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Abstract

We extend implementation theory by allowing the social choice function to depend on more than just
the preferences of the agents and allowing agents to support their statements with hard evidence. We show
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transfers beyond those called for by f . If transfers can be large, f can be implemented in a game with
perfect information when there are at least two players under a boundedness assumption. For both results,
transfers only occur out of equilibrium. The use of evidence enables implementation which is robust in
the sense that the planner needs little information about agents’ preferences or beliefs and agents need little
information about each others’ preferences. Our results are robust to evidence forgery at any strictly positive
cost.
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1. Introduction

This paper addresses a pair of related limitations present in the theory of implementation
since the seminal work of Hurwicz [20] and Maskin [25,26]. By implementation, we refer to
what is sometimes called full implementation — that is, the requirement that every outcome
selected by the solution concept under consideration in the game induced by the mechanism
leads to the social alternative specified by the social choice function. The first limitation is the
assumption that the social alternative to be implemented depends only on the profile of prefer-
ences of the agents.1 As we argue below, this excludes many important situations of economic
interest. The second limitation is the assumption that the agents cannot provide hard evidence.
Obviously, hard evidence can establish the veracity of statements which would not be incen-
tive compatible. Furthermore, use of hard evidence is very common in real world institutions,
so the omission of this possibility from the theory of implementation is clearly an important
gap to fill.2 As will become clear shortly these two issues are related in that it is impossi-
ble to address the first limitation without introducing evidence. In addition, we will show that
implementation with evidence has robustness properties which are not possible in standard mod-
els.

The general goal of our research is to extend the standard theory by considering a more gen-
eral model that is not restricted by these two assumptions. In this paper we study complete
information implementation, primarily focusing on subgame perfect equilibrium.

Let I = {1, . . . , I } be a set of agents, A a set of social alternatives, and S a set of states. A state
s ∈ S specifies all the parameters that are relevant for the determination of the alternative f (s)

that a social planner (henceforth, SP) would like to implement. As we explain shortly, a state also
determines all relevant characteristics of the agents. The function f : S → A is called the social
choice function (SCF). We assume that SP does not know the true state but that every agent i ∈ I
does know it. (This is the assumption of complete information.) As in the usual model, each
agent i ∈ I in each state s ∈ S has a preference �i,s over the set of alternatives. (This is phrased
differently in the usual model, but this difference is one of notation, not substance.) The more
significant change is that we also assume each agent i has a proof technology, Mi = {Mi(s)}s∈S ,
where Mi(s) is the set of events (subsets of S) that player i can prove in state s. So E ∈ Mi(s) if
in state s, player i has some evidence he can present which proves that the true state lies in the
event E. Thus a state also specifies the hard evidence available to the agents.

To see that the standard model is a special case of this model, note that the assumption that
players cannot prove anything corresponds to Mi(s) = {S} for every i ∈ I and s ∈ S. Similarly,
the assumption that the social choice depends only on the preference profile translates to the
requirement that if �i,s = �i,s′ for every i ∈ I , then f (s) = f (s′). In our model, this condition
need not hold, in which case none of the standard implementation results (e.g., Maskin [25],
Moore and Repullo [29], Abreu and Sen [2], Palfrey and Srivastava [32], or Abreu and Mat-
sushima [1]) apply. To see this, simply note that if the preferences of the agents do not vary
across states and if agents cannot present evidence (as the usual model assumes), then the game
induced by any mechanism in the usual model will not vary across states, so the set of equilibria

1 In a sense, this is a result, not an assumption. As we explain below, without evidence, it is impossible to implement
an outcome that depends on more than the preferences of the agents.

2 It would be fair to say that the extensive literature on mechanism design (where we only require an equilibrium with
the outcome specified by the social choice function) has also, by and large, the same limitations. We cite some notable
exceptions in the sequel.
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cannot vary across states. Hence the social choice cannot depend on more than the preference
profile if there is no evidence available.

Our goal is to study the conditions on the proof technology, the preferences of the players,
and the social choice function which make implementation of the social choice function possi-
ble. We identify a simple condition on the relationship between the proof technologies of the
agents and the social choice function, f , which we call measurability, which is necessary for
implementation of f when the preferences are state independent.

We then show that measurability is sufficient for implementation of f for every preference
structure if SP can perform monetary transfers among the players beyond those called for by f .
More specifically, our first sufficiency result, Theorem 1, shows that even if we require use of the
very natural equilibrium notion of backward induction in a perfect information game, measur-
ability implies implementation is possible if there are at least two players under a boundedness
assumption. Our second sufficiency result, Theorem 2, shows that even if we restrict monetary
transfers to be arbitrarily small, measurability implies implementation is possible if there are at
least three players in a mechanism which involves an integer game. This mechanism has only
one stage and hence it implements in Nash equilibrium as well. For both theorems, transfers only
occur off the equilibrium path. We also show in Theorem 3 that for the problem of allocating
a set of goods among a set of agents, we can achieve implementation in a perfect information
mechanism without monetary transfers under weak conditions.

We emphasize that the measurability condition puts no restrictions on how the preferences of
the agents relate to the evidence available and the social alternative to be implemented. Thus,
if measurability is satisfied, SP can implement without knowing anything about the preference
structure and its relation to the proof technologies and social choice function. We also show that
the agents do not need more than minimal information about the preferences of other agents to
play equilibrium strategies. As a result, the planner does not need to know whether the agents
know each other’s preferences or what they believe about the preferences of others. A different
and surprising form of robustness is that our results also hold if evidence can be forged at an
arbitrary strictly positive cost.

Finally, we relate our results to the classical work of Maskin [25] and Moore and Repullo
[29].3 In particular, we explain how our condition of measurability relates to Maskin’s mono-
tonicity and Moore and Repullo’s preference reversals in a modified model with an extended
outcome space which includes evidence.4

To further motivate the issues, we present three examples. In the first two examples, the prefer-
ences of the players are independent of the state. In such cases, the standard theory of implemen-
tation is irrelevant: if players cannot present any evidence, then for any mechanism the set of equi-
librium outcomes is independent of the state. The third example illustrates a situation where SP
has limited information about the preferences of the players. Clearly, in such a situation SP would
like to use a mechanism which will implement for every profile of preferences of the players.

1. Consider a personal injury trial where the problem of SP is to determine the level of com-
pensation that the defendant should pay the plaintiff. Suppose that SP (the judge) wants to set
the compensation equal to the damage that has been caused to the plaintiff but does not know
what that damage is. Thus, the set of alternatives is the set of possible compensations and the
state specifies the level of damages. Clearly, the preferences of the two players over the set of

3 See also Abreu and Sen [2].
4 We thank an anonymous referee for drawing our attention to this relationship.
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alternatives are independent of the state — the plaintiff always prefers a higher compensation
and the defendant a lower one.

2. Consider the problem of an organization allocating a fixed budget among a set of individuals
or departments. Here again it is reasonable to assume that each player wants to get as much as
possible regardless of the state. On the other hand, SP wants to implement an allocation which
depends on which department can most efficiently use the organization’s resources to further its
goals, an objective which depends on the state of the world.

3. Consider a situation where the set of players is a public commission that has to decide
how to allocate money between different projects. Each member of the commission may have
a personal preference among the projects. For instance, some may be close to his home or may
benefit family members or friends. Clearly, personal benefits that members stand to gain from
the projects are irrelevant for the selection rule which SP would like to implement. Thus, from
the point of view of SP, the members of the committee are experts who may have personal
biases and from whom information should be extracted. Theorems 4 and 5 show that if the
social choice function satisfies measurability, then SP can implement when he has no information
about the preferences of the players and even when they have no information about each others’
preferences.

The literature on communication with verifiable information is quite extensive, so our ac-
count must be brief and very partial. Starting with Grossman [17], Grossman and Hart [18], and
Milgrom [27], there is a growing literature which examines persuasion games. In these games,
a set of agents (often only one agent) make verifiable statements to a “receiver” who takes an ac-
tion. See, for example, Fishman and Hagerty [10], Glazer and Rubinstein [13–15], Lipman and
Seppi [24], Milgrom and Roberts [28], Seidmann and Winter [35], Sher [36], and Shin [37]. See
also Forges and Koessler [12] and Okuno-Fujiwara, Postlewaite, and Suzumura [30] for other
interesting models of games where players make verifiable statements.

