for the other players close to o_i. More precisely, vi is 
required to be a best response to each point in any sequence of completely mixed strategies 
converging to o-__ Thus perfection requires robustness with respect to some small 
probabilities of mistakes by the other players, while strict perfection requires robustness 
with respect to all small probabilities of mistakes by the other players. It is important 
to note that not every normal form game possesses a strictly perfect equilibrium. In fact, 
the games we consider, while they do possess undominated strictly perfect equilibria or 
successively undominated strictly perfect equilibria, do not in fact posssess strictly perfect 
equilibria. 

To summarize, then, let F be any normal form game with a finite strategy set or, 
equivalently, the agent-normal form of an extensive form game where the action set for 
each agent is finite. We will say that (0 is an undominated perfect equilibrium (UPE) of 
F iff it is a perfect equilibrium of R1(F). Similarly, oc is a successively undominated 
strictly perfect equilibrium (SUSPE) of F iff it is a strictly perfect equilibrium of R*(F). 
If F has an uncountable strategy set, we say that o- is a UPE (SUSPE) of F if there is a 
sequence {Jo(n)} converging to o- such that v(n) is a UPE (SUSPE) of F(n). 

Finally, we will say that a game form G = (S, 0) fully implements the core in UPE 
(SUSPE) if EG(w) = C(w) for all w c El where E* (w) is the set of o- c S such that o- is 
a UPE (SUSPE) of the game induced by G at state w. 

III. THE ONE-STREETLIGHT PROBLEM. 

In this section, we simplify the above structure to the case where D = {O, 1}. We will 
interpret d = 1 as the decision to provide a streetlight. For simplicity, we let c = c(1). 
Without loss of generality, we adopt the normalization uj(0, wi I w) = 0 for each i and each 
t) c fQ. The valuation of agent i in state w, vi(w) ), is defined implicity by ui (1, w; - vi I W) = 0. 

Since the valuations define everything about ui that is relevant for our purposes at a state 
w, we will often omit the w argument and focus on the valuations directly. We also 
assume that for each state, wi > vi(wj) for all i-that is, ui(I, O | w) < O for all wc E f. This 
assumption is made so that we do not need to consider what happens when some agents 
would like to contribute more than their wealth. To guarantee that the problem is 
interesting, we also assume that Ei wi > c. We will refer to this class of economies as V. 

Characterizing the core of an economy in W' is quite straightforward. If Ei vi (w) < c, 
then the only point in the core is (0, w). This is true because any other distribution of 
wealth along with d = 0 clearly cannot be both feasible and in the core. Similarly, any 
distribution of wealth with d = 1 leaves some agent worse off than if he refused to 
participate and hence cannot be in the core. If Ei vi(co) = c, the core consists of the points 
(0, w) and (1, w - v). Again, it is clear that any other distribution of wealth could be 
blocked by some coalition. Finally, if Zi vi(w) > c, then any outcome in the core must 
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have d = 1 as this condition is necessary for Pareto optimality. Clearly, the wealth 
distribution at a core outcome must have each individual with at least wi - vi or else some 
individual agent would block. If any agent receives more than wi, then the coalition of 
all agents other than this one can block as their loss of wealth is in part received by this 
individual. Thus the core is certainly no larger than the set of (1, x) such that Ei xi = 

wi - c and wi - vi xi ' wi for all i. In fact, it is easy to see that no coalition can block 
an outcome in this set and so this set is precisely the core.8 

A very natural way to consider the problem of how the agents get together to jointly 
provide the good is to suppose that they contribute money toward the building of the 
streetlight. If the contributions add to c or more, the streetlight is provided, with any 
excess contributions either kept by the collector or refunded in some fashion. For 
notational simplicity, we assume that if contributions exceed c, the collector keeps the 
excess. However, as we discuss below, our results also hold when he refunds this money, 
so a requirement of budget-balance can easily be satisfied. A variety of assumptions 
could be made about what happens when not enough money is contributed, not all of 
which would lead to efficient outcomes. For example, we might assume that contributions 
are not refunded regardless of the total.9 However, with such a structure the possibility 
of insufficient contributions may deter agents from contributing. An obvious way to avoid 
this problem is to assume that if contributions add to less than c, all contributions are 
refunded. This contribution game is a simple generalization of one used by Palfrey and 
Rosenthal (1984) to model private provision and similar games have been used in 
experimental work'0 for the same purpose." 

More formally, let the strategy set of agent i be S' = [0, wi]. A strategy choice by i 
will be denoted oi and will be referred to as a contribution. Define O'(ur) by 

O'(a) 
= (0, w), if Z, oi < C; 

( (1, w-ua), otherwise. 

We will refer to this particular game form as G'. 
As we will discuss in more detail below, there are many Nash equilibria of this game, 

some of which are not in the core. However, we have the following theorem. 

Theorem 1. G' fully implements the core of W" in undominated perfect equilibrium. 

To understand this result, first consider the case where Ei vi(co) < c. As noted, the 
only core outcome at such a state is (0, w) and it is easy to see that all Nash equilibria 
must have this outcome. Simply note that no one will contribute more than vi if this will 
cause the streetlight to be built. Hence contributions cannot possibly add to c in 
equilibrium. 

