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I propose modelling boundedly rational agents as agents who are not logically omniscient- 
that is, who do not know all logical or mathematical implications of what they know. I show how 
a subjective state space can be derived as part of a subjective expected utility representation of the 
agent's preferences. The representation exists under very weak conditions. The representation uses 
the familiar language of probability, utility, and states of the world in the hope that this makes 
this model of bounded rationality easier to use in applications. 

1. INTRODUCTION AND MOTIVATION 

This paper proposes a framework for the axiomatic development of a tractable model of 
bounded rationality.' As has long been argued, there are many economic phenomena 
which seem difficult to understand without a model of bounded rationality. Clearly, such 
a model must be tractable if it is to be useful in enlarging our understanding of economic 
phenomena. My approach is to develop a model of bounded rationality which uses the 
familiar notions of utility, probability, and states of the world in the hope that this makes 
the model easier to use in applications. While I do not provide applications here, the 
conclusion discusses some possibilities. 

The key idea of my approach is to develop a decision theory which does not assume 
that agents are, in the phrase of some philosophers, logically omniscient. An agent is said 
to be logically omniscient if he knows all logical implications of his knowledge. It goes 
without saying that this is not a characteristic of real people. A real person can know the 
axioms of set theory and the rules of logical inference without knowing all the theorems 
of set theory, though these are logically implied. 

Several kinds of bounded rationality can be seen as a lack of logical omniscience. 
First, the common criticism that real agents cannot compute the optimal action in a 
complex model is precisely a statement that real agents are not logically omniscient. To 
see this, consider the following fanciful example. Suppose we ask an agent to make a 
choice between $100 and a box. We tell the agent, "The box containsf(1) dollars where 

1. There are numerous models of bounded rationality in the literature, but few with an axiomatic basis. 
For surveys of the literature, see Lipman (1995) and Rubinstein (1998). 
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340 REVIEW OF ECONOMIC STUDIES 

the function f is" and then we write the following on a convenient blackboard: 

f() I 0, if the 10,000th digit of zI2 is x; 
X 200, otherwise. 

For the purpose of this discussion, assume that f(1)= 200. If we believe that this person 
is rational according to our usual definition, what will we predict he will do? Since this 
person knows what the function f is-after all, it is written down in front of him the 
usual economic analysis would conclude that a rational person chooses the box. The key 
issue, though, is not whether the person knows the function f but whether he knows its 
value at 1. If he knows its value at 1, we would certainly expect him to choose the box. 
But of course, it is difficult to imagine that a real person would happen to know the value 
off(1)! 

In other words, our usual approach takes logical omniscience as given. Clearly, given 
logical omniscience, the agent must deduce from the information on the blackboard that 
there is $200 in the box. In a strictly logical sense, the description of the function f written 
down for the agent2 is equivalent to a particular set of ordered pairs. Hence if one knows 
this description and knows all logical implications of what one knows, one must know 
the functionf in the sense of knowing its value at 1 and at all other points in its domain. Of 
course, it is implausible that any real agent would immediately know all this information. 

Dropping the logical omniscience assumption also allows us to study at least some 
kinds of framing effects. I use this term to refer to situations where the form of the 
information received by the agent has an effect on the decision. That is, two different but 
logically equivalent pieces of information lead to different choices. It is easy to see that if 
an agent is not logically omniscient, he may not view two "truly" equivalent pieces of 
information as equivalent and hence may react differently to the two.3 

So far, I have been very informal about logical omniscience. In particular, the reader 
may well wonder what it is about the usual subjective expected utility model which pre- 
sumes logical omniscience. I believe that the problem lies in the exogeneity of the set of 
states of the world. 

The standard interpretation of a state of the world is as a complete, consistent 
description of a way the world might be. The logical omniscience assumption is precisely 
the consistency part of this definition. To see why, suppose that every state is, in a strictly 
logical sense, internally consistent. Suppose we define knowledge of a fact to mean that it 
is true in every state of the world-loosely, that the agent assigns it probability 1. Suppose 
then that the agent knows the axioms of set theory and the rules of logical inference, so 
that these hold in every state of the world. Then if all the states are consistent, this must 
mean that all the theorems of set theory are true in all states and so the agent must know 
these as well. 

This is problematic because the traditional approach treats the options the agent has 
as acts, functions from states to consequences. In the example above, we would think of 
the option of the $100 as the constant function at $100-that is, the function mapping 
every state into the consequence $100. The option of the box would correspond to a 
function which gives zero dollars in any state in which f(1)= 0 and $200 in any other 

2. Together with the definition of square roots, of course. The reader who is concerned about such issues 
is urged to assume that we also place in front of the agent a wide variety of mathematics texts which provide 
all the necessary definitions. 

3. Some seem to interpret framing effects as allowing situations where the agent may know the two forms 
of the information are equivalent but reacts differently anyway. I am not opposed to this view but it is not the 
kind of framing I consider. 
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LIPMAN BOUNDED RATIONALITY 341 

state. The problem then is that if all states are logically consistent, then the set of states 
in which f(1) = 0 is empty, so this act, in fact, gives $200 in every state. In short, we are 
unable to distinguish the second choice from a sure receipt of $200 and hence are unable 
to include in the model the uncertainty that seems so obviously present. 

The fact that dropping logical omniscience requires allowing inconsistent states is 
well-known in the philosophy literature. As noted by Hintikka (1975), among others, to 
use states of the world forces us to make one of two assumptions. Either we must assume 
that the agent knows all logical implications of his knowledge or we must assume that 
some of the states of the world are logically inconsistent.4 Hintikka refers to such states 
as impossible possible worlds since they are logically impossible but are used to model what 
the agent considers possible.5 

So far, I have only suggested that the usual interpretation of states is problematic if 
we wish to drop the assumption of logical omniscience. Why does this require anything 
more than a reinterpretation of the usual Savage framework? Why can't we continue to 
take the set of states to be exogenous but interpret them as complete though not necessar- 
ily consistent descriptions of how the world might be? 

This approach runs into three serious conceptual problems. To explain the first, recall 
that in the standard subjective expected utility framework, the agent has preferences over 
all acts that is, every function from the set of states to the set of consequences. If we 
enlarge the state space to its largest possible extreme, then we correspondingly enlarge the 
set of acts the agent must compare.6 This enlargement can be very dramatic. To see this, 
consider the ~I2 example. Suppose the agent can bet on any of the first 10,000 digits and 
may think that any given digit could be any number. Then we will require at least 100,000 
states, even though there is only one truly possible state of the world since the functionf 
is nonstochastic. Hence if the agent can bet any amount of money, the set of acts changes 
from R to R100'000! It seems odd to study bounded rationality by assuming the agent's 
preferences satisfy the usual assumptions -but making him compare a vastly larger set of 
alternatiyes. 

To understand the second problem, change the ~I2 example above so that the defi- 
nition of f is now that f(x) = 200x. Suppose the agent understands what multiplication is, 
but somehow does not realize that f(1) = 200. Then we have to assume that there is at 
least one state s such that the value of f(1) at s is different from 200 that is, at s, 200 
times 1 is not equal to 200. Clearly, s is a very strange state of the world. What justification 
is there for including such peculiar states of the world in our model?7 

Finally, and perhaps most importantly, the usual approach to subjective expected 
utility relies heavily on the properties of conditional preferences. Loosely, Savage requires 
that preferences conditional on learning any given event in the state space are well 
behaved. To see why this assumption becomes highly questionable if we include inconsist- 
ent states, suppose we have an agent choosing between three envelopes, labelled a, b and 

4. A similar observation is made by Rubinstein [(1991); (1998), Chapter 4.7] in the context of imperfect 
recall. See also Fagin, Halpern, Moses and Vardi (1995), Chapter 9. 

5. To prevent possible misunderstandings, I should mention that I do not use the phrase impossible poss- 
ible worlds to refer to the specific formulation of this idea proposed by Rantala (1975). 