There has been some work that examines communication of verifiable information in the
context of mechanism design [3,6–8,16] and also more recently communication of verifiable
information with a mediator [11]. These papers analyze environments with incomplete informa-
tion and primarily focus on the question of identifying an appropriate form of the Revelation
Principle — that is, when some form of a direct revelation mechanism suffices for achieving an
equilibrium with a particular outcome. By contrast, we focus on (full) implementation, where we
seek games for which every equilibrium has the desired outcome.

There are a few papers that discuss implementation with evidence in specific contexts. Hur-
wicz, Maskin, and Postlewaite [21] and Postlewaite and Wettstein [33] consider the implemen-
tation of the Walrasian social choice function in a model where a player may misrepresent his
endowment by destroying or hiding some of it. In this setting, showing (part of) one’s endowment
proves that the player has at least that much. Bull and Watson [6] study Nash implementation of
a “zero-sum” social choice function that specifies monetary transfers between a set of agents.

Perhaps the closest predecessor to the current research is Lipman and Seppi [24]. They con-
sider a game of persuasion and obtain necessary and sufficient conditions for robust inference of
the true state. While their results are phrased in terms of equilibrium outcomes of a fixed game,
many of the results can be directly translated into statements of implementation of a social choice
function. However, their analysis is limited by several assumptions. First, they assume that all the
players have the same proof technology. Second, they assume that players have conflicting pref-
erences. Finally, for the most part, they restrict attention to mechanisms where each player sends
a message only once and players move in a sequence. The results which we present in Section 3
cannot be obtained by such mechanisms.
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We discuss another closely related paper, Kartik and Tercieux [23], in Section 3 after a pre-
sentation of our results.

In Section 2, we define the model. We turn to the results in Section 3. After showing that
measurability is necessary for implementation with state independent preferences, we turn to
environments with monetary transfers. In Section 3.1, we show that measurability is sufficient
for implementation in a perfect information game in bounded environments. In Section 3.2, we
show that measurability is sufficient for implementation in a one-stage simultaneous move game
with ε transfers. In Section 4, we discuss the sense in which the implementation is robust with
respect to the planner’s information about the agents and to the possibility of forging evidence. In
Section 5.1, we explain how our result relates to standard implementation results on an enlarged
outcome space. While this connection provides one means of proving our main theorems, our
proofs are more direct as we explain. In Section 5.2, we provide a series of examples demon-
strating that our results are tight. Section 6 concludes. Proofs are contained in Appendices A–E.

2. Model

A social environment Ψ is a tuple 〈I,A,S, (�i,s ,Mi(s))i∈I, s∈S〉. I = {1, . . . , I } is the set of
agents and A is a set of social alternatives. S is the set of states of the world. �i,s is the preference
relation of agent i over A at state s.

The more novel part of the model is Mi(s). This is the set of “hard evidence” messages i has
available in state s. When agent i presents a message mi ∈ ⋃

s∈S Mi(s), he presents proof of the
event E(mi) = {s | mi ∈ Mi(s)}. That is, he proves the event that consists of the states in which
mi can be presented. It is convenient to identify the message or hard evidence mi with the event
E(mi) and thus we define Mi(s) as the set of events that i can prove at state s.

This definition implies two important properties of Mi(s). First, for all E ∈ Mi(s), we must
have s ∈ E. That is, agent i cannot prove something that is false. Second, E ∈ Mi(s) implies
E ∈ Mi(s

′) for every s′ ∈ E. In words, if the agent can prove event E in some state, he must
be able to prove it in every state in E. In subsequent discussions, we refer to this property as
consistency. To understand this property intuitively, note that it simply embodies the idea that if
a particular piece of evidence proves the event E, no more and no less, then this piece of evidence
must exist exactly when E is true.

For one of our results, we also assume that there are no restrictions on the amount of his
evidence any agent can present. Formally, we say that the evidence structure is normal if for
every i and every s,⋂

E∈Mi(s)

E ∈ Mi(s).

That is, for a normal evidence structure, it is always feasible for i to prove the event that corre-
sponds to presenting all the evidence in his possession. Thus normality implies that there are no
effective constraints on the time and effort that are required to establish a claim.5

5 Lipman and Seppi [24] first identified this condition, calling it the full reports condition. Most papers refer to this
assumption as normality following Bull and Watson [7]. While most of the literature assumes normality, see Lipman and
Seppi [24], Glazer and Rubinstein [13–15], Bull and Watson [7], and Kartik and Tercieux [23] for models which relax
the assumption. We thank Kartik and Tercieux for pointing out that a previous draft of this paper stated an unnecessarily
strong version of this property.
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It would be very natural to also assume that S ∈ Mi(s) for all s. That is, any player i can
always present a trivial message that proves nothing. However, such an assumption is not needed
for our results.

Let Mi = ⋃
s∈S Mi(s). We say that a message mi ∈ Mi refutes state s′ ∈ S if mi /∈ Mi(s

′).
That is, mi could not have been sent at state s′. Equivalently, mi refutes s′ if s′ /∈ mi . Note that
player i can refute state s′ at state s iff Mi(s) � Mi(s

′).
For a simple example of what this framework allows, suppose there is one agent and two states

of the world, p (where the agent can play the piano) and np (where he cannot). Then a natural
specification of the evidence available to player 1 is M1(p) = {S, {p}} and M1(np) = {S}. To
see this, note that if player 1 cannot play the piano, all he can do is make random noises with it.
However, this does not prove he cannot play the piano, since he could make the same noises if he
does know how to play. Hence in state np, the only event player 1 can prove is the trivial event S.
On the other hand, in state p, the agent could provide the trivial proof of S by making random
noises or could play a piece which demonstrates his ability, hence proving {p}.6 The example
represents a general phenomenon — in many situations, proving a negative proposition (“agent
i cannot do x” or “agent i does not have y”) is difficult or impossible.7

We refer to the set {�i,s | i ∈ I, s ∈ S} as the preference structure. We say that a preference
structure has state independent preferences if the preference of each player over A is independent
of s. That is, for every i ∈ I and s, s ′ ∈ S, we have �i,s=�i,s′ .

A social choice function (SCF) for Ψ is a function f : S → A. The social choice function
represents the outcome a social planner (SP) wishes to achieve as a function of the state. The
social planner does not know the true state but every player in I does know it, as in the standard
complete information implementation problem.

We think of a state s ∈ S as a specification of all facts about the world which are relevant
for the implementation problem. In particular, a state specifies every fact that is relevant for
the determination of the alternative that SP wishes to implement, whether these facts affect the
preferences of the agents or not. As in the examples in the introduction, SP’s preferred outcome
may vary across states even when the preferences of the agents do not. In addition, as is clear
from the definition, a state specifies the preference of each player over the social alternatives and
the evidence that he can present.

There is one conceptual question we must address before defining mechanisms in this environ-
ment, namely, whether the mechanism can require or forbid an agent to present certain evidence.
In the usual definitions, SP is completely free to determine the set of messages an agent may use
in any given situation. However, when the messages include hard evidence, can the mechanism
require use of some messages (when the agent has them available)? Alternatively, can it forbid
use of some messages?