Now suppose ,i vi > c and consider the set of (pure strategy) Nash equilibria of this 
game. It is easy to see that any vector of contributions af such that 0_ ?i _. vi for all i 
and Ei i = c must be a Nash equilibrium. Since o-i- vi. each agent's equilibrium utility 

8. See Mas-Colell (1980) for a more detailed characterization of the core in a setting which has W' as a 
special case. 

9. Palfrey and Rosenthal (1984) considered this possibility. 
10. See, for example, Ferejohn, Forsythe, Noll and Palfrey (1982), Schneider and Pommerehne (1981) 

or Isaac, Walker and Thomas (1984). 
11. It is also worth noting that this game is essentially a simplification of Nash's (1953) demand game. 

While our results had been known and in fact are straightforward to prove for the case of I = 2, the generalization 
is new. We know of no proof for the general Nash demand game. Our results do generalize to the original 
Nash demand game under certain simplifications. 
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is at least 0 so that no agent can increase his payoff by contributing less. Such a deviation 
will cause the decision to change and he will get utility of 0. Similarly, an increase in 
agent i's contribution can only make him worse off because the streetlight will be provided 
at the lower contribution. Thus we see that there is a Nash equilibrium outcome for each 
point in the core. 

However, there are other Nash equilibria. In particular, consider any af such that 
i -_ 0 for all i, vi < c, and EZ + vi.- c for all i. In this equilibrium, the streetlight 

is not built, so each agent's utility is 0. This is an equilibrium because for each agent, 
any contribution that changes the decision exceeeds vi. Given that no contribution below 
vi will cause the streetlight to be built, agent i is indifferent among all contributions which 
do not lead to the streetlight being built. These equilibrium outcomes are not in the core. 

All of the equilibria which lead to core outcomes are strong Nash equilibria (see 
van Damme (1983)) and thus satisfy virtually all robustness requirements ever proposed 
in game theory. However, the other equilibria are not so robust. Many of them are not 
perfect, for example. In a perfect equilibrium, each agent's strategy must be robust to 
small probabilities of "mistakes." It is easy to see that no Nash equilibrium in which 

-i > vi can be perfect. If the streetlight will not be provided, then contributing more than 
vi is costless since this contribution will be refunded. Hence this can occur in a Nash 
equilibrium. On the other hand, if there is even a tiny probability that some other agent(s) 
will "accidentally" contribute enough so that the streetlight is built, then i strictly prefers 
contributing less than vi. 

There are equilibria which do not have outcomes in the core and which are perfect. 
To see this, suppose that c = 1, I =2, and each persons's valuation is 0-6. Then vi = 0 
for both players is a perfect equilibrium. To construct trembles supporting this, suppose 
each person puts probability 1 - E on 0, kE/(I + k) on 1, and the rest of the probability 
on the remaining strategies. Choose k to be very large. Then it is virtually certain that 
the other player's contribution is either 0 or 1. In either case, i's best strategy is oi = 0 
and in the latter case, this is his unique best strategy. Hence any other strategy must 
yield a strictly lower expected payoff. Intuitively, certain trembles will not induce an 
agent to increase his contribution because he will end up contributing when the good 
would be provided without his contribution. 

However, these trembles do not seem plausible. The equilibrium in the example 
required that the agents were most likely to tremble to contributing more than their 
valuations. Clearly, though, any smaller contribution strictly dominates this one. Hence 
if we eliminate dominated strategies even as trembles, then this possibility is eliminated. 
This is why we focus on undominated perfect equilibria. In the example above, this 
elimination implies that the other player necessarily contributes less than 0-6, so that in 
any UPE, each player must give more than 0 4 as any smaller contribution is weakly 
dominated. But this eliminates all the inefficient Nash equilibria. 

Theorem 1 holds under under a large variety of other equilibrium notions. The 
robustness of the equilibria with outcomes in the core when Ei vi > c means that we can 
use any stronger equilibrium notion given that we first eliminate dominated strategies. 
It is also not hard to show that extra rounds of elimination of dominated strategies will 
not change the set of equilibria either. Thus, for example, Theorem 1 is trivially entended 
to undominated proper equilibria, undominated strictly perfect quilibria, SUPE, or 
SUSPE.12 

12. In Bagnoli and Lipman (1986), we showed that all proper equilibrium outcomes are in the core. 
However, when _ v; = c, the only proper equilibrium outcome is (1, w - v), so the other outcome in the core, 
(0, w), cannot be obtained. Hence G' only generally implements the core in proper equilibria. 
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Theorem 1 also holds for a large class of variations on G' which satisfy budget- 
balance. To ensure budget-balance, when contributions exceed c, the excess must be 
refunded. If we amend G' to incorporate any refund scheme with the property that 
increasing one's contribution by $1 never increases one's refund by more than $1, the 
resulting game fully implements the core in UPE. Intuitively, such a refund scheme 
guarantees that an agent always strictly prefers a contribution making the total exactly 
equal c to any larger contribution. This property implies that all the efficient equilibria 
are strong Nash equilibria and so are UPE's. Furthermore, since the refunding increases 
the payoff to a deviation from an inefficient Nash equilibrium, it certainly does not 
interfere with eliminating these equilibria. 

IV. THE MULTIPLE STREETLIGHTS PROBLEM. 

In this section, we consider a broader social decision set. Here we take D to be {0, . . ., M} 
for some finite M ? 1-for example, how many streetlights to build. Since we will work 
with sequential mechanisms, eliminating wealth effects is notationally very convenient. 
Therefore, we will simplify our assumptions and assume that preferences are quasi-linear; 
that is, we assume that ui(d, wi I c) = Ui(d I w) + wi for all i and all w E Q. Analogously 
to the previous section, define the valuation of agent i for the dth streetlight as vi(d I co) = 
Ui(d I co) - Ui(d - II co). As before, this will summarize most of what we need and so we 
will often omit the co argument. 