6. Of course, one may be able to obtain an expected utility representation with only a subset of the possible 
acts. However, the larger the set of states, the larger the set of acts we will need the agent to compare. 

- 7. It bears emphasizing that the problem with s is not simply that it is the "wrong" state of the world in 
the sense that it does not correspond to reality. If, in fact, it rains today, those states where it does not rain do 
not correspond to reality. The distinction is that we can construct internally consistent circumstances in which 
it does not rain today, though these circumstances are inconsistent with external facts. However, we cannot 
construct internally consistent circumstances in which multiplication works as usual and yet 200 times 1 is not 
200. 
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342 REVIEW OF ECONOMIC STUDIES 

c, each containing an unknown amount of money. Do we really expect the agent to have 
sensible preferences conditional on learning that envelope a has $10 more than b, b has 
$10 more than c, and c has $10 more than a? 

Perhaps for these reasons, Savage himself was quite skeptical about extending subjec- 
tive expected utility theory to eliminate the. logical omniscience assumption. In 1967, he 
wrote: 

[T]he postulates of the theory [of subjective expected utility] imply that you should 
behave in accordance with the logical implications of all that you know. Is it possible 
to improve the theory in this respect ... or would that entail paradox, as I am inclined 
to believe but am unable to demonstrate? 

The framework I propose endogenizes the state space by making the impossible 
worlds part of our representation of the agent's preferences, just like his utility function 
or subjective probabilities. This approach avoids all three of the difficulties noted above 
with simply enlarging the state set to the largest possible extreme. First, the set of acts is 
not enlarged in my approach because the enlargement of the state space is part of our 
representation, not part of the primitives. I start with the set of truly possible states and 
the usual set of acts. I then derive the impossible possible worlds as part of a represen- 
tation of preferences over these acts and hence never need to enlarge the set of acts. 

Second, my approach gives a simple answer to the natural question: what impossible 
worlds do we add and why? In a sense I make precise later, I use the agent's preferences 
to identify the relationships between pieces of information he perceives and then construct 
his state space to reflect this. For instance, in the z!2 example above, if the agent prefers 
the envelope, this preference tells us that he believes it possible that f(1) = 0. Hence our 
representation must include an impossible world in which this is true. 

Finally, while conditional preferences are an important part of the construction, I 
only consider preferences conditional on consistent information. Because the impossible 
worlds are only part of the representation, preferences conditional on such worlds cannot 
be relevant. 

In addition, the axiomatic approach also has several advantages. First, it provides a 
way to nest a variety of different models within a single framework, thus providing a tool 
for the comparison of models which are formulated very differently. 

Second, the axiomatic approach is immune to some criticisms of models of bounded 
rationality. One criticism is that these models seem ad hoc. I believe this often means no 
more than the fact that the models are not standard. However, it is certainly true that we 
rarely have a clear reason for adopting one model of bounded rationality over another. 
In the axiomatic approach, it is quite clear what justifies the model: it is a simple way to 
represent the agent's preferences when those preferences satisfy certain conditions. In this 
sense, the impossible worlds are no more ad hoc than utility functions or subjective 
probabilities. 

A second criticism concerns the fact that most models of bounded rationality assume 
that the agent deals with his limitations optimally. Many people object to such a treat- 
ment, arguing that we have assumed that the agent is able to solve a more difficult problem 
than the one we began by assuming he could not solve! Of course, extending the model 
to allow boundedly rational choice of computations seems to lead us into an infinite 
regress problem.8 Again, this point is moot when the model is a representation of prefer- 
ences. It makes no sense to ask the question "how can the agent carry out this complex 

8. See Lipman (1991) for further discussion and a different approach to resolving this problem. 
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LIPMAN BOUNDED RATIONALITY 343 

task?" when the "complex task" is simply our representation of whatever it is the agent 
in fact manages to do. 

The rest of this paper is organized as follows. In Section 2, I give the basic framework 
for analysis and present the main results. In particular, I give necessary and sufficient 
conditions for deriving a subjective state space from the agent's preferences as well as 
necessary and sufficient conditions for representing the agent's preferences via expected 
utility on this state space. In Section 3, I give two examples illustrating the ideas. In the 
examples, simple assumptions on the agent's reasoning translate into remarkably clean 
restrictions on the way the impossible worlds are constructed. Section 4 offers a few 
concluding remarks on possible applications and extensions. All proofs are contained in 
the Appendix. 

Related literature. As far as I know, there has essentially been no formal consider- 
ation of the logical omniscience problem in the economics literature. Perhaps the closest 
predecessor is Shin's (1993) demonstration that if knowledge is interpreted as provability, 
then agents will not generally satisfy the negative introspection property. 

On the other hand, the idea of enlarging the state space in order to represent some- 
thing nonstandard on the original state space is an old one. However, there has been 
relatively little work deriving an enlargement from preferences. Kreps (1979, 1992) showed 
that a preference for "flexibility", interpreted as a recognition by the agent that not all 
possibilities are foreseen, can be represented via a particular extension of the state set. As 
I discuss later (see Remark 4), there are some unexpected technical similarities between 
Kreps' analysis and mine. Gilboa and Schmeidler (1994) show that Choquet expected 
utility is equivalent to expected utility on an enlarged state space. A key aspect of their 
results is the well-known fact that belief functions nonadditive functions on a state set- 
can be derived from additive functions on a larger state set (see, for example, Shafer 
(1976)). See the discussion following Theorem 5 for more details on this connection. 

Another related paper is Morris (1996). He assumes logical omniscience but uses 
preferences to derive a belief operator for the agent (a nonpartitional information struc- 
ture) in a manner akin to my use of preferences to derive the agent's subjective state space. 
In effect, we both use the way preferences vary with information to identify a model of 
information processing. 

Finally, there have been many models without logical omniscience proposed in the 
philosophy and artifical intelligence literature. For a survey, see Fagin, Halpern, Moses 
and Vardi (1995). Some concrete connections to this literature are discussed in Lipman 
(1994a, 1994b). 

2. THE MODEL 

Notational conventions. For any sets A and B, AB denotes the set of all functions 
f B->A and 2A the set of all subsets of A. If B is a collection of sets, then rB is the 
intersection of all the sets in B. 

The usual approach treats information as the ruling out of states. Logically equival- 
ent pieces of information would rule out the same set of states, so this approach does not 
allow one to distinguish between different statements which are logically equivalent. Since 
I require such a distinction, I take a more abstract approach, treating pieces of infor- 
mation simply as points in a set. Let 1D denote the set of pieces of information. Elements 
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of this set can be thought of as propositions (more precisely, propositional formulae) in 
logic, statements in English or another language, or mathematical formulas. 

I define "correct" logical deduction by means of a nonempty collection of subsets of 
F), denoted J The sets in this collection are internally consistent sets of information 
that is, a set is defined to be internally consistent if and only if it is in the collection X I 
refer to an element I of _S as an information set to emphasize the interpretation that I is 
one possible set of information the agent might receive. 

I now use --to define the "truly possible" states of the world. To do so, recall the 
usual informal definition of a state as a complete and logically consistent description of 
how the world might be. To model this, I will treat states as subsets of F, with the 
interpretation that at state scAD, any piece of information in the set s is true and anything 
not in s is false. Since states are supposed to be logically consistent, I require states to be 
elements of (X Since they are supposed to be complete, I require them to be maximal 
(under c) elements. In short, S, the set of possible worlds, is defined to be the set of 
maximal elements of X I reserve s to denote a typical element of S, though s', s*, etc., 
may be another kind of subset of F, such as the impossible worlds. 

For any Ic(D, let 

S(I)= {seSIIcs}. 

That is, S(I) is the collection of states of the world in which each pe I is true or, more 
briefly, in which I is true. If S({(p}) = 0, I will say p is a contradiction. 

Throughout, I make the following assumptions on A: 

Assumption 1. 

Ie, I'cI => I'e (1) 

IeG S(I) #0, (2) 

S is finite. (3) 

Condition (1) is the natural requirement that any subset of a consistent set is itself consist- 
ent. (2) says that the set of information sets is closed in the sense that it requires the limit 
of any increasing sequence of information sets to be an information set.9 Finally, (3) is 
useful for simplifying the analysis. 