Turning to the possibility of compulsion first, one can imagine situations where the social
planner knows that the evidence an agent has is kept in a specific location (say, documents in a
bank safe) and has legal authority to seize this evidence. In a scenario like this, the social planner
can force the agent to reveal the evidence he has. Clearly, in such a case, there are no interesting

6 The piano player example appears in Lipman and Seppi [24] who attribute it to Mike Peters.
7 For example, Hurwicz, Maskin, and Postlewaite [21] and Postlewaite and Wettstein [33] assume that a player who

has x units of a good can prove that he has at least y units for every y � x by simply showing y units. However, the
player cannot prove that he has exactly x units because he might be hiding some units. See Okuno-Fujiwara, Postlewaite,
and Suzumura [30] for a similar model. See also Shin [37] for a model where an agent can prove that he has evidence by
providing it, but can never prove that he does not have evidence.
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incentive questions surrounding such evidence — the social planner can always learn it whether
the agent has an incentive to reveal it or not. In reality, there are many situations where the plan-
ner does not know whether the agent has evidence and, if so, where it could be found. In such
a case, even the most draconian legal requirements do not force presentation of evidence, but
merely provide very strong incentives for agents to choose to provide it. To see the point con-
cretely, consider the piano player example above. Can the mechanism say that in state p, player
1 has no option other than to present the evidence {p}? We assume that this is not possible. The
mechanism can give incentives for the agent to provide this evidence by, for example, punishing
the agent severely if he does not provide it. However, this is quite different from constructing a
mechanism in which in state p, it is not feasible for player 1 to avoid providing this proof. For
one thing, punishing the agent for not providing evidence implies that he is punished in state np

as well.
As for forbidding some messages, again, in principle, this can be valuable for SP.8 However,

it is difficult to draw a line between requiring presentation of evidence (which we prohibit) and
forbidding the use of relatively uninformative evidence. In any case, given our other assumptions,
our results do not depend on whether we allow SP to forbid some messages or not.9 Hence for
simplicity, we assume he cannot.

In short, we assume that whenever an agent has an opportunity to present evidence in a mech-
anism, the mechanism must allow him to present whatever of his available evidence he chooses.
Of course, the way outcomes depend on his choices is unconstrained.

More specifically, a mechanism is a game form with finitely many stages which specifies at
each history h of the game a subset of players who act simultaneously at h after observing h.10

That is, the players who act at the history h are fully informed about all players’ choices in prior
stages. An action for a player i is a pair that consists of a cheap talk message ci (that is, ci

can be played in every state s) and a hard evidence message mi . The assumption that player i

can present any evidence he has means that at state s, player i can play any message mi in the
set Mi(s). In addition, the mechanism defines an outcome function which specifies the social
alternative a ∈ A that SP chooses as a function of the complete path of play as summarized by
the terminal history.

For notational simplicity, our definition of a mechanism imposes more restrictions than this.
In particular, we consider only multistage games where the set of “nonevidence” messages avail-
able to a player is constant across his information sets. However, we emphasize that this is only to
avoid excessive notation. As will be obvious from the proof, our necessity result would hold for
any class of games and any equilibrium notion. Since we can prove sufficiency by constructing
any game, the restriction to multistage games is without loss of generality for sufficiency results.

Formally,11 a mechanism consists of the following objects. For each player i, there is a set Ci ,
interpreted as the “cheap talk” messages available for i. We also have a set of histories, H ,
where a history h ∈ H is a finite sequence (h1, . . . , hk) for some k. We assume that the empty se-
quence, denoted ∅, is an element of H and that if (h1, . . . , hk, hk+1) ∈ H , then (h1, . . . , hk) ∈ H .

8 We thank Kartik and Tercieux for an illuminating exchange on this subject.
9 Our necessary condition is necessary whether or not SP is allowed to forbid some messages and our sufficiency

results do not use such prohibitions.
10 It is easy to show that our necessity result does not rely on the finite bound on the number of stages of the mechanism
and, as we show, sufficiency can be proved with such mechanisms. Thus our results would not change if we allowed
mechanisms with an unbounded number of stages.
11 Our definition is a slight variation on that of Osborne and Rubinstein [31], Section 6.3.2.
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A history h = (h1, . . . , hk) ∈ H is terminal if there is no hk+1 such that (h1, . . . , hk, hk+1) ∈ H .
Let HT denote the set of terminal histories. We also have a function P : H \ HT → 2I \ {∅}
where P(h) is the set of players who choose actions at history h where the interpretation is
that these players move simultaneously after having observed history h. We require that if
(h1, . . . , hk, hk+1) ∈ H , then hk+1 ∈ ∏

i∈P(h1,...,hk)
Ci × Mi . (Recall that Mi = ⋃

s∈S Mi(s).)
That is, each component of a history is tuple of cheap talk messages and evidence statements,
one for each player in the subset of players who move at that stage and these choices are made
simultaneously. In line with this, we write hk+1 = {(ci,mi)}i∈P(h1,...,hk)

Since, at state s, player i can only provide evidence in the set Mi(s), the set of actions available
to each player i at each history h ∈ H , i ∈ P(h), is restricted to the set Ci ×Mi(s). Say that a his-
tory (h1, . . . , hk) is feasible in state s if for n = 1, . . . , k, letting hn = {(cin,min)}i∈P(h1,...,hn−1),
we have min ∈ Mi(s) for all i ∈ P(h1, . . . , hn−1). Formally, our assumption that players cannot
be compelled or forbidden to present evidence takes the following form: If (h1, . . . , hk, hk+1) ∈
H is feasible in state s and h′

k+1 ∈ ∏
i∈P(h1,...,hk)

Ci × Mi(s), then (h1, . . . , hk, h
′
k+1) ∈ H .

Finally, we have a function g : HT → A specifying the outcome selected by the mechanism
for each terminal node. A mechanism Γ is the tuple 〈H,P,g, (Ci)i∈I〉.

We say that the mechanism Γ uses limited evidence if for every history (h1, . . . , hk) ∈ H , for
every player i, there is at most one � < k such that i ∈ P(h1, . . . , h�). That is, the mechanism uses
limited evidence if no player can present evidence more than once. To understand the reason this
property may be of interest, recall that an evidence structure is normal if it is possible to present
all of one’s evidence in a single message. If we consider nonnormal evidence structures but
allow an agent enough opportunities to present evidence, we effectively restore normality. Thus
in considering results that do not rely on normality, we focus on mechanisms which use limited
evidence.

The mechanism Γ is a one-stage mechanism if every nonempty history has length one. The
mechanism has perfect information if for every nonterminal h ∈ H , P(h) is a singleton.

For every s ∈ S, a mechanism Γ induces a game, denoted by Γ (s), where the set of histories
is the set of histories that are feasible in state s and the preference of player i over the set of
terminal histories is the preference that is induced by �i,s .

We say that a mechanism Γ implements a social choice function f if for every s ∈ S and
every profile of pure strategies σ s = (σ s

1 , . . . , σ s
I ) that is a subgame perfect equilibrium in the

game Γ (s), we have g(σ s) = f (s) (where g(σ s) is the alternative that is selected by g at the
terminal history that is reached under σ s ). Obviously, if Γ is a one-stage mechanism, then the
set of subgame perfect equilibria of the induced game is the same as the set of Nash equilibria.

The definitions for our robustness results are given in Section 4.

Remark 1. In the text, we focus on implementation in pure strategy equilibria. Most of the
proofs cover mixed strategy equilibria also and Appendix F shows that all results carry over to
implementation in mixed equilibria.

3. Main results

This section contains our main implementation results, while the robustness results are pre-
sented in Section 4.

We first present a simple condition, measurability, which is necessary for the implementation
of a social choice function when the preferences are state independent. We then turn to envi-
ronments where the social planner can perform monetary transfers among the players and show
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that this condition is also sufficient for implementation of f for every preference structure, state
independent or otherwise. Theorem 1 establishes that it is possible to implement any SCF f

satisfying measurability with a perfect information mechanism when there are at least two play-
ers under a boundedness assumption. This result does not require that the evidence structure be
normal. Theorem 2 establishes that, with three or more players, any measurable f can be imple-
mented with only “small” (epsilon) monetary transfers though at the cost of using a mechanism
which involves an integer game and assuming normal evidence. Furthermore, in this case, f can
be implemented in a one-stage mechanism, establishing that it can be implemented in Nash equi-
librium as well. Finally, in the special but important case of allocation problems, Theorem 3
establishes implementation with no transfers at all under weak conditions, again regardless of
whether we assume normality.

For both Theorems 1 and 2, we present examples which relate the mechanisms we use to
the classical mechanisms used by Maskin [25] and Moore and Repullo [29] and demonstrate
the robustness of our mechanisms. These issues are discussed in more detail in Section 5.1 and
Section 4 respectively.

We turn now to a formal statement of our results.