Recall that we have assumed that ui(d, wi co) is strictly increasing in d, which implies 
that vi(dlcI)>O for all d'-1 and all i. We will also assume that vi(dlcI) is strictly 
decreasing in d. Finally, as in the last section, it is convenient to eliminate the possibility 
that some agent wishes to contribute more than his wealth. Hence we will assume that 
wi is greater than i's total valuation. That is, wi > Ui(M I cv) for all i. Analogously to the 
previous section, we assume Ei wi> c(M) and for simplicitly we also assume w < 
c(M+ 1). We will refer to this set of economies as 2.13 

The core of an economy in W2 is not quite as easy to characterize as the core of W. 

It is straightforward to define the Pareto optimal decision as the largest d c D such that 

Ei vi(d I c)) _: c(d ) - c(d - 1) 

Denote this value of d by d*(cw). (If there is no d c D for which this holds, then 
d*(cv) = 0.)14 Clearly, any outcome in the core must have d = d*(cv). The distribution 
of wealth is more complex and is discussed in the Appendix where we give the proof of 
Theorem 2. 

There are many ways one could generalize the game of the previous section to the 
situation considered here. The most obvious generalization would be to suppose that 
agents contribute any amount they choose and the largest value of d such that the 
contributions cover c(d) is chosen, with some rule to cover the possibility that contribu- 
tions are less than c(1). Unfortunately, in general, none of the Nash equilibria of such 
a game will be efficient. To see this, suppose we have two players, with vi(1) = 1 and 
vi(2) = 07 for both. Suppose c(1) = 1, c(2) = 2-3, and M = 2. The Pareto optimal d is 2. 
Clearly, if we have contributions summing to 2-3, at least one player contributes at least 
1. Suppose this player reduces his contribution by 1. Now the second streetlight will not 

13. We conjecture that our result also holds if we extend W2 to include economies with preferences that 
are not quasi-linear, so long as the valuation functions are decreasing in d and increasing in net wealth. 

14. If E, v, (d*(w)) = c(d) - c(d - 1), then outcomes with -d = d*(W) - 1 are also in the core. The proofs 
do take account of this fact, though, for simplicity, the discussion in the text does not. 
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be built, but the first one will. This player's utility would have been vi(1) + vi(2) + wi - i= 
1-7+wi-vi. Now it will be (at least15) vi(I) + wi - vi + I = 2 + wi - vi, which is clearly 
larger. As a result, this simple generalization of the game of the previous section will 
not guarantee efficiency. 

The intuition behind this problem is very simple. Suppose that there are many 
possible levels for the public good and that c(d) = d. The Pareto optimal decision will 
be approximately characterized by the Samuelsonian condition that the sum of the MRS's 
equals marginal cost, or 1. However, this implies that some agent's MRS is strictly less 
than 1. Hence if he could cut his contribution and, as a result, increase his wealth and 
decrease the amount of the public good by exactly this amount, he would be better off. 
To avoid this problem, the game must have the property that a small decrease in one's 
contribution causes a large decrease in the amount of the public good provided. Intuitively, 
one way to do this is to sequentially step from one level to the next all the way up to the 
efficient decision where at each step, insufficient contributions implies that no further 
steps are taken. This structure reproduces the one-streetlight game in successive rounds 
and thus would seem likely to achieve an efficient outcome and even implement the core.16 

More concretely, we consider a multi-stage game in which agents contribute any 
non-negative amount of wealth they choose at each stage. If the amount contributed in 
the first stage falls short of c(1), then, as before, the contributions are refunded and no 
streetlight is built. If the contributions are exactly equal to c(k) for some k_? 1, then we 
continue with another round of contributions where k becomes the "status quo" instead 
of 0. The more difficult part of the game to specify is what happens if contributions fall 
strictly between c(k) and c(k+ 1) for some k between 1 and M- 1. Such a situation is 
"falling short" of the necessary contributions in one sense and "having enough" in 
another. Hence it is not obvious what the appropriate incentives should be at this point. 
We assume that in such a situation, the difference between the amount contributed and 
c(k) is refunded to the agents in proportion to their contributions. Then we proceed as 
if exactly c(k) had been contributed.17 Note that this specification has the advantage of 
guaranteeing budget balance. After each round, each player observes all of the contribu- 
tions in that round. 

Defining the game form more precisely is rather notation-intensive.18 However, the 
idea of the game should be clear from the description above. We will refer to this game 
form as G2= (S2, 02). 

15. There will be some extra contributions that could be refunded so his final wealth could be larger. 
16. There are certainly other ways to enrich the strategy spaces to create the sort of discontinuity efficiency 

requires. For example, following Mas-Colell (1980) and Bernheim and Whinston (1986), we could allow each 
agent to offer a contribution vector, where the dth component is the amount he pledges for d streetlights. The 
outcome would be the largest d such that contributions cover costs. We conjecture that the set of SUSPE 
outcomes of this game equals the core. However, this game seems to give a great deal of responsibility to the 
collector and so does not seem as natural a model of private provision as the sequential game we consider. In 
addition, a sequential structure is not unlike the kind of solicitation for public goods contributions we often 
see, while the use of alternative techniques does not seem common. 