Example. Suppose that D= {p, -p, p or -p} where -p is interpreted as the 
negation of p. It is natural to define a subset of FD to be consistent if it does not include 
both p and -p. If we adopt this definition, then 

J+ {0, {p}, { -p}, {p or -p}, {p, p or -p}, { -p, p or -pp}}. 

It is easy to see that there are two states, {p, p or -p} and {p, p or -p}. Clearly, 
Assumption 1 is satisfied. 

Note that, as in the example, condition (1) of Assumption 1 implies that 0eJi I 
view the case where the agent's information set is 0 as the ex ante situation, where the 
agent has received no information. 

9. For an example of what is being ruled out, suppose that D is the integers and that f is the collection 
of all finite subsets of (. Then we have S= 0, violating (2). 
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Remark 1. One example satisfying Assumption 1 is propositional logic. Suppose 
that 4D is the set of all propositional formulae generated from some set of atomic formulae. 
Suppose we define Y and S using the usual propositional logic. It is easy to see that 
conditions (1) and (2) of Assumption 1 would automatically be satisfied and (3) would 
hold if we assume that the set of atomic formulae is finite. 

Let X be the set of consequences. The interpretation of a consequence, as in Savage 
(1954), is that it is a sufficiently detailed description of the outcome of a choice to deter- 
mine the way the agent evaluates that outcome. For simplicity, I will take X= R. Let F= 
Xs denote the set of acts. Again as in Savage (1954), actions are treated as simply creating 
a relationship between states and consequences. In the conclusion, I briefly discuss an 
alternative formulation of acts which I plan to pursue in future work. 

The key ingredient of the framework is a collection of binary relations on F, one for 
each information set. I let >7 denote the agent's preferences given information set I and 
{>I} the collection of these preferences. As usual, f-, g denotes f/ I g and g:, f while 

f>1g if f>7g or f-g. 
It is important to clarify the interpretation of {>I}. First, >7 is the agent's preference 

after whatever processing of I he carries out. That is, I assume the agent receives infor- 
mation set I, analyses this information in whatever fashion he chooses, and then he reaches 
some perception of the problem. >I is intended to represent this final perception of the 
problem-the perception he acts on. 

Second, I emphasize that I make no assumption about the agent's self-awareness. I 
assume that we, as modellers, know how the agent would respond to each possible infor- 
mation set, not that the agent himself knows this ex ante. 

Third, as discussed in the Introduction, preferences are only defined at information 
sets, so I do not consider the agent's preferences in response to nonsensical information. 

Finally, it bears emphasizing how and why this approach differs from the traditional 
one. Normally, the primitive of the model is a single ex ante or "informationless" prefer- 
ence relation. From this, one derives preferences conditional on information under some 
assumptions on how the agent responds to information. Here the various preferences are 
the primitives and it is a characterization of the relationship between them that is to be 
derived. This approach is followed because the goal of the paper is to uncover a represen- 
tation of the agent's information processing from these different preference relations, 
rather than the more usual reverse procedure.10 Using weaker assumptions does not come 
without a cost: it is not clear whether one can observe a large enough set of an agent's 
different conditional preferences to be able to provide a conclusive test of the model. 

For simplicity, I assume the following throughout the paper. 

Assumption 2. There are finitely many distinct preference relations in {>7 }. 

A natural way to try to represent these preferences would be with standard expected 
utility. To state this more precisely, I will say that an information set I is null if f-ig for 
all,f,geF. 

10. Luce and Krantz (1971) provided the first explicit use of a family of conditional preferences in place 
of a single preference relation. Since their motivation is different from mine, they use preferences conditional 
on an event in the state space and do not construct a state space. For a more recent example of this approach, 
see Skiadas (1996). 
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Definition 1. {>-I} is expected utility (EU) representable if there is a function u: 
X--R and a probability measure pu on S such that for all nonnull I, Y(S(I)) > 0 and 

f f Ig <= Ep.[u(f (s))|sc S(I)] > Eu[u(g(s))|sr= (I)], 

where EJ -se S(I)J denotes the expectation with respect to the measure p conditional on 
the event sE S(I). 

It is straightforward to restate the Savage (1954) axioms in this framework to give 
sufficient conditions for such a representation." 

There is one necessary condition for an expected utility representation which is 
implicit in the usual framework and so is not normally discussed. 

Definition 2. Information sets I and I' are logically equivalent if S(I) S(I'). 

Definition 3. { >I} respects logical equivalence if for every logically equivalent I and 
I', we have >1 = >1. 

Proposition 1. If { I,} is EU representable, then it respects logical equivalence. 

The proof of this result is obvious: if I and I` are logically equivalent, then the 
updating in response to I must be the same as the updating in response to I". That is, 
S(I)= S(I), so the expected utility of any act conditional on I must equal the expected 
utility of the same act conditional on I'. Hence the preferences must be the same. In this 
sense, the usual expected utility approach requires that the agent recognize all logical 
equivalences. Putting it differently, framing effects are inconsistent with expected utility. 

It is important to note the source of the difficulty: it is not that utility is represented 
by an additive function across states nor the particular use of Bayes' Rule to calculate 
updated probabilities. Instead, it is a consequence of treating information in terms of the 
event of the state space it logically corresponds to. 

My approach is based on this observation: to deal with the logical equivalences the 
agent does not recognize, I identify the equivalences he does recognize and construct a 
state set in which these are the "correct" equivalences. That is, if I and I' are equivalent 
but framing effects lead the agent to react differently to the two, then add states-imposs- 
ible possible worlds-to his subjective state space in which one information set is true and 
the other is not. 

To be more precise, given any {>'} we can define an equivalence relation -on f 
by 

I I' I S(I) =S(I') and > - 

That is, I-I' means that I and I' are logically equivalent and the agent responds ident- 
ically to these two information sets. Hence we can treat the agent as correctly recognizing 
this logical equivalence. When I I', I say that I is recognized equivalent to I'. Loosely, 
It= I' means that the difference between I and I' does not create a framing effect. 

The first step is to extend the state set in a way which captures equivalence according 
to -. Given some collection of sets containing pieces of information, S*c22, let 

S*(I)= {s*s S* ICs*}. 

11. The finiteness of the state space does complicate matters. See Gul (1992) and Chew and Karni (1994). 
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Definition 4. S* c2 preserves -if Sc S* and 

I _ I' < S*(I) = S*(I'). 

In other words, S* preserves _ if the "logical" equivalence of information sets in S* 
corresponds exactly to -. In addition, I impose the requirement that S*2 S. Without this, 
one could discard some or all of the original states, which seems unreasonable to me. I 
believe that this requirement is not important to the results, however. 

If the agent does not recognize all logical equivalences, we cannot represent him via 
expected utility on S. However, S* is constructed precisely so that "logical" equivalences 
on S* are the equivalences he recognizes. Hence we may be able to represent him via 
expected utility on S*. The fact that we have added states means that we must specify the 
consequences of the acts on these new states. This suggests the following approach. 

Definition 5. { >,} is extended expected utility (Extended EU) representable if there 
exists an extended state set S*2 = S S* c 20, an act extension h: F-> Xs*, a utility function 
u: X -R, and a probability measure ,u on S* such that S* preserves-, 

h(f)(s) =f(s), VseS,feF, 

and for all nonnull I, y(S(I)) > 0 and 

f>jIg <=; E,[u(h( f)(s*))|s* E- S*(I)] > EJU [U(h(g)(S*))|S* E= S*(I)]. 

Remark 2. An Extended EU representation requires that i(S(I)) > 0 if I is nonnull. 
This is stronger than the perhaps more natural requirement that p(S*(I)) > 0 (note that 
S(I)sS*(I)). However, without this requirement, Extended EU representation becomes 
almost trivial since one can choose a ,u such that ,u(S) = 0. 