Definition 1. Given a social environment Ψ , we say that the SCF f satisfies measurability if for
every pair of states s and s′ with Mi(s) = Mi(s

′) for all i, we have f (s) = f (s′).

In other words, define two states to be equivalent if every agent has the same set of available
evidence in the two states. Then f satisfies measurability if f is measurable with respect to the
partition of S induced by this equivalence relation.

Put differently, measurability says that if the alternatives that are selected by f at the states s

and s′ are different from each other, then there exists some player i who can either refute state s′
when the true state is s (i.e., Mi(s) � Mi(s

′)) or can refute state s at s′ (Mi(s
′) �Mi(s)).

Proposition 1. Let Ψ be a social environment with state independent preferences and let f be
an SCF for Ψ . If f can be implemented, then f satisfies measurability.

Proof. Suppose f is implemented by the mechanism Γ . Fix any pair of states s, s′ ∈ S such that
Mi(s) = Mi(s

′) for all i. It is easy to see, then, that a history h is feasible in s iff it is feasible in s′.
Since the preferences in states s and s′ are also the same, we have Γ (s) = Γ (s′). Hence the set of
subgame perfect equilibrium outcomes in Γ (s) and Γ (s′) are the same. Since Γ implements f ,
then, we must have f (s) = f (s′), so f is measurable. �

Clearly, this result is not driven by our restriction to multistage games or our focus on subgame
perfect equilibrium and does not depend on whether we assume normality or not. The result holds
for any class of mechanisms and any equilibrium concept simply because a mechanism cannot
induce different games in states s and s′ unless some agent’s preference or evidence differs in
the two states. The result highlights the obvious fact that for the outcome to vary across states,
either preference variation or evidence variation is necessary.

Definition 2. We say that Ψ is a social environment with monetary transfers if the following
conditions hold. First, there is a set Â such that the set of alternatives A can be written as

A =
{
(â, t1, . . . , tI ) ∈ Â × RI

∣∣∣ ∑
ti � 0

}
.

i∈I
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Second, for each i, the preference relations �i,s for s ∈ S can be represented by a utility function
ui : A × S → R of the form

ui

(
(â, t1, . . . , tn), s

) = vi(â, s) + ti

for some function vi : Â × S → R. Finally, player i’s preferences over lotteries over A are repre-
sented by the expectation of ui .

As we explain below, the linearity of ui in ti is not critical for our results. The assumption on
preferences over lotteries is made in order to establish that our results are valid not only for pure
subgame perfect equilibrium but also for mixed equilibria.

The following terminology will be convenient. We say that an SCF f : S → A is essential if
for every s ∈ S, there exists an alternative â(s) ∈ Â such that f (s) = (â(s),0, . . . ,0). We have
the following interpretation in mind. The social planner is interested in implementing a function
which maps S to Â, not A. To obtain this goal he uses monetary transfers as incentives to induce
revelation of the true state. We emphasize that the social choice function f may itself call for
transfers and that the ti ’s are “above and beyond” what f calls for. That is, Â itself may have
a product structure which allows for transfers. In this sense, the restriction to essential f ’s is
without loss of generality.

Given any ε > 0, we say that a mechanism uses ε monetary transfers if for every terminal
history h, if g(h) = (â, t1, . . . , tI ), we have |ti |� ε for all i. We say that a mechanism is budget-
balanced if for every terminal history h,

∑
i∈I ti = 0 where g(h) = (â, t1, . . . , tI ).

3.1. Implementation in a perfect information game

Let

V (Ψ ) = sup
i∈I, s∈S, â,â′∈Â

vi(â, s) − vi

(
â′, s

)
.

Thus V (Ψ ) is an upper bound on the monetary value of a change in the selection of an alternative
in Â for every player i and every state s. We say that an environment is bounded if V (Ψ ) is finite.

Our first sufficiency result yields implementation in a class of games where subgame perfec-
tion seems particularly natural, namely games of perfect information. We note that this result
does not require normality of the evidence structure.

Theorem 1. Let Ψ be a bounded social environment with monetary transfers and at least two
agents. Let f be an essential SCF for Ψ that satisfies measurability. Then there exists a perfect
information mechanism Γf using limited evidence that implements f . If there are at least three
agents, there is such a mechanism satisfying budget-balance.

Remark 2. Theorem 1 has the following simple consequence. Consider a bounded social envi-
ronment Ψ with monetary transfers and at least two agents such that for every s and s′, with
s 
= s′, there is some i with Mi(s) 
= Mi(s

′). Then every essential social choice function f can
be implemented with a perfect information mechanism which uses limited evidence. If there are
at least three agents, the same is true restricting to budget-balanced mechanisms.

To see the intuition for Theorem 1, consider the following example.
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Table 1

claimed s1 claimed s2

proves s1 (−F,−F) (−F,F )

no proof (−F − ε,F ) (−F − ε,−F)

Example 1. There are two players, 1 and 2, and two states, s1 and s2. Let f (si) = ai = (âi ,0,0),
i = 1,2, where â1 
= â2. Let M1(s1) = {S, {s1}} and M1(s2) = M2(s1) = M2(s2) = {S}. That is,
in state s1, 1 can prove that s1 is the true state, but 1 cannot prove anything in s2 and 2 can never
prove anything. Assume V (Ψ ) is finite.

We can implement f with no assumptions on the preferences aside from the possibility of
monetary transfers and boundedness. The mechanism we use is an adaptation of the mechanism
used by Moore and Repullo [29]12 as we explain in more detail below.

Fix any F > V (Ψ ) and any ε > 0. Consider the following perfect information mechanism.
First, in Stage 1, player 1 makes a cheap talk claim of either s1 or s2. Next, in Stage 2, player 2
can challenge or not. If 2 does not challenge, the game ends with outcome f (s) where s is 1’s
claim. If 2 does challenge, we go to Stage 3.

In Stage 3, 1 has a chance to provide evidence. Whether he does or not, the outcome has
â = âi where si is the state claimed by player 1 in Stage 1. Only the transfers depend on 1’s
evidence presentation in Stage 3. More specifically, the transfers to 1 and 2 are given in Table 1.

To see that this mechanism implements the social choice function in subgame perfect equi-
librium, consider any subgame leading to Stage 3. It is easy to see that player 1 will present
evidence {s1} at this point if he has it since presenting this evidence has no effect on â but lowers
the amount 1 must pay by ε.

So consider Stage 2. Player 2 knows that 1 will present evidence if and only if he has it —
that is, if and only if the state is s1. It is easy to see that this implies 2 will challenge if and only
if 1’s claim was false. If 1’s claim is false, then challenging earns F for 2, while if 1’s claim is
true, challenging costs 2 F . In either case, the alternative â which is selected is not affected by
the challenge.

In light of this, it is easy to see that 1 will claim the true state in Stage 1. A false claim will
be challenged in Stage 2, leading 1 to be fined at least F , an amount outweighing any gain from
changing â.

Note that none of the reasoning above changes if we assume that player 1 can forge evidence at
some small cost. More specifically, suppose 1 could provide the evidence “proving” s1 when the
state is actually s2 at a cost of δ > ε. Since the gain to 1 in providing evidence when challenged
is only ε, he would not forge evidence and hence the mechanism still implements f . We discuss
the extension of our results to the case where evidence can be forged at a positive cost in the next
section.

Finally, note that evidence is only presented once in this mechanism, in response to challenges.
Hence the mechanism uses limited evidence.

To see the relationship to the Moore and Repullo mechanism, consider a different problem
where there is no evidence but where there exists some â′, â′′ ∈ Â such that player 1 strictly
prefers â′ to â′′ in state s1 and has the opposite strict preference in state s2. Consider exactly the

12 See their Section 5.
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Table 2

claimed s1 claimed s2

chooses â′ (−F,−F) (−F,F )

chooses â′′ (−F,F ) (−F,−F)

mechanism above but where we change Stage 3 to the following. If there is a challenge, player 1
is offered a choice between â′ and â′′. The outcome has whichever â he chooses along with the
transfers shown in Table 2.