17. The particular refunding scheme used here could be replaced by any method of refunding the excess 
above c(k) such that increasing one's contribution by $1 cannot increase one's refund by more than $1. However, 
it is important for our results that excess contributions are always refunded. For example, consider the following 
variation of our game. If the status quo is unchanged at some round, the contributions at that round are 
refunded. If the status quo is changed, any excess is not refunded but is instead applied toward the provision 
of higher levels of the public good. If, for example, the status quo is 10 and more than c(10) has been 
contributed, then if contributions at the next round do not bring us up to c(11), this round's contributions are 
refunded but no other funds are. With this scheme, one can show that every SUSPE outcome is in the core. 
However, in general, there will be no SUSPE's. For the reasons given in the text, weaker refinements would 
leave us with the possibility of inefficiency. 

18. The details are contained in our 1987 working paper. 
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Unfortunately, this game will not fully implement the core in UPE. For example, 
suppose we have two identical agents and can produce at most two streetlights. Each 
agent values the first at 0O8 and the second at 07. The cost of the first is 1 and the 
marginal cost of the second is 1 1. It is easy to see that the following equilibrium has 
each agent choosing his unique best reply after every history. In the first stage, agent 1 
contributes 1 and agent 2 gives nothing. In the second stage (for any history), agent 1 
gives 0-45 and agent 2 gives 0-65. This implies that giving 1 in the first stage cannot be 
a dominated strategy or even successively dominated. Therefore, this can be used as a 
tremble. 

We can use this tremble to support a UPE in which no streetlights are provided. To 
do this, suppose each player gives zero in the first stage and the most likely tremble for 
either player at this stage is to contribute 1. If the second stage is reached, no matter 
how, each player gives 0 55. Trembles at this stage are taken to be an order of magnitude 
less likely than the tremble to 1 in the first stage. Clearly, if the other player does not 
tremble to 1 in the first stage, giving zero is a best reply. If he does tremble to 1, giving 
zero is the unique best reply. Therefore, if any other tremble is sufficiently unlikely, zero 
is the best strategy. Hence this is both a UPE and a SUPE. 

The reason that UPE's are not all efficient is that giving more than vi(l) is not 
dominated, or even successively dominated, because we can end up with more than one 
streetlight. Thus as in the example of the previous section, this can be used as a tremble 
to support zero contributions. Hence efficiency requires that strategies be more robust. 
This is why we use the strict perfection part of our equilibrium definition. 

The successive elimination of dominated strategies becomes important because of 
the strict perfection requirement. Strict perfection alone ensures that contributions must 
add up to at least the cost of one more streetlight at any stage where adding a streetlight 
is optimal. Unfortunately, though, there are no strictly perfect equilibria in subgames 
where we already have the efficient number of streetlights. To see this, consider some 
player in such a subgame. In a subgame-perfect equilibrium, contributions cannot add 
up to the cost of another streetlight at this point. Thus the player is necessarily indifferent 
over a wide range of contributions given the equilibriurr strategies of the other players. 
However, suppose we pick trembles for the other players which makes their total contribu- 
tions almost certainly either 0 or $1 less than the cost of the additional streetlight. The 
player's best response to these trembles is to contribute $1 if this is less than his valuation. 
But if we vary the trembles so that the others almost certainly give either 0 or $0 50 less 
than the cost of another streetlight, the player's best response is to give $0.50. Hence no 
strategy will be optimal for every set of trembles, as strict perfection requires. 

To eliminate this problem, we need to reduce the set of possible trembles in such 
subgames. As the discussion above indicates, the trembles that we need to eliminate have 
some players contributing more than their valuations and so, again, these trembles seem 
quite unreasonable. Unfortunately, simply eliminating dominated strategies once does 
not rule them out. To see the point, suppose that d*(o)= 2 and M 4. Suppose we 
reach a point in the game at which two streetlights have been paid for and contributions 
are still being collected. Contributing more than vi(3) would seem not to be a particularly 
good strategy for the following reasons. First, notice that no one will contribute more 
than vi(4) at the last round so that even if c(3) - c(2) is raised at this round, we will never 
get a fourth streetlight as contributions at the next round could not possibly sum to 
c(4) - c(3). Furthermore, no one will contribute more than vi(3) + vi(4) at this round so 
that contributions at this round cannot possibly sum to c(4) - c(2). Thus contributing 
more than vi(3) is accepting a loss which cannot be made up. However, this strategy is 
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not dominated. The reason is that the argument suggesting that this strategy is a rather 
poor one relies on the argument that no one else will use a dominated strategy. Thus 
this strategy is not dominated, though if we eliminate dominated strategies, this strategy 
will de dominated in the resulting game. For this reason, we successively eliminate 
dominated strategies as our first step. 

For these reasons, we are led to focus on successively undominated strictly perfect 
equilibria of SUSPE. Recall that Theorem 1 holds under this equilibrium notion as well 
as UPE. 

Theorem 2. G2 fully implements the core of W2 in successively undominated strictly 
perfect equilibrium. 

To see the intuition behind the result, fix some co and ask how an equilibrium with 
an outcome outside C(w) could come about. First, it is clear that the equilibrium outcome 
must have d - d*(w). Overprovision cannot be a Nash equilibrium, much less SUSPE. 
It is not hard to show that strict perfection implies that contributions must add up to at 
least the cost of one additional streetlight whenever the status quo is less than the efficient 
level. Strict perfection requires optimality against all possible trembles, including the 
possibility that all other agents tremble to a contribution which makes it worthwhile to 
contribute. Since such trembles always exist when the status quo is less than the efficient 
level, contributions short of marginal cost can never satisfy this requirement. Thus 
underprovision cannot be a SUSPE either. 