An Extended EU representation must (a) preserve the logical equivalences the agent 
recognizes and (b) represent his preferences in an analogous fashion to the usual expected 
utility representation. Each of these requirements translates into restrictions on the prefer- 
ences which can be represented this way. 

One obvious restriction imposed by the second requirement is 

Definition 6. { >I} is representable if for all nonnull I, there exists u1: F->R such 
that 

f>Ig <=: UI(f) > UI(g)- 

Clearly, representability is necessary for {>,I} to be Extended EU representable without 
it, preferences conditional on some nonnull I are not representable by a utility function 
at all, much less one with the particular structure Extended EU requires. Necessary and 
sufficient conditions for representability are well known so I will omit discussion of them. 

Remark 3. While representability is a weak assumption, I do not wish to claim that 
it is innocuous for the study of boundedly rational agents. However, there are two reasons 
for not insisting on a weaker assumption at this point. First, as suggested in the Introduc- 
tion, one important aspect of bounded rationality does seem to be the fact that real agents 
are not logically omniscient. In a sense, assuming representability says that I am isolating 
this aspect of bounded rationality for study rather than trying to capture all of what 
bounded rationality means in a single model. Second, I believe that representability can 
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be replaced with weaker assumptions if we replace Extended EU with a weaker form of 
preference representation. For example, we might replace u, with some representation 
which allows for intransitive indifference or other limitations on perceptual ability (see 
Fishburn (1973) for a survey) and obtain a generalization of Extended EU. 

Next, I wish to develop the restrictions imposed by the requirement that S* preserve 
These restrictions are most easily stated in terms of an ordering on X which can 

be interpreted as "more informative than". Intuitively, the subjective state space we are 
constructing is supposed to reflect the agent's perception of the relationships between 
different pieces of information. I have already pinned down the connection partly by 
requiring that when I - I', then I and I' induce the same event in the agent's state space. 
What is missing is a way to relate events for nonequivalent information sets. Of course, 
unrelated information sets will not induce events which are nicely related. So what 
relationship between information sets should we focus on? 

The key is when one information set conveys more information to the agent than 
another. We would naturally expect that if one information set is more informative to the 
agent than another, then it pins down the state more precisely in the sense that it induces 
a smaller event in the agent's state space. In other words, if I is more informative than I', 
denoted I > * I', then S*(I) c S*(I'). 

How would we identify >* ? Intuitively, if I I', then each information set is weakly 
more informative than the other. Also, suppose that adding I' to I does not add any 
information to that conveyed by I alone. That is, I -Iu I'. Then it seems sensible to say 
that I conveys more information than I'. In line with this intuition, I define > * as follows. 

Definition 7. Given a recognized equivalence relation , the associated information 
ordering > * is defined by 

I >*I' I I I'orI-' 

Remark 4. The > * relation is similar to the domination relation studied in Kreps 
(1979). He considers preferences over subsets of some set of alternatives and says that set 
x dominates x' if x is indifferent to x u x', analogously to the way I is recognized equival- 
ent to I u I'. The construction of states he gives is similar to mine, though his use of these 
states and the interpretation of the order generating them are quite different. 

The following theorem indicates that this definition of the information ordering does 
appropriately identify the agent's of "more informative than". 

Theorem 1. S* preserves -if and only if 

I > * I' <=; S* (I) cS* (I'). 

In other words, if there is a extended state set which appropriately represents _, then 
the information ordering will do what it is supposed to: it tells us when S*(I)cS*(I'). 

The agent's information ordering gives a very simple way to state the conditions 
which enable us to construct an appropriate extended state set. The crucial condition is: 

Definition 8 {>I} is consistent if >* is transitive and 

IT * F v=~ IT * 
I 

S) /_ ITE I{AX4 
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For brevity, I often say that - or >* is consistent in place of the more precise statement 
that the underlying {>,} is consistent. 

These properties seem not unreasonable for a subjective notion of "more informative 
than", though it is important to note that they do rule out some interesting forms of 
bounded rationality. While transitivity seems a fairly natural requirement, it does rule out 
resource-bounded reasoning, where an agent has a fixed amount of time (or other 
resources) to use for computation. To see this, suppose that if the agent learns I, he can 
deduce I' but no more, while if he began with the information I', he could deduce I". It 
seems quite reasonable to believe that if told only I, he could not deduce I". In this case, 
we would expect to have I>*I' (since I informs the agent of I'), I' >*I", but not I>*I", 
a violation of transitivity. Such intransitivities are ruled out by the existence of a subjective 
state space because >* is represented- by a subset relation on the subjective state space 
and, of course, this relation is transitive. 

As for (4), one direction seems very compelling: if I is more informative than I', 
surely this means that I is more informative than any single element of I'. The converse 
is not implausible but is certainly not as compelling. This assumption rules out the quite 
plausible situation where the combination of two pieces of information is more informa- 
tive than the pieces separately where, for example, I could be more informative than {I (} 
and more informative than {I f} but less informative than the two together. To see why 
this possibility is precluded by the subjective state space, note that if I is more informative 
than each of {Ip} and {Ipv}, then S*(I)cS*({Qp}) and S*(I) S*({Qy}). But then 

S*(I) c S*({ (p) n S*({ fl) = {s* E S* I (pe s* and e s* } = S*({p, }). 

Another way to get some intuition for consistency is by examples. It is not hard to 
show that if the agent's preferences respect logical equivalence (that is, I I' whenever 
S(I) = S(I')), then they are consistent. At the opposite extreme, if the agent recognizes no 
equivalences (other than recognizing that I is equivalent to itself), his preferences again 
satisfy consistency. 

The next theorem shows that consistency is what is needed to construct the subjective 
state space. 

Theorem 2. There is an S*DS which preserves - if and only if {> I} is consistent. 

In short, for {>I} to be Extended EU representable, it must be representable and 
consistent. Theorem 3 states that these two conditions plus either of two additional 
assumptions are sufficient for Extended EU. Neither additional assumption is necessary, 
nor is it necessary that at least one of the two holds. The first of the additional conditions 
is: 

Definition 9. FD is broad if it contains at least one p such that S({p}) = 0. 

In other words, 1D is broad if there is at least one contradiction in (D. This condition seems 
quite innocuous but is less economic than the following alternative: 

Definition 10. {>I} satisfies weak state independence (WSI) if there exists an onto 
function u: X--R such that whenever I -s and I is nonnull, we have 

f> I g 4=: u( (s) >t 
4 

{{ tt 

This content downloaded from 128.197.26.12 on Fri, 06 Nov 2015 21:53:10 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


350 REVIEW OF ECONOMIC STUDIES 

The primary requirement of WSI that preferences conditional on certain infor- 
mation sets depend only on the consequence associated with the identified state is weaker 
than Savage's state independence condition, P3. Savage's P3 is essentially an ordinal ver- 
sion of WSI but applied to every information set for which the act is constant on the 
associated set of states, rather than just those information sets which are recognized equiv- 
alent to a state. WSI also has a cardinal side to it, requiring these preferences to be 
representable with a utility function. The existence of a function u is implied by rep- 
resentability and so is not an additional restriction. The requirement that u is onto is an 
additional restriction, essentially requiring there to be no best or worst consequences and 
no "gaps". 

Theorem 3. If {>,} is Extended EU representable, then it is representable and consist- 
ent. If {J>} is representable and consistent and either 1D is broad or {J>} satisfies weak 
state independence, then it is Extended EU representable. 

3. EXAMPLES 

Recapping, the agent's preferences {J>} naturally identify an information ordering we 
can attribute to him. If his preferences are consistent, we can use this to identify an 
extended state set and represent the agent as an expected utility maximizer on this state 
space. Unfortunately, the extended state set is not unique. (Appendix D gives a charac- 
terization of the extended state set showing the extent to which it is identified.) As the 
following examples show, however, one can use simple and not implausible restrictions 
on the agent's reasoning ability to generate useful restrictions on the agent's subjective 
state space. 