It is easy to see that the analysis of this mechanism follows the same lines as the previous
discussion. In Stage 3, player 1 will effectively reveal the true state by his choice, so in Stage 2,
player 2 will challenge if and only if 1’s claim is false. Hence 1 will claim the true state in Stage 1.

This mechanism is essentially the mechanism of Moore and Repullo [29]. What they require
more generally is that for every pair of states, s1 and s2, there is some agent i who has a preference
reversal between the two — that is, for some alternatives a and b, i strictly prefers a to b in state
s1 but has the opposite preference in state s2. In this case, agent i can, in effect, “prove” the true
state by choosing between a and b.

Our mechanism uses evidence to create the same effect as a preference reversal. In both states,
player 1 would like to prove s1. However, he can only do so in state s1. Equivalently, this action
costs him 0 in s1 and costs a prohibitive amount in s2. In the latter interpretation, we can say that
he prefers to prove s1, taking costs into account, in state s1 but has the opposite preference in s2.

This analogy suggests that we might be able to prove our results by appropriately reinterpret-
ing standard theorems. While there is a linkage between our results and standard theorems, the
connection is not strong enough to make our results corollaries.

To see the connection and why it is imperfect, consider how we might embed our model with
evidence into the standard, evidence-less framework. Suppose that we expand the set of outcomes
to include both the social alternative a ∈ A and also the evidence presented by each player. To
define preferences over such outcomes, it would be natural to say that a player who presents
evidence in a state where that evidence is not feasible bears a very high, perhaps infinite, cost,
but that presenting evidence in a state where the evidence does exist is costless. Thus the state
dependent evidence costs induce state dependent preferences. Hence we may be able to exploit
standard approaches to constructing mechanisms to demonstrate sufficiency.

While this intuition is quite useful in understanding what we do, there are three issues that
complicate the derivation of our results from those of Maskin and Moore–Repullo. First, evidence
presentation is supposed to be under the control of the agent, not something that can be forced
upon him by the social planner. Thus we must construct our mechanisms to ensure that the
agent will choose to present the evidence the mechanism calls for. Second, evidence which is not
available in a state is supposed to be completely infeasible, not just expensive, in such a state.
This means that the mechanism in the extended space has more subgames than it is supposed to
have. In principle, this could prevent theorems in the extended space from carrying over to our
setting. Finally, evidence presentation is not part of the outcome we seek to implement. Thus
we must ask whether there exists an extended outcome (including evidence presentation) which
equals the outcome we want on the original space and which can be implemented. Thus even if
the usual results do carry over, it remains to characterize which outcome functions on the original
space can be implemented.

In Section 5.1, we return to these issues and discuss the connection of our results to standard
theorems in more detail.
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Turning to other issues, note that in this game, budget balance does not obtain if player 2
challenges 1 even when 1 claimed the true state. The fines charged to the two players cannot be
given to either of them without interfering with their incentives. On the other hand, if there were
a third player, he could receive the fines in this situation, allowing budget balance. This is why
we obtain budget balance with at least three players but not, in general, with only two.13

Also, note that the only thing SP needs to know about players 1 and 2’s preferences in order
to set up this mechanism is how large the fines need to be. As long as he can bound the vi

differences, he does not need to know anything else about the players’ preferences. Similarly,
these are the only facts players 1 and 2 need to know about each other’s preferences. In Section 4,
we formalize this notion of robustness and generalize this observation.

Also, it is worth noting that, while the mechanism used in this example relies on information
about which player has evidence, it is not difficult to give a more symmetric (but more complex)
version of the mechanism which does not rely on SP knowing which player has evidence.14 Thus
SP does not need to know much about the available evidence either.

3.2. Implementation with ε transfers

The mechanism of Theorem 1 does not require the planner to know much about the players
or the players to know much about each other and has the appealing feature that it is a perfect
information game. However, the mechanism relies on large monetary fines off the equilibrium
path. The next result improves on this, though at the cost of moving to a mechanism which re-
lies on an integer game and assuming the evidence structure is normal (as well as ruling out
the case of two players). In this case, the planner needs even less information about the prefer-
ences of the players as the boundedness assumption is no longer needed. Also, the mechanism
we use is a one-stage mechanism, so implementation is achieved in Nash equilibrium. Note
that implementation in Nash equilibrium is more difficult to achieve in the sense that imple-
mentation in Nash equilibrium implies implementation in subgame perfect equilibrium but not
conversely.15

Theorem 2. Fix any ε > 0. Let Ψ be a social environment with monetary transfers, an evidence
structure that is normal, and at least three players. Let f be an essential SCF for Ψ that satisfies
measurability. Then there exists a budget-balanced one-stage mechanism with ε transfers Γf

that implements f .

Remark 3. As in the case of Theorem 1, we get a simple but striking corollary for social environ-
ments with monetary transfers, normal evidence, and at least three agents such that for every s

and s′, with s 
= s′, there is some i with Mi(s) 
= Mi(s
′). For such environments, every essential

social choice function can be implemented by a budget-balanced mechanism with ε monetary
transfers.

13 The difficulty of achieving budget balance with two agents is well known; for example, Moore and Repullo encounter
a similar issue.
14 See the mechanism used in the proof of this result in our working paper, Ben Porath and Lipman [5]. The mechanism
used there does require normality, though.
15 To see this, simply note that if a mechanism implements in Nash equilibrium, then, viewing the mechanism as a
one-stage game, we see that it also implements in subgame perfect equilibrium.
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As in the case of Theorem 1, our proof exploits the analogy to the standard implementation
problem, this time the results of Maskin [25], particularly the famous proof of Maskin’s theorem
due to Repullo [34]. In this regard, it is worth noting that the existence of monetary transfers
ensures that Maskin’s no veto power condition is satisfied.

To see the intuition, consider the following variation on Example 1.

Example 2. We now add a third state, s3, and a third player. As before, we assume M1(s1) =
{{s1}, S} and M1(s) = {S} for s 
= s1. That is, player 1 can prove s1 if it is true and nothing
otherwise. We now assume M2(s2) = {{s2}, S} and M2(s) = {S} for s 
= s2, so player 2 can prove
s2 if it is true and nothing otherwise. Finally, we assume M3(s) = {S} for all s, so player 3 never
has any evidence.

Consider the following mechanism. The players move simultaneously, sending to the mecha-
nism four things: evidence, a claim of a state, a requested outcome â ∈ Â, and an integer. Let i’s
message be denoted (Ei, ci, âi , zi) ∈ Mi × S × Â × Z where Mi = ⋃

s Mi(s) and Z denotes the
integers. (Thus âi now refers to the â named by i, not the â in f (si).)

The outcome is determined as a function of the claims as follows. If all three players claim the
same state s and present all the evidence they would have in that state, the outcome is f (s) with
no transfers. If two players claim s and present all evidence they would have in that state, but the
third either claims s′ 
= s or claims s but does not present all the evidence he has in s, then there
are two cases. First, if the third player does not prove that the other two are lying — i.e., if his
evidence is consistent with the state being s — then the outcome is still f (s) with no transfers.
Alternatively, if he proves the state is not s, the outcome is still f (s) but with each of the other
two players paying ε/2 to the third player. Finally, for any other strategy tuple, the outcome is
determined by the player who chose the largest integer. Specifically, if i chose the largest integer
(where we break ties in any fashion), then the outcome has â = âi . In addition, each of the other
two players pays ε/2 to i.

To see that this mechanism implements f , we first show that for every state s, there is a Nash
equilibrium with outcome f (s). In this equilibrium, each player i sets ci = s and provides all
his evidence for state s. It is easy to see that no feasible unilateral deviation by any player can
change the outcome since no player can disprove the true state. Hence this is an equilibrium with
outcome f (s).

To see that there is no other Nash equilibrium outcome, first note that there is no equilibrium in
which the outcome is determined by the integers chosen. If so, any player who did not choose the
largest integer would deviate to a larger integer since he could change the â part of the outcome
(if desired) and replace paying ε/2 with receiving a payment of ε. Thus in any equilibrium, at
least two of the three players make the same claim and present all the evidence they would have
if that claim were true.