Hence if we have an outcome outside the core, it is because some coalition of agents 
is paying too much. So suppose some coalition could block the allocation. This coalition 
would choose some social decision less than or equal to d*(cw), say d', and pay for it 
themselves. Yet in our game, any of them could reduce his contribution enough at the 
right point to cause the social decision to fall to d' and still have some of the costs borne 
by others.19 The fact that they do not do so indicates that the coalition could not block 
the allociation. 

Showing that each outcome in the core is achieved by some equilibrium is quite 
tedious (because we have to consider all nonequilibrium histories), but intuitively clear. 
Notice that we can simply have a succession of rounds with one additional streetlight 
purchased at each round with the contributions adding to exactly marginal cost at each 
round. Then each player is choosing a strict best response and no sufficiently small 
probability of error by another player will induce a deviation. 

One of the most intriguing aspects of this game is that when D is uncountable, the 
game can be used to approximately fully implement the core in the following sense. Let 
D = {0, 8, 2 , ... , M(8)}, where M(8) is the largest integer multiple of 8 less than or 
equal to M. It is simply an alteration of our notation to show that our game fully 
implements the core with this decision set for any 8 > 0. Intuitively, as 8 I 0, the core of 
the economy with D8 converges to the core of the economy with Do = [0, M]. Thus, the 
set of equilibrium outcomes is converging to the core of the economy with Do. 20 

There are also some surprising properties of our game at the limit where 8 = 0. Our 
game at the limit, which we will denote Go, is essentially a repeated version of the game 
considered by Bergstrom, Blume, and Varian. As we discuss below, the set of equilibrium 
outcomes of Go does not even intersect the core. 

19. This statement is a bit loose, but the Appendix shows that the basic reasoning is sound. 
20. This statement is made more rigorous and proven in our working paper. Similarly, the issues discussed 

in the rest of this section are treated more formally and in more detail in the working paper. 
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Bergstrom, Blume, and Varian consider a game in which each agent can contribute 
any non-negative amount of the private good he chooses. Letting these contributions be 
denoted gi, the amount of the public good provided is taken to be Zi gi. A simple 
alteration of their game would be to allow agents to contribute in successive rounds. If 
the amount of contributions is strictly positive at the first round, further contributions 
are solicited. Once the amount contributed at a round is zero, collections cease and the 
public good is provided in an amount whose cost equals the total amount of money 
collected over the course of the game. This game is precisely Go where c(d) = d. When 
8 = 0, it is impossible for contributions to fall strictly between two levels of the public 
good. The determination of when another round of contributions are solicited would be 
precisely that the level of the public good increased-that is, that nonzero contributions 
were offered. 

As we have seen, the limit as 8 I 0 of the set of equilibria is the core of the economy 
with Do. However, as we claimed, that is not the set of equilibria of Go. Characterizing 
the set of equilibria in Go poses some problems, in part because there are no SUSPE's 
in Go. As discussed above, we used successive elimination of dominated strategies to 
ensure that we could guarantee robustness of strategies with respect to all trembles in 
certain subgames. One can show that this is not enough in Go and so, in general, there 
are no strictly perfect equilibria even after the successive elimination of dominated 

21 
strategies. 

However, it is straightforward to show that any refinement of the Nash equilibria of 
Go which is based on our approximation technique and does not eliminate all equilibria 
will produce a set of equilibrium outcomes disjoint from the core. To see this, consider 
any approximating game where 8 = 0 and all contributions must be in multiples of /l,, > 0. 
Clearly, since wealth is finite and l,, is strictly positive, the number of rounds of 
contributions is necessarily finite. This implies that the number of streetlights in any such 
equilibrium must be the largest number that some agent would purchase for himself. In 
other words, let di (w) be the number of streetlights which maximizes Ui(d I co) - c(d) and 
let d(co) be the largest of the d1's. If the number of rounds of contributions in equilibrium 
is finite, then we must end up with d(co) streetlights. It is clear that we can't end up with 
fewer-any agent with di = d will contribute more. Similarly, we can't end up with a 
larger number of streetlights as any contributor in the the final round prefers cutting his 
contribution in this round. Since this happens for every /,l > 0, it must happen as /u, ? 0. 

It is easy to see that d cannot be Pareto efficient since d is where some agent's MRS 
equals marginal cost, not where the sum of the MRS's equals marginal cost. This is 
precisely the same reason why a one-shot contribution game would fail to achieve efficient 
provision when M _ 2-agents must face a discontinuous drop in the level of the public 
good from a small decrease in their own contribution. In Go, this cannot happen because 
8 =0. 

Interestingly, the above reasoning does not apply to equiliria where contributions 
are given forever. In fact, there can be Nash equilibria with strong robustness properties 
whose outcome is in the core. To see the intuition, consider some outcome in the core. 
For each agent, divide the amount of wealth he is to contribute into an infinite seqeunce. 
Construct the equilibrium strategies by supposing the agents alternately contribute and 
agent i at his n-th "turn" contributes the n-th term in his sequence. If any agent deviates 
from his sequence, all agents cut their subsequent contributions to zero. The fact that 

21. We conjecture that there would be SUSPE's if we defined completely mixed strategies in a manner 
analogous to Chatterjee and Samuelson rather than in terms of approximating games. 
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there are always future contributions means that any agent who cuts his contribution will 
discontinuously reduce provision of the public good. If we choose the sequence correctly, 
we can guarantee that the "status quo" at any point point in any agent's sequence is 
Pareto-dominated by the proposed equilibrium. Thus no agent will wish to deviate since 
he knows this will cause the status quo at the time he deviates to be the outcome.22 