To state the restrictions most simply, I make the following assumption throughout 
this section: 

Assumption 3. FD is not broad. 

In other words, I assume throughout this section that FD contains no contradictions. 
Remark 6 explains how to modify the statements of the results for the case where FD is 
broad. 

3.1. Example 1 

One not implausible property for >* to satisfy is 

Definition I 1. { >I} respects simple implication if S({ }) 5 S({ yl}) implies {p}>{ >* I y} . 

Intuitively, if p implies yf in standard logic, then the agent recognizes that p tells him 
that yf holds, so p conveys at least as much information to him as yf. The phrase "simple 
implication" is meant to focus on the fact that the condition only applies when the premise 
and the conclusion each consist of a single statement. 

This property has remarkably clean implications for the determination of the agent's 
subjective state space. To explain this, let S,* be the collection of sets we can construct by 
taking intersections of possible worlds. More formally, 

S* = {s*cs)ls* = nB, for some BsS}. 
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Let T denote the smallest topology on 1D containing S. The finiteness of S implies that T 

is the topology generated by the base S,*. More precisely, T is simply the collection of sets 
generated by taking union of sets in S,*. In short, s*E E 

- if and only if there is a collection 
. of subsets of S such that 

S*= UBe_(-) B. 

Theorem 4. If S* preserves -, then S*CT if and only if {1>14 preserves simple 
implication. 

In other words, given an intuitive, though not trivial, restriction on the information 
ordering, we can restrict attention to a very simple procedure for constructing impossible 
worlds namely, we only need to consider sets formed by taking unions of intersections 
of truly possible worlds. The following example gives a simpler procedure, though for a 
more restrictive case. 

3.2. Example 2. 

Recall that {>, } respects logical equivalence if S(I) = S(I') implies >I- >I-'. Clearly, this 
is too strong a property for boundedly rational agents. However, it is of interest for two 
reasons. First, it provides a particularly clean illustration of the construction of S*. 
Second, as we will see, it provides new insights into decision theory for unboundedly 
rational agents. 

The characterization of S* for this case is particularly nice when the "language" is 
sufficiently expressive. The specific notion is: 

Definition 12. 1D is rich if for every nonempty ScS, there exists pE- such that 
S({P}) = S. 

For example, the usual propositional logic (when S is finite) satisfies this condition. 

Theorem 5. If 'D is rich and S* preserves -, then S*cS*u {D} if and only if {>-,} 

preserves logical equivalence. 

Combined with Theorem 3, this result has a surprising implication. Suppose we focus 
on the case of a "perfectly rational" agent that is, one who recognizes all logical equival- 
ences. Suppose we make only minimal regularity assumptions on the preferences namely, 
Assumption 2, representability, and weak state independence. Note, in particular, that no 
sure-thing principle assumption is made at all. Then we can extend the state set to 
S*u {(} and represent these preferences by expected utility. It is not hard to show that 
one does not need to include a state equal to 0,12 so using S* as a state set is sufficient. 
In short, the extension of the state set, aside from capturing imperfect reasoning, can also 
"rectify" failures of the sure-thing principle. 

This result is a generalization of Gilboa and Schmeidler (1994). They show that 
Choquet expected utility with capacities that are belief functions is equivalent to standard 
expected utility on an enlarged state set. While their framework is different, it is not 

12. This statement relies on weak state independence. If one assumes that D is broad instead of weak state 
independence, then it is necessary to include D as a state. 
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difficult to show that the appropriate analogue of their enlarged state set is Sj *.l3 In a 
related vein, when Shafer (1976) shows that belief functions are equivalent to probability 
distributions on an enlarged set, the enlarged set is again the analogue in his framework 
of S*. Theorem 5 indicates why it is S,* which appears in these contexts it is precisely 
the way to extend the state space when agents reason correctly, an assumption maintained 
in both of these works. 

Remark 5. S,* also appears in the work of Rescher and Brandom (1979), where this 
is one of the two types of impossible worlds they introduce to study inconsistency. The 
other type introduced involves taking unions of elements of S. It is easy to see that T 

provides a natural generalization of these two constructions. See Lipman (1994a) for a 
more detailed discussion of this connection. 

Remark 6. It is simple to adapt the statements of Theorems 4 and 5 to the case 
where Assumption 3 is dropped, so 1D does contain some contradictions. Only two changes 
are required. First, in Theorem 5, {1(} is replaced by {F(} where 1D is the set of elements 
of 4D which are not contradictions. To understand the second change, note that since 
contradictions cannot appear in any information set, they are irrelevant to whether a 
given state set preserves the agent's recognized equivalences. In light of this, we can restate 
the theorems above as saying that the given property of {>IJ holds if and only if after 
removing all contradictions from all states, the resulting state set satisfies its given 
property. 

4. CONCLUSION 

In this paper, I have proposed a framework for an axiomatic study of bounded rationality. 
This approach constructs a state set which represents the agent's view of how pieces of 
information are related to one another. I then represent the agent's preferences using 
expected utility on this state set. Because the approach uses familiar notions like prob- 
ability, utility, and states of the world, my hope is that it may prove more useful in 
applications than models of bounded rationality based on less familiar concepts. 

One very natural direction for application is framing effects. The framework crucially 
relies on the idea that the agent may react differently to two equivalent pieces of infor- 
mation, precisely what framing effects are all about. Hence this approach may prove 
useful for more detailed models of framing effects, when they are likely to occur, how they 
affect decisionmaking, etc. For example, one might use this model to study advertising or 
other forms of persuasion as the attempt to manipulate framing effects. 

The framework also uses "language" (in the form of 1D) and the agent's interpretation 
of it in a critical way. This aspect of the model could be useful in a variety of applications. 
One particularly prominent example is contracts. In this context, the elements of D would 
include statements regarding the uncertainty the agents are contracting over. A contract, 
then, would be a function from 1D (or subsets of it) to outcomes or agreements. "Perfectly 
rational" agents would view S as the relevant state space and any proposed contract as 
the implied function from states into outcomes. Boundedly rational agents, however, 

13. To be more precise, the conclusion that the enlarged state set they consider is S* relies on the approach 
they take to updating as well. Interestingly, Ghirardato and Le Breton (1997) have recently shown that Choquet 
expected utility with general capacities is also equivalent to standard expected utility on an enlarged state set. 
Since they do not consider issues of updating, it is not completely clear what the analogous result here is, but 
the enlargement has a similar structure to 'r. 
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would not necessarily translate the contract in this fashion, allowing, for example, the 
possibility of disagreement regarding what the contract means. 

For a simple illustration of why this formulation of bounded rationality could have 
interesting effects, suppose that the contract is purely for risk-sharing purposes-say, one 
agent is risk averse and the other risk neutral. Then if the agents are perfectly rational, 
we would predict that the risk neutral agent would perfectly insure the risk averse one. 
Hence the contract would call for state-contingent trades which yield a consumption level 
for the risk averse agent which is constant over S. However, a boundedly rational agent 
would not necessarily view such a contract as involving perfect insurance that is, con- 
sumption may not be constant over S*. In the example in the Introduction, the "bet" 
considered is nonstochastic and hence has no risk whatsoever for a perfectly rational 
agent. However, most of us would be unsure about the outcome! Hence boundedly 
rational agents will view contracts differently, possibly preferring contracts which are 
"simpler" or incomplete. Similarly, whether a given set of markets is complete or not will 
depend on the subjective state space of the agents. In particular, markets which are com- 
plete in an objective sense may be incomplete from the agents' point of view and so may 
behave more like incomplete markets. 