Suppose exactly two out of three players make the same claim and present all evidence for it.
Then one state is going “unclaimed,” so either of these two could deviate to claiming it instead,
which makes the integers determine the outcome. This player i could choose an integer larger
than that selected by any player and âi equal to the â that would have obtained otherwise. The
deviation leaves â unchanged but earns i a “reward” of ε, while his transfer would have been 0
or −ε/2 with no deviation. Obviously, then, this would be a profitable deviation.

Hence in every equilibrium, all three players must make the same claim and present all the
evidence they would have if that claim were true. Clearly, if this claim is s1 or s2, then the claim
must be true since this is the only way player 1 or 2 would be able to provide all the evidence



E. Ben-Porath, B.L. Lipman / Journal of Economic Theory 147 (2012) 1689–1724 1703
he would have in that state. Hence in either of these cases, the equilibrium achieves the right
outcome.

So suppose the claim is s3. Again, if the claim is true, the mechanism generates the desired
outcome, so suppose the state is not s3. In this case, one of players 1 and 2 must be able to prove
that the claim is false. By deviating to a claim of the truth and presenting his evidence, this player
doesn’t change â but goes from no transfer to receiving a transfer of ε. Hence this is a profitable
deviation.

It is not hard to show that this mechanism continues to implement f if any agent could forge
evidence at a cost δ > ε. To see this, consider first our argument above that it is an equilibrium in
any state for each player to report the true state and present all his evidence in that state. We noted
that no player could change the outcome since none could disprove the true state. Now a player
could “disprove” the true state by providing false evidence. However, the reward he receives for
this is ε and the cost of forgery is δ > ε. Hence no player would have an incentive to deviate.

Above, we argued that if there is any other equilibrium in state s, it must be that all three
players make the same claim and present all the evidence they would have if that claim were
true. It is not hard to see that this argument is unaffected by the possibility of forgery as is
our contradiction of the possibility that the false claim is s3. So suppose the false claim is si ,
i ∈ {1,2}. In this case, player i must be forging evidence that the state is si . But then he could
deviate to not forging this evidence. This would not change the outcome but would save himself
the forgery cost, making him strictly better off.

This mechanism is quite similar in spirit to the one originally proposed by Repullo [34] to
prove Maskin’s [25] characterization of Nash implementation. To see how Repullo’s mechanism
works, consider a variation on this environment where there is no proof but where preferences
differ across states. The players simultaneously send to the mechanism a claim of a state, a re-
quested alternative â, and an integer. If all three players claim state s, the outcome is f (s). If two
out of three claim s while the third claims s′ and requests â, there are two cases. If the third
player prefers â to f (s) in state s, then we ignore his claim and the outcome is f (s). On the
other hand, if he prefers f (s) to â in state s, the outcome is â. Finally, if all three make different
claims, the outcome is determined by the integers just as in our mechanism.

The key difference between Repullo’s mechanism and ours is similar to the difference between
the mechanism we used for Theorem 1 and the Moore–Repullo mechanism. In both cases, the
earlier work can be thought of as using revealed preference as a form of proof. In the case of
Repullo’s mechanism, the player who deviates proves that the others are lying when they claim
s by asking for an outcome â that he would like less than f (s) if they were telling the truth. By
contrast, in our mechanism, the deviator changes the outcome only when he provides physical
evidence that the others are lying.

We discuss the connections between Theorem 2 and Maskin’s theorem in more detail in Sec-
tion 5.1.

Turning to other issues, note that the analysis of equilibria did not use any properties of the
agents’ preferences other than the fact that more money is better than less. Thus this is all the
planner needs to know about the preferences of the players to set up this mechanism and know
it will implement. Similarly, this is all the players need to know about each other. Theorem 4
in the next section formalizes and generalizes this observation. Finally, as noted, the mechanism
ensures implementation even when players can forge evidence at a small cost.

Remark 4. While we assume that utility is linear in transfers, this is not necessary for Theorems 1
and 2. As the examples above suggest, the only properties we use in the proofs are the following.
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First, both theorems use the assumption utility is strictly increasing in one’s own transfer and
independent of any other agent’s transfer. Second, Theorem 1 uses the assumption that there
exists an i such that for any â and â′, there are transfers ti and t̂i such that i strictly prefers (â, ti )

to (â′,0) to (â, t̂i ) at every state s.

Next, we discuss a special but important case where implementation is achieved in a perfect
information game with no transfers at all. Consider the problem of the allocation of a set of
goods among a set of agents. It turns out that a simple modification of the proof of Theorem 1
establishes that in such a problem, every SCF that satisfies measurability and assigns each agent
a positive amount of at least one divisible good can be implemented by a perfect information
mechanism without monetary transfers. The basic intuition is simple: the role played by large
fines in the mechanism of Theorem 1 can be played by giving the goods an agent would have
received according to f to some other agent instead.

More formally, we say that a social environment Ψ is an allocation environment16 if the
following three statements hold. First, there exists an integer K � 0, nonempty sets Āk ⊆ R,
k = 1, . . . ,K , and positive numbers x̄k , k = 1, . . . ,K + 1, such that

A =
{(

x1, . . . , xI
) ∣∣∣ xi ∈

[
K∏

k=1

Āk

]
× R+ and

I∑
i=1

xi
k � x̄k, k = 1, . . . ,K + 1

}
.

That is, A is a set of allocations of K + 1 goods, at least one of which is divisible. Second, for
every i ∈ I and s ∈ S, (xi, x−i ) ∼i,s (xi, x̄−i ). In other words, in any state, agent i is indifferent
between allocations which give him the same goods. Finally, for every i ∈ I and every s ∈ S,
(xi, x−i ) �i,s (x̄i , x−i ) if xi > x̄i (where > denotes the vector ordering of weakly larger in
every component, strictly larger in at least one component).

Given ε > 0, define

Aε = {
x ∈ A

∣∣ xi
K+1 � ε, ∀i ∈ I

}
.

Theorem 3. Fix any allocation environment with at least two players and any ε > 0. Let f : S →
Aε be a SCF that satisfies measurability. Then there exists a perfect information mechanism Γf

using limited evidence that implements f .

Kartik and Tercieux [23] study Nash implementation in a model where agents can send mes-
sages with state-dependent costs in addition to cheap talk messages.17 Their framework includes
the case of hard evidence because a hard evidence message can be viewed as a message with zero
cost in some states and a prohibitively high cost in the rest. They give a condition called evidence-
monotonicity which they show is necessary and, given some additional conditions, sufficient for
Nash implementation. In the case of hard evidence, roughly speaking, evidence-monotonicity

16 We use this term rather than the more commonly used “economic environments” for two reasons. First, the phrase
“economic environments” has been used by many authors for many different but conceptually similar notions — see,
for example, Moore and Repullo [29], Jackson [22], Baliga [4], Kartik and Tercieux [23], and Healy and Mathevet [19].
Second, while some papers use this term to mean environments where the allocation of goods is determined as in our case
(e.g., Healy and Mathevet [19]), other papers use this term to mean something more similar to what we call environments
with monetary transfers (e.g., Moore and Repullo [29]).
17 The initial version of their paper was written after the circulation of preliminary drafts of this paper which considered
only subgame perfect implementation. Their results on Nash implementation were developed concurrently with ours.
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says that a pair of states should either satisfy our measurability condition or be related in the way
described by Maskin monotonicity.18

The fact that their evidence–monotonicity condition refers both to evidence and to prefer-
ences allows them to obtain strengthened analogs of Proposition 1 and Theorem 2. On the other
hand, the use of preference variation also implies that they do not obtain the robustness results
mentioned earlier and discussed in detail in the next section.

Finally, they also relate their results to standard implementation on an extended outcome
space, as we comment further on in Section 5.1.

4. Robustness

In this section, we define the notion of robustness discussed informally so far and demon-
strate that our results are robust in this sense. In particular, we show that when the social choice
function satisfies measurability, the planner can implement even if he does not know the agent’s
preferences in any state s ∈ S (beyond that they satisfy the requirements of a monetary environ-
ment and, for one result, are bounded in a certain sense) or the agent’s beliefs about other agents.
Furthermore, we do not need the agents to know anything more than the planner about other
agents’ preferences or even to have a common prior. In addition, since measurability imposes
very little on the structure of evidence, the planner requires little information about the evidence
available to the agents. We obtain such robustness because we exploit variation in evidence across
states rather than variation in preferences. Finally, we show that our results are robust to allowing
evidence to be forged at an arbitrary strictly positive cost.