The effect of our approximation technique in Go is most easily seen by fixing the 
approximation so that contributions are in multiples of Un and asking how the outcome 
is affected by taking 8 toward zero. For simplicity, suppose that c(d) = d. When 8 falls 
below A,,, we cannot have the status quo changed by one unit in a given round unless 
only one person makes a contribution in that round. This cannot happen in equilibrium 
in the last round, so that the last round of contributions must yield two units. But then 
either of the tWo contributors in the last round could deviate to zero and be strictly better 
off because each must have their MRS strictly less than 1 at this point. Hence we cannot 
reach the core with 8 _ n. Clearly, for any fixed 8 > 0, we can make A,, small enough 
to ensure that this does not happen. But at the limit where 8=0, this problem is 
unavoidable. Generally, we think of perfect divisibility as an approximation of "small" 
indivisibilities and presume that this approximation does not affect the analysis. Here 
we see that indivisibilities in both the public and private goods crucially affect the analysis, 
particularly the relative magnitudes of the indivisibilities. Loosely speaking, if the 
indivisibilities in the public good are large relative to the indivisibilities in the private 
good, then core outcomes are, achieved by this contribution game. Certainly it would 
seem plausible to argue that this is the usual case. 

The role of discreteness or discontinuity in generating efficient outcomes has been 
seen other areas of economics such as in Aghion (1985). While this role may seem 
surprising at first glance, this is the same role discontinuity plays in the efficiency of 
perfect competition.23 Perfect competition yields efficient outcomes because each firm's 
demand curve as a function of its price is discontinuous. If a firm's demand curve is 
continuous, it will in general set a price different from its marginal cost because it can 
exploit the fact that the outcome (its demand) varies continuously with its strategy choice 
to its advantage. Similarly, when 8 =0, the continuiuty of the outcome function with 
respect to contributions allows agents to shade their contributions a small amount without 
consequences as severe for them as when 8 > 0. 

V. CONCLUSION. 

The literature on full implementation has primarily focused on necessary and sufficient 
conditions on a choice correspondence for that correspondence to be fully implemented 
by some game form. Thus the games presented are typically used for sufficiency proofs, 
rather than being chosen for their plausibility. Not surprisingly, then, many of them do 
not seem plausible as natural games that private agents, absent some social planner, 
would choose to play. Even the analysis of mechanisms which are put forth as "plausibly 
useful", such as Groves-Clarke taxes, is focused on mechanisms that a government might 
actually wish to impose and rarely on mechanisms which private individuals might jointly 
use. Perhaps for this reason, the literature on private provision of public goods has 
basically ignored the implementation literature, hypothesized particular games, and 
demonstrated, among other things, that these games do not have efficient outcomes. We 
have presented a fairly natural game of private provision of public goods which fully 

22. In our working paper, we show how to construct these equilibria for the two-agent case. 
23. We are grateful to Andreu Mas-Colell for pointing out this analogy to us. 
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implements the core, thus suggesting that the literature on full implementation has more 
to say about private provision than might have been inferred to date. 

Our results suggest that, as one might have expected, implementing the core is much 
more difficult in the multiple streetlight case than in the single streetlight case. To maintain 
a relatively simple contribution game structure, we were forced to consider a sequential 
game and to adopt a much stronger refinement notion. This suggests that the complexity 
of efficient mechanisms increases with the complexity of the environment. 

An important part of our analysis has been the consideration of refinements of the 
Nash equilibrium concept. The fact that we are able to obtain efficient outcomes with 
such a simple game only by considering such refinement notions is quite suggestive. To 
what extent are the characteristics of the games implementating various choice correspon- 
dences driven by the equilibrium notion? In particular, is there some sense in which the 
Nash equilibrium concept itself leads to the "unnatural" appearance of the games 
implementing in Nash? If we wish to use full implementation to study institutions, we 
will have to learn what the equilibrium notions themselves imply about the implementing 
game forms. 

APPENDIX 

Proof of Theorem 1. First, suppose that , vu(co) < c. Clearly, the elimination of dominated strategies 
removes all oa, E S,(n) such that , -v, (w). Hence it is impossible to have contributions add to c or more in 
the reduced game. Therefore, all agents are indifferent over all strategies in this game and any strategy tuple 
in R'(S(n)) is a perfect equilibrium.24 The limit of any such tuple must have a sum strictly less than c, so the 
set of equilibrium outcomes is (0, w), which is the same as the core. 

Now suppose that E, v,(Z) = c. Again, once we eliminate dominated strategies, we have eliminated the 
possibility that the contributions can add to c. Hence, as above, we can make any strategy tuple in R'(S(n)) 
a perfect equilibrium. In particular, we can pick out the smallest element of each R'(S,(n)). This guarantees, 
then, that there are UPE's of the game induced by such an c with an outcome of (0, w), one of the points in 
the core. Similarly, we can have each agent choose the largest contribution in R (S,(n)). As n -* oo, these 
largest elements necessarily approach v,. Therefore, or= v(co) is a UPE of the game induced by such a state, 
which implies that (1, w - v(co)) is a UPE outcome. It is not hard to see that there cannot be any UPE outcome 
other than (0, w) and (1, w - v) so that the set of UPE outcomes is exactly the core for any such Co. 

The last case, when _, v, > c, is more complex. First, we will show that every UPE outcome has , oa, = c. 
Note that a Nash equilibrium cannot have the contributions add to strictly more than c as any contributor 
would then prefer a smaller contribution. Hence all UPE's have , o-, c, so that we only need to show that 
contributions cannot add to strictly less than c. 