There are also many interesting extensions of the model to consider. First, the exten- 
sion function h is unrestricted here. This function is crucial in that it describes how the 
agent views the outcomes of the possible acts and so it is worth considering some natural 
restrictions on h. One possible approach to this problem is to generalize the notion of an 
act to be a function from FD (or a subset of it) to consequences, analogously to the rep- 
resentation of contracts suggested above. In this way, we would drop the usual assumption 
that the agent perceives acts in the form of functions from a state space to consequences. 14 

A second extension of interest is to generate computation and computation costs as 
part of a representation of preferences- To see how this could be done, suppose we split 
information sets into two components, a "pure" set of information (relating to external 
events) and a statement of what feasible sets of actions the agent will be choosing from. 
Holding the second component of the agent's information fixed, we can carry out the 
analysis above to identify a subjective state set for the agent. The way this state set varies 
with the feasible set can be used to uncover a notion of computation cost. Intuitively, we 
would expect the agent to do more computation and hence have a more refined state 
space if the "value of information" is higher. Since the feasible set determines this value, 
we can use variations in the agent's state set across feasible sets to identify the compu- 
tation costs. 

Finally, an important topic for applications is the extension to many agents. In the 
many agent setting, it is natural to consider what agent 1 deduces when he learns that 
agent 2 knows some given fact. In other words, one could consider information sets which 
include modal propositions like k2P ("agent 2 knows p"). In such a context, one could 
analyse the conditions under which agents could be represented via partitions of some 
commonly known state space. Such a result might generalize Mukerji and Shin (1997), in 
much the same way that Theorem 5 generalizes Gilboa and Schmeidler (1994). 

APPENDIX 

A Preliminaries 

Throughout the appendix, for any set A, #A denotes the cardinality of A. For a set of sets, say B, uB is the union 
of all the sets in B. Also, for any information set I, let 

IC(I _ ( I I( r'_ Jd I'f n 

14. Kreps (1992) and Skiadas (1996) provide different approaches to deriving a subjective notion of acts. 
See Dekel, Lipman and Rustichini (1997) for discussion. 
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and let 

= {7rl7r= r(I), for some lEaY. 

The following lemma establishes some useful facts. (The mneumonic is that equations beginning with D 
give properties following from the definition, while those beginning with C follow from consistency.) 

Lemma 1. For any {>}, the associated 7, and >* satisfy: 

I F ~_-* If I> *I' > * I,(DI) 

IIC=l > I >* If (D2) 

r(I)e GJ VIJ;_ (D3) 

If {>11 is consi sent, then the associated m , and > * satisfy 

I >* II, VIE itf= I t I > J (Cl) 

I ', V tt. ut (C2) 

ICr(I') > rr(I) z9r(I'), (C3) 

r(I 1)n f 7rt E n I ig: 72r} (C4) 

Scn, (C5) 

Ir(AI)) =(I), (C6) 

I > * I' j I-lIul'. (C7) 

Proof For (DI), note that lIr' obviously implies I> *I' and the reverse. For the converse; suppose 
J>* I'>* L If either direction of >* comes from Irs-I', we are done. So suppose that l>* I' comes from 
ImluI' and I' >'* I comes from I'lulI'. Since is an equivalence relation, transitivity gives I= I'. 

For (D2), note that IlcI implies I= Iul'. Since is refiexive, then, we obtain I-luI', so I >l I'. 

To show (D3), let 

I= {IsI'e Yi"I}, 

so zr(I)= Q/. Then 

$(7r(I)) ImS(I'). 

But I'=rI implies S(I')= S(I), so S('r(I))= S(I). Hence if I is an infonnation set and so, by condition (2) of 

Assumption 1, has S(I)?0, then S(r(I))?0. Hence there is an information set-specifically, any seS(7(I))- 
which contains r(I). Hence by condition (1) of Assumption 1, 'r(I) is an information set as well. 

Remark 7. (D3) implies that I can consider whether r(I) is recognized equivalent to some other infor- 

mation set. I will often use (D3) for this purpose without comment. 

To show (C1), suppose I>* *I for all Irci By consistency, 

I>*'{P}, VpEI', VI'eE 

implying I>* U 
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For (C2), first note that (DI) implies 

I II, VI' C X I>*I' > *I, VI E A- 

By (Cl), then, I>*u. By (D2), ui>f* I' for all I'E-.I Since I' >* I for all I'E E7. the transitivity of >* implied 
by consistency yields u. > * I, so I-u. f by (D 1). 

For (C3), first note that I-I, so Icff(I). Hence, trivially, 

Kf(I) c I(I') > IC I(I'). 

For the converse, suppose Icff(I'). By (D2), then if(I') >* I. But (C2) implies I K(I), so I >* K(I). Hence by 
transitivity of >*, if(I') >* ff(I). Obviously, though, if(I') >* ff(I'), so (C1) implies if(I') >* if(I')U i(I). (D2) 
implies the reverse direction for >*, so f(I)Uf(I') f(I') by (Dl). Since I' f(I') by (C2), transitivity of 
gives f(I)Uf(I') I'. Hence the definition of ff(I') implies 

K(I) (I') 5 7r(I'), 

which implies ff(I)5 ff(I'), 
To show (C4), note that (C3) implies 

ff(I) c {n E'EicI5'}- 

Also, note that I-I, so Ic ff(I). Hence 

IC(I)e {C E n' IICC'}, 

giving the reverse inclusion. 
To show (C5), note that s-s implies s cf(s). By (D3), ff(s)EA-? Since S is the set of maximal elements of 

J this implies s= f(s), so SCHr. 
For (C6), (C2) implies I K(I). Hence 

ff(IC(I))= U{I UE.1I' (I)}=U{I'e.2jI I}=f(I). 

Finally, for (C7), from the definition of > I uIUI' implies I >* I'. To show the converse, suppose I I'. 
Then either IIu I' (in which case we are done) or I= I'. But in the latter case, I= I and (C2) imply I= Iu I', 
so again we are done. 

B. Proof of Theorem 1. 

Suppose S* preserves-. Then 

or I-I' 

r S*(I) = S*(IuI') = S*(I)rmS*(I') or S*(I) = S*(I') 

rt- S* (I)cS* (II). 

To show the converse, suppose 

I > * II rt- S* (I)55* (II). 
Then (Dl) implies 

I IX I > I >*I 
S*(I) = S*(I'), 

so S* preserves 

C. Proof of Theorem 2. 

First, I show that consistency is necessary. So suppose there exists an S* preserving-. By Theorem 1, we know 
that 

I > * II ct-- * (I Ca _ * (II). 
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So suppose I >* I' >* I". Then we must have S*(I)sS*(I')sS*(I'%, implying S*(I)sS*(I'). Hence I>* I", so 
>* must be transitive. Also, 

I >* I' r S*(I)cs*(') -*C)=pei' S*({p}) 

r S*(I) S*({p1}), VgpeI' 

XI > * I(Pi v cp E= I,. 

Hence >* is consistent. 
The proof of sufficiency is by construction. I show that if {>I} is consistent, then Hl (defined in Appendix 

A) preserves =. This is implied by Theorem 6, but I give a direct proof here. By (C3) of Lemma 1, consistency 
implies 

{rceHIICX} = {rIeHIr(I)5ir}. 

Also, by definition of 7r(I), if I-- I', then 7r(I) = 7r(I'). Hence I- I' implies 

{ 7EHl r(I)5r} = { irH jfi(I') ir}. 

Conversely, if we have I and I' such that this equality holds, then (C4) of Lemma 1 implies that 7r(I) = ir(I'). 
By (C2) of Lemma 1, then, I- 7r(I) = Tr(I') I', so ImI'. That is, if we set S* = Hl, we have ImI' if and only if 
S*(I)= S*(I'). By (C5), ScH so n preserves-. || 

D. Characterization of the Subjective State Set. 

Definition 13. FcHf is unionable if for all IEn.such that Ic ufl, we have 7r(I)cuh. 

Let 

f"= (D I fr = ufl, for some unionable HHc}. 

Also, let 

N= {I p (D I S({p}) = 0}. 

That is, N is the set of contradictions. 

Definition 14. A collection of pieces of information s*sc is a copy of a collection s'c4 if s*\N= s'. 

Note that the definition is written so that a state is a copy of itself. Let 97 denote the set of copies of 
elements of W 

Definition 15. S* c2 spans nI if for every reI , there exists S* cS* such that 

[nS~*]\N= Xr 

In other words, S* spans Hl if each element of Hl is copied by some intersection of elements of S*. 