To demonstrate robustness with respect to the planner’s knowledge of preferences and beliefs,
we make some changes in the model which apply only in this section. As in the rest of the
paper, we let S denote the set of states, A the set of social alternatives, f : S → A the social
choice function, I the set of players, and Mi(s) the set of subsets of S that i can prove in
state s. Our goal is to show robustness with respect to (1) the planner’s knowledge about the
preferences and beliefs of the agents and (2) the knowledge of each agent about the preferences
and beliefs of other agents. Therefore, we now think of a state s as a specification of all the
parameters that are relevant for the determination of the social alternative that SP wishes to
implement and a specification of the evidence of each agent. However, s may not include enough
information to identify the preferences of each agent or the beliefs of agents about the preferences
of others.

Formally, we extend the model by adding types for each agent. For each i, let Θi denote i’s
set of types. A type θi ∈ Θi determines the preferences of i and his beliefs over Θ−i , both as a
function of the state s which, as before, is assumed to be common knowledge among the agents.
Of course, i’s type is private information. For simplicity, we assume that each Θi is finite or
countable. The set of all full states is Ω where Ω ⊆ S × ∏

i∈I Θi . Note that we do not require
the set of full states to have a product structure. Thus we are not imposing any restrictions on
whether types are correlated across players or are correlated with s. In particular, this formulation
allows any relationship between the preferences of the agents and the planner’s desired outcome.
Given any s, we refer to a tuple (s, θ) ∈ Ω as a full state consistent with s. We also say that θi is

18 Intuitively, if a pair of states satisfy Maskin’s monotonicity condition, then the variation in preferences across the two
states can be exploited to implement different outcomes without evidence just as in Maskin’s mechanism. To be precise,
our description of their condition applies under the assumptions of monetary environments and normal evidence.
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consistent with s if there exists θ−i with (s, θi, θ−i ) ∈ Ω . Let Θi(s) denote the set of θi consistent
with s.

Agent i’s utility function in full state ω = (s, θ) is assumed to depend only on s and θi . That
is, while we demonstrate robustness with respect to uncertainty about the preferences of other
agents, we retain the assumption that each agent knows his own payoffs. Thus we write

ui(â, t1, . . . , tI , s, θ1, . . . , θI ) = vi(â, s, θi) + ti .

The belief of θi at s over the types of the other players is denoted by μi(s, θi) ∈ �(Θ−i ).
(As usual, Θ−i is the set of profiles of types of the agents other than i and �(Θ−i ) is the set
of probability distributions over Θ−i .) We do not require the agents to have a common prior.
However, we do impose a common support on the agent’s beliefs in the sense that

supp
(
μi(s, θi)

) = {
θ−i ∈ Θ−i

∣∣ (s, θi, θ−i ) ∈ Ω
}

for all i, s ∈ S, and all θi ∈ Θi consistent with s.
In this section only, we refer to a tuple

Ψ ∗ = 〈
I,A,S,

(
Mi(s)

)
i∈I, s∈S

, (Θi)i∈I ,Ω,
(
μi(s, θi), vi(·, s, θi)

)
i∈I, s∈S, θi∈Θi(s)

〉
as a monetary environment with partial information. We use the term partial information instead
of the more common term “incomplete information” to emphasize that we are considering an
environment where the state s is common knowledge among the agents. An SCF for an envi-
ronment with partial information is a function f : S → A. The definition of a mechanism is
unchanged. Given an environment with partial information Ψ ∗ and a state s, a mechanism Γ

now induces a game of incomplete information among the agents. We use Γ (s | Ψ ∗) to denote
this game. Note that a strategy for player i in this game is a function of θi , so an equilibrium
outcome is a function of θ .

Since we use different equilibrium notions for our two results, we state the definition of im-
plementation for an arbitrary equilibrium concept. We say that Γ implements f in environment
Ψ ∗ if for every s ∈ S, for every equilibrium of Γ (s | Ψ ∗), the equilibrium outcome given θ is
f (s) for every θ such that (s, θ) ∈ Ω .

The robustness properties of our mechanisms differ slightly across results for two reasons.
First, Theorem 1 requires that the environment be bounded, while Theorem 2 does not. Second,
Theorem 2 is based on a one-stage mechanism, so when we introduce incomplete information
among the players, Bayes–Nash equilibrium is the appropriate solution concept. On the other
hand, Theorem 1 uses a game of perfect information, so the robust version will require use of
perfect Bayesian equilibrium. Since Theorem 2 is simpler on both criteria, we begin with it.

Theorem 4 (Robust version of Theorem 2). Fix any ε > 0. Fix any monetary environment with
partial information Ψ ∗ with at least three players. Let f be an essential SCF for Ψ ∗ that satisfies
measurability and assume the evidence structure is normal. Then there exists a budget-balanced
one-stage mechanism with ε transfers Γf that implements f in Bayes–Nash equilibrium.

For any monetary environment with partial information Ψ ∗, let

V
(
Ψ ∗) = sup

i∈I, s∈S, θi∈Θi(s), â,â′∈Â

vi(â, s, θi) − vi

(
â′, s, θi

)
.

We say that Ψ ∗ is bounded if V (Ψ ∗) < ∞.
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Since we analyze environments with partial information in this section, the game induced by
the mechanism we used in Theorem 1 is no longer a game of perfect information. Hence we
use the term sequential mechanism to refer to a mechanism for which each information set is
either a singleton or contains nodes that differ only in Nature’s moves. That is, all past actions
are observable and there are no simultaneous moves. We emphasize that this is just a change of
name — the mechanism is the same one we used earlier.

Theorem 5 (Robust version of Theorem 1). Let Ψ ∗ be a bounded monetary environment with
partial information and at least two agents. Let f be an essential SCF for Ψ ∗ that satisfies mea-
surability. Then there exists a sequential mechanism Γf using limited evidence that implements
f in perfect Bayesian equilibrium. If there are at least three agents, there is such a mechanism
satisfying budget-balance.

Remark 5. Definitions of perfect Bayesian equilibrium in the literature impose a variety of con-
ditions on beliefs off the equilibrium path. We put no restrictions on such beliefs.

Since Theorem 3 is essentially a generalization of Theorem 1, we omit the straightforward
generalization of Theorem 5 which gives a robust version of it.

Summarizing, Theorems 4 and 5 formalize the robustness results we discussed in the previous
sections. More specifically, subject to the boundedness assumption in the case of Theorem 5,

1. The social planner does not need to know anything about the preferences of the players —
nothing about how their preferences relate to the evidence available, the social choice to be
implemented, or each other.

2. No agent needs to know anything about the preferences of other agents.

In addition, we note that the only information the planner needs to have about evidence is
what is summarized by the measurability condition. That is, he needs to know that if f (s) 
=
f (s′), then some agent has different evidence in the two states, but he does not need to know
anything about which agent does. In this sense, the planner requires very little information about
the evidence. We do not provide a formal proof of this claim as it is a notationally complicated
but straightforward extension of our other results.19

We conclude this section by discussing a different kind of robustness; namely, we show that
our results still hold if there is a strictly positive cost of forging evidence. More specifically,
change our model by assuming that there is a δ > 0 such that if E /∈ Mi(s), agent i can still send
evidence E in state s but at a cost of δ. It is easy to show that all results stated in this paper
still go through with no changes. In particular, we can use the same mechanisms as the ones in
the proofs of Theorems 1 and 2 so long as we specify that the ε of those mechanisms is smaller
than δ. For Theorem 1, this conclusion is immediate; the slightly more involved argument that
is required to demonstrate this claim for Theorem 2 is included with the proof of the theorem in
Appendix B. For our Nash implementation result, this can be thought of as a generalization of

19 More precisely, it is easy to obtain versions of Theorems 1, 2, 4, and 5 where the evidence available for each agent is
common knowledge among the agents but is not determined by the state s. Hence the social planner does not know what
evidence each agent has at each state s. He just knows that if f (s) is different from f (s′), then some agent has different
evidence across the two states. This result requires normal evidence.
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Theorem 1 in Dutta and Sen [9] and Corollary 1 of Kartik and Tercieux [23], both of which show
Nash implementation with agents who have arbitrarily small costs of lying.20

The next section will clarify the connection of our results to the classic implementation results
of Maskin and Moore–Repullo, along the way demonstrating why small costs are sufficient for
implementation.