So suppose that for some large n, we have a UPE, cr*(n) = (o-*(n),..., o*(n)), were Ej o-*(n) < c. For 
each i, define vi(n) as the largest element of S,(n). Since we have eliminated dominated strategies, this will 
be strictly less than v,. Without loss of generality, number the agents so that v,(n) - o*j(n) ' v, (n) - o-* ,(n) 
for all i Consider the following alternative strategy for player 1. Suppose he chooses25 

orI =v*(n) + V2(n) - o*(n) 

It is not hard to verify that our numbering of the players implies that o'< v,. Since this is a UPE, we must 
also have 

Prf c+,r,(n'):_>c -o*(n)]u,(1, w, -ac*(n))' Pr'[E,,, o(:r,(n):':>c- fl]ujl(,w,--') 

where the notation "Pr?" indicates that the probability is calculated given the distribution induced by s'*(n) 
where this is a sequence of complexity mixed strategies in the reduced game converging to a*(n) as E I o.26 

24. For simplicity, our notation does not reflect the fact that which strategies are dominated depends on 
CO. 

25. Notice that the way we have done the approximation does not guarantee that this strategy is in S,(n). 
This is not a problem. For any approximation, for n sufficiently large, it will have to be true that player 1 can 
choose a contribution sufficiently close to this one. It is easy to see that this fact is sufficient for our proof 

26. For convenience, we suppress the dependence of the utility functions and the game on the state cv. 
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Rearranging yields: 

Pr'[_,,#, c},(n)'i: c -a*(01] Ul (1, WI-a')(A1 

Pr~[Z?1 ur,(n)?c- ol] - u(l, w1-o4*(n)) 

Notice that u1(l,w1-ao)>0 as orj<vl. Also, since a*(n) is a UPE, we must have o*(n)<v, so that 
ul(l, wI - cr*(n)) > O. 

Let 

A(o-1) e1 I?~ E S_ I ( n) | I-l cr >- o-I 

be the set of contributions for the other agents such that d = 1 given that player 1 contributes o,. Notice that 

Pr'[Z ,Y or, c-1] = I rtEA(c 
) Pr [of.1 = 01 

For ease of exposition, let A* = A(o-*(n)) and A'= A(oa). We will now show that for any 5l EA*, there 
exists a vector '-1 E A' such that 

pr,[r_ 1= AI]=f(flpeClftI or[o1 01( I) Pr'[ or- = or'-] 

where a(51) t 0 as E I 0. To see this, note that any `- C A* must contain some components which differ 
from the corresponding component of oi*I(n). For each o- I A*, choose any i such that A, of *(n) and 
construct cr' by replacing cr, with cv*(n). Note that replacing 5l with a' reduces total contributions from 
the agents other than 1 by 5,-a*(n). However, since this is a UPE, Ec R'(S,(n)) so that 5i ?!vj(n). Hence 

a, 
_ c*(n)-v,(n) - c:T*(n) _ V2(n) - a*(n) 

Thus agent l's additional contribution at o- guarantees that total contributions are still at least c. Note also that 

pr? [of> i = 5 1] = ?*1(5; n* ') ) p,.F [cr-, = a' J. 

Let 

f 
Z*(cr*( n); n ) 

Note that 6'(c,) 0 0 as ? 0 0 by the assumption that o*(n) is a UPE. Hence the assertion made above is true. 
Let ?(51) be constructed as above for each 5_ E A*. Let 

4 =max{ (5 ( )I5- aA*}. 

The fact that A* is a finite set implies that ge exists and that ? . 0 as ? k 0. 

Now the proof is virtually complete. Let g: A* -* A' be the mapping described above. Then we see that 
(A.1) implies 

pr,[Cr_* , [~= g( A_I)] ul( 0l-')(A2 

r'A'Pr'[ or-, = oJl I UI(1, Wl-*(n)) 

The numerator of the fraction on the left-hand side is a sum of terms all of which also appear in the denominator. 
Of course, the sum in the numerator may not include every term in the denominator and may include some 
terms several times. Let 1 be the largest number of times that any term appears in the numerator. Consider 
any term in the sum in the denominator which appears fewer than 1 times in the numerator. If we add this 
term to the numerator so that it does appear I times, we will have increased the left-hand side of (A.2). Hence 
we see that 

1? U, ( l, WI-a' )(A3 

Note that the right-hand side is strictly positive as a' < v, and is independent of e. Hence if we choose 
? sufficiently small, we contradict (A.3). (While 1 is a function of a, it is bounded from above and hence cannot 
go to infinity as a I 0.) Therefore if n is sufficiently large and E, v, > c, then any UPE of F(n) must have 

>_, ,(n) = c. This contradicts the existence of a UPE outcome of F with d = 0. 
Now we only need to establish that for any w such that E, vi(w)> c, every outcome in C(w) is a UPE 

outcome. Recall that C(w)) is the set of 0=(1, w-uc) with O?c_-v(w)) and _, C, = c. Consider first the 
a<< v(w). For any such a, we can always find a sequence of approximating games with aS(n) for all n. To 
see this, simply choose n,, = 1/n and let the smallest element of S,(n) be or, - kp, for the largest integer k such 
that this is positive. For any such cr and choice of S(n), oc is a strong equilibrium of r(n) (see van Damme 
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(1983)) and hence is a UPE. Since this is true for all n, oa is a UPE of r. For the case where some a, = vi, one 
can easily construct a sequence such that each person pays strictly less than v, for each n, but the limit as n -> oo 

has the appropriate people paying vi. 11 

Proof of Theorem 2. We provide a sketch of the proof. The interested reader is referred to our 1987 
working paper for details. 