Theorem 6. If is consistent, then S*2S preserves if and only if S* 5c and spans H. 

Proof. Suppose is consistent and is preserved by S*. First, I will show S*c/2. By (C2) for any 
information set I, I-, r(I), so we must have S*(I) = S*(7r(I)). Hence if Ics* ( S*, then r(I) cs*. 

Clearly, for any s* E S*, 

S*= |U(PCS*\N {(}J U [Upeps*5N {(Pl} 

But each cpes*\N is an information set. Hence we must have 7r({p}) s* for each such qp. Since pe ir({ Q}) and 
ir({p})rnN= 0 for every information set {v}, 

S = U4Es*\N iQ({})] U [UeES*,N {1N }] 

This content downloaded from 128.197.26.12 on Fri, 06 Nov 2015 21:53:10 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


LIPMAN BOUNDED RATIONALITY 357 

so that every s* e S* can be written as a copy of a union of sets in H. Suppose, though, that 

Ii= {jieHlif= f({(p}), for some (pEs*\N}, 

is not unionable. Then by definition, there is an Iss* such that irV(I) s*, contradicting S* preserving ~. Hence 

Next, I show that S* spans Hl. So suppose not. Let if* be any element of HI such that there is no S*cS* 
with [rmS*]\N= ir*. Let I= qS*(ir*)\N. Clearly, I?if*. By definition, s*e S*(ir*) if and only if ifr*cs*. Hence 
I*scrS*(ir*) Since ir *r N= 0, if*?I implies if*cI (where this denotes strict inclusion). 

By construction of I, Ics* for all s*eS*(ir*), so S*(ir*)sS*(I). Also, ir*cIcs* for all s*eS*(I), so 
S*(I)sS*(ir*). Hence, S*(I)=S*(ir*). This implies S(I)=S(ir*)?0, so Ie.._tSince S* preserves-, this implies 
if* -I Hence the definition of if( ) implies if(if*) = if(I) or, by (C6), if*= if(I). But I- I implies Ic ir(I) = ir*, a 
contradiction. Hence S* must span HI. 

To show the converse, suppose S* c AK and that S* spans Hl. I show that this implies that S* preserves 
First, fix any Iand I' with I-I'. Fix any s*eS*(I), so Ics*. Because IrN= 0, we must have Ics*\N. Because 
s*\Ne&, Iss*\N implies ir(I)ss*\N. But I'-I implies I'c ir(I), so 

I'cir(I)cs*\Ncs*. 

Hence S*(I)sS*(I'). The reverse inclusion follows from reversing the roles of I and I' so S*(I) = S*(I'). Hence 
I-I' implies S*(I) = S*(I'). 

To show that the reverse implication holds as well, suppose we have Iand I' with S*(I) = S*(I'). Obviously, 
then, 

{IireHHSI35*cS* (I) with if= [rmS*]\N} = { ie SI 35*cS*(I') with i= [r S*]\N}. 

Clearly, if S* c S*(I), then Ic qr*. Hence any if in the set on the left must have Ic ir. Furthermore, if we have 
a if which contains I, the only way to find a set S* satisfying [ rS*]\N = i is by taking S* cS*(I). Hence the set 
on the left is precisely the set of if containing I which S* spans. Since S* spans Hl, this must be all the -'s 
containing L In short, this is equivalent to 

{eIIC If}l = { I IIC | I'CIf} 

so 

nr {ifeIncIif}= n {ineniI' c5i} 

By (C4), this is equivalent to ir(I)= ir(I'). Hence I- I'. Hence S* preserves-. | 

E. Proof of Theorem 3. 

The necessity of representability is obvious. Theorem 2 shows that consistency is necessary. The sufficiency proof 
is by construction. First, suppose that { >} satisfies representability and consistency and 4D is broad. For each 
se S, fix a copy s' of s with s'?s. (The broadness of 4D implies that this is possible.) Let the collection of these 
sets be denoted S'. Let the extended state set be S* = l u S'. Since S is finite, S' is finite. By Assumption 2, Hl is 
finite, so S* is finite as well. By (C5) of Lemma 1, ScsrJ, so this specification guarantees that ScS*, as required. 
By Theorem 6, this specification of S* satisfies the requirement that S* preserve =. 

To continue the construction of the Extended EU representation, let u(x) = x for all xe R. Let A be uniform 
on S*. The final object to construct is the extension function h. To do this, first fix a collection of utility functions 

u,: F--R, one for each ire H, where u, represents >-f. By representability, this is possible for all nonnull if. If If 

is null, then f-, g for all f, ge F, so, obviously, again it is possible to find a u, function. 
As required, let h(f)(s) = f (s) for all se S. For s' S', let 

h(f)(s') = us,\N(f) -f (s'\N). 

Recall that s'\Ne S for all s'e S'. 
For re rI\S, we define h(f)(7r) by induction. To set up this induction, let flo= S and for k- 1, let 

fk {17re \UI=o fjI1Ircr' implies r'G UJ o O' 

where c refers to strict inclusion. Because elements of n are information sets, each must be contained in some 
se S. Furthermore, since S is the set of maximal elements of . >, no sE S can be contained in any elemeint of rl 
except itself. By the finiteness of 1, there must be some 7's which are strictly contained onily by i's in S. It is 
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easy to generalize this to show that there is some smallest finite K such that U k= O flk =HII and that every ire HI 
is contained in Hlk for a unique k. Let k(ir) denote that k such that ICe Hlk. 

We have already defined h(f)(ir) for if with k(ir) = 0. To complete the specification of h, let 

h(f)(f) = u(f) - hf)(f - Xc h(f)(s'). 

Since ifciC' implies k(ir) > k(ir'), this is a legitimate definition by induction. 
We now show that this specification of u, A, S*, and h guarantees that we represent the preferences. First, 

notice that if Ics* E S*, then ir(I) ss*. To see this, notice that it is implied by (C3) if s* EHI. If s* E S', then Ics* 
if s* is a copy of an element of S(I). But ir(I) I, so S(I) = S (ir(I)). Hence s* is a copy of an element of S (ir(I)), 
so 1r(I)sZs*. 

Hence for any Ie -land any fe F, we have 

E,ju(h(f )(s*))|s* E- S* (I)] 

S*(I)] 
= # *l s f *l h( f)(s ) 

#S*(I) [uzr(I)( f) , e n Iir(I)cir h( f )(m') - 
Is'e S'Ir(I)cs' h( f )(S') + 

,:'nI,(I)' h( f )(m) 
+ 

_s'E I7(j)cs* h( f )(S')] 

= S*(I) ()f) 

This function represents >, since u,(I) represents >,(,) and ir(I) I implies >,(,) = >,. Since p(S(I)) > 0 for all 
I, it is certainly positive for nonnull I. 

Now replace the broadness of 4D with the assumption that {>,>I satisfies weak state independence. Let u 
be the function WSI requires. Let S*= Hl. By Assumption 2, this is finite. Obviously, Theorem 6 implies that 
this preserves -. Let 

S*= {s*eS*'s'#s, for any null seS}. 

Let g(if)= 1/#S* for all ireS* and g(if)= 0 for ifreS*\S*. For each ireS*\S, let u,: F--R be a utility function 
representing >-f. Just as in the first sufficiency proof, this is obviously possible for null if and is guaranteed 
possible for nonnull if by representability of { > I}. 

To define h, set h(f)(s)=f(s) for se S. For ie S*\S*, h(f)(if) can be chosen arbitrarily. Finally, for ie 

S I follow a procedure analogous to that used in the first sufficiency proof. In particular, let 

u(h(f)(ir)) = uj(f) - . S*1,7, 
u(h(f)(if')). 

Since u is onto and since iCc if' implies k(ir) > k(ir') (where k is defined as above), this is a legitimate definition 
by induction. 