First, it is easy to see that over-provision cannot even be a Nash equilibrium, much less a SUSPE. This 
is true because in a proposed equilibrium with over-provision, each agent has an incentive to reduce his 
contribution and reduce the number of streetlights provided. 

It is more difficult to rule out under-provision. So suppose we have a proposed equilibrium with 
under-provision and consider the last stage at which contributions are solicited. Since we are below the efficient 
level of the public good, we can find a contribution, o', for each agent at this stage strictly less than his valuation 
for an additional streetlight but (weakly) larger than his equilibrium contribution, say ocr, such that _, o- equals 
the cost of the additional streetlight. It is not difficult to show that contributing a' is not dominated or even 
successively dominated for any i. Choose any agent for whom o'> a* and make the o"'s the most likely 
trembles for the other agents. Suppose also that all other possible trembles are orders of magnitude less likely. 
The strict perfection part of our equilibrium notion requires that strategies be robust with respect to these 
trembles. Clearly, though, if any strict subset of agents tremble to their o07s, the additional streetlight is not 
provided if i contributes cr* or a'. Hence in these events, i is indifferent between these two strategies. However, 
if all tremble, he is strictly better off if he contributes a'.27 Hence this strategy is better and so the original 
strategies are not a SUSPE. 

So every SUSPE outcome has the efficient level of the public good. Hence if we have a SUSPE outcome 
not in the core, it is because the payments of some group of agents are too high. So suppose we have a SUSPE 
outcome (d', x') not in the core. Mas-Colell (1980) showed that this means that there is no price system 
supporting this outcome. That is, for any system of payments assigned to the players for each possible d, either 
the total payments at d' do not sum to c(d'), or some agent does not demand d', or "profits" (the sum of the 
payments minus c(d)) are not maximized at d'. However, one can construct a price system supporting (d', x') 
in the following way. For each person, let the amount he pays for d' be exactly his total contribution in the 
equilibrium. For any d larger than this, let his payment be his total contribution in the equilibrium plus his 
valuation for the additional streetlights. Ignoring the assignment of prices for d < d' for a moment, it is clear 
that this assignment makes the sum of payments equal cost at d', guarantees that no agent strictly prefers buying 
more, and guarantees that profits are smaller at any higher d (since d' is efficient). 

Assigning payments for d < d' is slightly trickier. First, consider the case where in equilibrium, we reach 
a point where d is the status quo at some round. Let the payments for this d for i be the total payments i has 
made up to this point. Clearly, profits at such a d are zero, so that d' still maximizes profits. Similarly, each 
agent is willing to continue on and so prefers buying d' to d. Second, consider the case where in equilibrium, 
the status quo "hops over" d. At the round at which this occurs, each agent could reduce his contribution and 
cause d (or a higher level if the contraint that contributions be nonnegative interferes) to become the status 
quo. Assign i's payment to be the amount he has paid up to this round plus whatever payment he would be 
making when d becomes the status quo. It is not hard to show that with this assignment of prices, d cannot 
yield higher profits than d'. To see that no agent would prefer to buy d, notice that in equilibrium, any agent 
could cut his contributions in the manner specified and refuse to contribute any further. This must leave him 
at least as well off as at d with the payment we have assigned. Since he does not choose to do this in equilibrium, 
he is better off at d'. Hence the outcome is in the core. Therefore, the SUSPE outcomes are a subset of the core. 

We now explain to construct a SUSPE for any given point in the core. First, we construct the equilibrium 
path by assigning a contribution for each agent for each round up to d* so that contributions at a round sum 
to the cost of one additional streetlight and each agent gives less than his valuation for this streetlight. Clearly, 
each agent strictly prefers following the equilibrium path to contributing less. If any agent contributes more, 
the equilibrium path contributions are still followed if possible. More specifically, the contributions for the 
d-th streetlight are exactly what they would have been on the equilibrium path unless wealth constraints become 
binding because of the deviation. If wealth constraints do become binding, we construct a new equilibrium 
path from here based on the same idea. That is, we choose payments at each round adding to marginal cost 
with each agent paying less than the minimum of his valuation and his remaining wealth as long as the sum 
of these minima exceeds marginal cost. We handle deviations from this path in an analogous manner. Since 
wealth constraints can only become binding for some agent as a consequence of his own actions and since he 

27. It is not difficult to see that in subsequent rounds of contributions, he cannot be made worse off since 
he can always contribute zero for the rest of the game. 
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must be worse off than in the equilibrium if he does this, no agent will wish to deviate in this way. Furthermore, 
the fact that increasing one's contributions less drastically leads to a refund to the agent of less than the increase 
in his contribution and does not change subsequent contributions means that this deviation is also strictly worse 
than staying on the equilibrium path. The fact that following the assigned strategies is always strictly better 
than deviating means that this is optimal against any trembles. 

Stages at which the sum of the smaller of the agent's valuation for another streetlight and his remaining 
wealth falls short of marginal cost do not concern us. It is not difficult to show that the successive elimination 
of dominated strategies means that contributions cannot add to marginal cost at such a stage. This means that 
any successively undominated strategy at this point is optimal against any trembles. Thus these strategies form 
a SUSPE that supports the chosen core allocation. 11 
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