We now show that this specification of u, ,, S*, and h guarantees that we represent the preferences. As 
before, Ici fe S* implies if(I) c oi by (C3). Hence for any fe F and any Ie -F with I s for any s, we have 

El,,[u(h(f)(s))|s* e S*(I)] = * s* 5 - S* u(h(f)(s*)) 

= #S*(I) [u~(I(f ) - ffre~i *(I)cir u(h( f)(i')) ? ffi' s*i(I)cir u(h( f)(ifr'))1 

#S*(I) 

This function represents >, since u,(I) represents >,(,) and ir(I) I implies >(,) = >,. For any nonnull I with 
I-s for some s, S*(I) = {s}. Hence for any f E F, 

Eg[u(h(f)(s))se S*(I)] = u(ff(s)). 
#S*(I) 

By weak state independence, this represents >,. Hence >, is represented for every nonnull I. Clearly, p(S(I)) > 0 
for all nonnull I. || 

F. Proof of Theorem 4. 

In the remainder of the Appendix, when referring to a singleton information set {p}, I often omit the braces 
for notational ease. 
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First consider any singleton information set p. Because {>-} respects simple implication, (C7) implies 

pm {p, y4 for any v with S(p)S(iy). Hence 

{Vc=(DI S(p)L=S(V)j7r((p). 

But S((p)S(i) if and only if yr is true in ever state in S(p)-that is, if and only if fE nS( ). Hence 

{IyrEa(DjS((p y )}S=n(p)cw(p). 

To see that the inclusion cannot be strict, consider any ry i S(). Then there is a state sE S(p) with yfo s. 
But then for any inforation set I containing , s S(I). Hence for any such inforation set, S(I)?S(p), so 
I implying yfe ir( ). Hence for any singleton infonnation set 9, we must have z(q) = nS(g). 

It is easy to see that if is consistent, then for any information set I, 

mUP61 ( ). 

This holds because if is consistent, there is some S* which preserves it. For this S*, 

S*(J)=l 5fs*(P)( EnIS( ( )) =S*J(U f(() 

proving the claim. In particular, for any ira H, 

Hence by the definition of it and using (C6), 

n fl *(p) C: = 
m. 

Obviously, though, 

- Ucpe,t{PIcU,egr() 

Hence for each it H, 

49 UP x () =U ? - nS(( ) a T 

Hence Hcqt Because any union of elements of r is also an element of ; this implies tT. Hence by Theorem 
6 and Assumption 3, S* c. 

For the converse, suppose S* T. Suppose S(9p)$S(Qf. Consider any s* aS*(p). Since s*" a there must 
be a collection of subsets of S, say ?7 such that 

S* =UB.,:wnB 

Since pes*, it must be true that apnB for some BEa i Hence there is a Be 67with BcS(p). But then 

S((p)S(yip) implies BgS( ), so aEnB and yas*. Hence S(p)cS*( ). Since S* preserves , this implies that 
if S()=S(y), we have {p} >-* }, so {>} preserves simple implication. 

G. Proof of Theorem 5. 

Assume {>'} respects logical equivalence so IP-I' if and only if S(I) =S('). I first show that this implies that 

To see this, note that PE r(I) iff there is an F with 'F and F-I' L Hence there is an I containing p with 

sm s(r) =n,,.,-s(0c&f) ). 
Hence, p rr() implies S(I)cS(p). For the converse, suppose S(I)gS(9). Then 

(Iu {p })= SI)nS(p) = S(), 

so I-Iu{p}, implying (I). 

Therefore, 

By richness of 4, for every nonempty BcS, there is a pB with S(pB)= B. Hence for every BcS, there is an 
information set I such that r(I)= B. So H= SfP* 

This content downloaded from 128.197.26.12 on Fri, 06 Nov 2015 21:53:10 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


360 REVIEW OF ECONOMIC STUDIES 

To complete the characterization of S*, I need to characterize the unionable subsets of Hl. So suppose 
flcHl is unionable. We know that fl is always unionable if uht= url, so suppose uflcurl. We know that fl is 
unionable if ufte Hl, so assume this is not the case. Hence, in particular, fH contains at least two elements. From 
the result above, 

u1 = U r Et (SI). 

Clearly, if there exists ifl, if2eE with S(ifi ) S(if2), then r-S(ifI)2r-S(if2). Hence uH is unaffected by eliminating 
any such iu2, so, without loss of generality, I assume there is no such iu1 and if2. 

First, suppose we have ifl, f2efl with S(ifI)r-S(if2)#0 but S(ifI)9S(if2) and vice versa. By richness of 1, 
there exists qp1 and q2 such that S(pi)= S(if) for i= 1, 2. Hence the fact that {>, } preserves logical equivalence 
implies {(pi }- ifi, so (piE ifi for i= 1, 2. Therefore, {IT,, q2 }5ufl. Also, S({(pI, (p2 }) = S(I)rmS(p2) = S(ifI )rmS(if2) 
which is nonempty by assumption. Hence {IpT, qP2 } is an information set contained in uHt. By the definition of 
unionability, then, 

ir Q T, , 2 })SU = u XEA rS (i). 

But the fact that {>I} respects logical equivalence implies 

( (PPI, q2 }) = S({PI, P2 }) = S[S(KI )r_S(K2)]- 

Clearly, S(ifI)r-S(if2)cS(ifi) for each i, so [S(ifI)r-S(if2)]Dr-S(ifi). Hence ufl remains unchanged and its 
unionability unaffected if we replace if1 and if2 with if1 u if2 (since S(ifi u if2) = S(ifi ) r- S(if2)). Hence we can 
assume that for every ifT, if2 E , S(i ) 

- S(i2) = 0. 

So suppose that we have ifl, if2eH with S(ilf)r-S(if2)= 0. Suppose #S(if2)>2. Fix any seS(i2). By rich- 
ness of 0, there exists (p with S(p)= S(ifi)u{s}. Hence (pe rNS(ifi), so (PeuHl. Note that 

S(if2UJ{q})= S(if2)rmS((P)= S(if2)r[S(ifI)\{s}]= {s}. 

Hence f2uT{(p} is an information set and is contained in ufl. By unionability, then, if(if2u{(p})ctH. However, 
the fact that { >I } respects logical equivalence implies that i2U { (p} -s. Hence we have 

if(if2U{(p})= scU&JlEf1 r-S(if). 

Clearly, se S(if2) implies s2r-S(if2). Hence uHt remains unchanged and its unionability unaffected if we assume 
that for every irefH, #S(if)= 1. 

Therefore, if fl is unionable, then, unless ul e Hl or ufl = uHl, we must have 

uHt= uB, 

for some BsS. Since every ife H is an information set, u sc uS. Since Sc H by (C5), we must have uHl= uS. 
Hence uH-^uH-I implies B#S. Furthermore, ScHlr and uflrl implies #B>2. 

Fix any seS\B and any s1,s2eB. By richness of 1, there exist (Pi and (2 such that S(Ti)= {s,si}, for i= 
1, 2. Clearly, (i e ufl for i= 1, 2, so { (PI ,(P2 } is an information set contained in uli. By unionability, then, 

ZT({ (PI, T2 }) C uftl 

But if({(pi, (P2 })= s. Since s was arbitrary, this implies uSsurI. As noted above, uHl= uS, so this implies 
uHl= uHl. 

Hence the only unionable subsets of Hl are subsets fH such that ut e H or uHt= uHl= uS. Because we 

have assumed that there are no contradictions in 1, uS = (D. Hence 7/= S* u[uS], so by Theorem 6, 
S* S* u {qD}. 

For the converse, suppose S*s S*u {q?}. Suppose S(I)= S(I'). Fix any s* e S*(I). Clearly, if s* =1, then 
I'cs* as well. So suppose s*#). Then there is BcS such that s* = rmB. Since Ics*, we must have BcS(I). But 
then S(I) S(I') implies BcS(I'), so I'cs* also. Therefore, S*(I)sS*(I'). The symmetric argument establishes 
the converse, so S*(I)= S*(I'). Since S* preserves -, we see that {>I} respects logical equivalence. 
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