5. Discussion

5.1. Comparison to Maskin and Moore–Repullo

In Section 3, we discussed the relationship between our mechanisms and those used in Maskin
and Moore–Repullo in the context of two simple examples. In this section, we generalize and
formalize this relationship, explaining in more detail how our results relate to theirs.

As discussed earlier, the key idea is to relate our theorems on implementation with evidence
with outcome space A to versions of the classical implementation theorems without evidence but
on an enlarged space which includes both the outcome in A and the evidence presented by the
players. That is, we treat the problem as one where the social planner can specify the evidence
presented by each player as a function of the state.21

We noted earlier that there are three reasons why our results do not follow directly as corol-
laries to standard results applied to the extended space. First, given a social choice function
prescribing an outcome in A, moving to the larger space requires specifying how the evidence
presentation will vary with s as well. Second, the implementation problem on the enlarged space
treats “infeasible” evidence presentation as if it were costly but feasible. Finally, the implemen-
tation problem on the enlarged space treats evidence decisions as made by the planner, not the
players.

In this section, we show how to solve the first problem, explain why the second causes no
difficulties, and describe how one can address the third. Because all three issues can be addressed,
we could prove our theorems as implications of the standard implementation theorems. However,
as the discussion below will clarify, this is not straightforward and our direct proofs are simpler
and more transparent.

Before showing how to extend the social choice function, we first recall some standard
definitions from Maskin and Moore–Repullo. We state these for an arbitrary outcome space,
denoted A, but will soon apply them for our specific setting.

We say that a pair of states s and s′ exhibit a preference reversal if there exists an agent i and
two alternatives a, a′ ∈ A such that ui(a, s) > ui(a

′, s) and ui(a
′, s′) > ui(a, s′). We say that f

is preference measurable if every pair of states s and s′ with f (s) 
= f (s′) exhibits a preference
reversal. Preference measurability is the key assumption in Moore and Repullo.

20 The Dutta–Sen and Kartik–Tercieux results can be thought of as modeling the situation where in every state, there is
an agent who can prove what the true state is, but this evidence can be forged at a small cost. Of course, this assumption
on evidence is much stronger than measurability.
21 Kartik and Tercieux [23] also discuss the relationship between Nash implementation with evidence and implementa-
tion on an enlarged outcome space. Specifically, their Theorem 4 shows that their main condition, evidence–monotonicity,
is equivalent to the existence of an extension of the social choice function to the larger space which satisfies monotonicity.
This is the analog of our result below which shows that measurability implies monotonicity on the extended outcome
space. Their result was developed concurrently with our analysis in this section. Our analysis also includes an analogous
result for Moore–Repullo and subgame perfect implementation, an issue they do not discuss.
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We say that a social choice function f : S → A satisfies monotonicity if for all s, s′ ∈ S,
if ui(f (s), s) � ui(a, s) implies ui(f (s), s′) � ui(a, s′) for all a ∈ A and all i, then f (s′) =
f (s). Equivalently, if f (s) 
= f (s′), then there exists i and a such that ui(f (s), s) � ui(a, s)

but ui(f (s), s′) < ui(a, s′). Monotonicity is the property Maskin shows is necessary and almost
sufficient for implementation in Nash equilibrium in environments without evidence.

We now show that measurability in our implementation problem implies that we can extend
the social choice function to the enlarged outcome space in such a way that we can satisfy either
preference measurability or monotonicity on the enlarged space.

First, we show how to “translate” our model to the enlarged outcome space. Recall that

A =
{
(â, t1, . . . , tI ) ∈ Â × RI

∣∣∣ ∑
i

ti � 0

}

and that Mi = ⋃
s∈S Mi(s). Let M∗

i = Mi ∪ {∅} where ∅ is interpreted as the “evidence presen-
tation outcome” for a player who does not get an opportunity to present evidence. Let

A = A × M∗
1 × · · · × M∗

I .

Recall that ui((â, t1, . . . , tI ), s) = vi(â, s) + ti . We extend the utility functions to A× S by

ūi

(
(â, t1, . . . , tI ,m1, . . . ,mI ), s

)
=

{
ui((â, t1, . . . , tI ), s), if mi ∈ Mi(s) or mi = ∅,

ui((â, t1, . . . , tI ), s) − K, otherwise,

where K > 0. Intuitively, this simply says that we switch from assuming that in state s, the agent
cannot present any evidence not in Mi(s) to assuming that he can do so, but only at a cost.

Given a social choice function f : S → A on the original outcome space, we consider two
different extensions of it to the larger outcome space. First, we define fMR : S → A by fMR(s) =
(f (s),∅, . . . ,∅). In other words, for every s ∈ S, fMR specifies the same a ∈ A as f and no
evidence presentation. Second, we define fM : S → A by fM(s) = (f (s), Ē1(s), . . . , ĒI (s))

where Ēi(s) is the event i proves if he presents all his evidence in s. That is, Ēi(s) = ⋂
E∈Mi(s)

E.
Recall that for Theorem 2, we assume that the evidence structure is normal which means that
Ēi(s) ∈ Mi(s) for all i and s.

We now show the following claims. First, if Ψ is bounded and f is measurable, then for all
K > 0, fMR is preference measurable. Second, if f is measurable and the evidence structure
satisfies normality, then for all K > 0, fM is monotonic.

For the first claim, fix any K > 0. Suppose fMR(s) 
= fMR(s′). We construct a preference
reversal for s and s′. By definition of fMR , fMR(s) 
= fMR(s′) implies f (s) 
= f (s′). By measur-
ability, f (s) 
= f (s′) implies there exists some i with Mi(s) 
= Mi(s

′). Without loss of generality,
assume Mi(s) � Mi(s

′). (Otherwise, reverse the roles of s and s′.) Let m∗
i be any element of

Mi(s) \ Mi(s
′). Fix any â ∈ Â and any ε ∈ (0,K). Let t ′ denote a vector of 0’s and m′ a vector

of ∅’s. Define t by setting tj = t ′j = 0 for all j 
= i and ti = ε. Define m by setting mj = m′
j = ∅

for all j 
= i and mi = m∗
i . Finally, let a = (â, t,m1, . . . ,mI ) and a′ = (â, t ′,m′

1, . . . ,m
′
I ). Thus

in outcome a, player i presents evidence m∗
i and gets a reward of ε, while in outcome a′, i does

not present any evidence and gets no reward.22 Clearly,

22 To be precise, at a′ , i does not get an opportunity to present evidence. In this sense, if i chooses a′ , he is choosing to
not have a chance to present evidence.
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ūi (a, s) = vi(â, s) + ε > vi(â, s) = ūi

(
a′, s

)
while K > ε implies

ūi

(
a′, s′) = vi

(
â, s′) > vi

(
â, s′) + ε − K = ūi

(
a, s′).

Hence we have a preference reversal, so preference measurability holds.
For the second claim, suppose normality holds so that fM is well defined. Again, fix any

K > 0. Suppose we have states s and s′ with fM(s) 
= fM(s′). Again, by measurability, Mi(s) 
=
Mi(s

′) for some i. First, suppose that Mi(s) � Mi(s
′), so Ēi(s) /∈ Mi(s

′). Let a denote the
outcome which differs from fM(s) only in that i presents evidence Ēi(s

′) instead of Ēi(s). Then

ūi

(
fM(s), s

) = ui

(
f (s), s

)
� ūi (a, s)

while

ūi

(
fM(s), s′) = ui

(
f (s), s′) − K < ūi

(
a, s′).

Hence fM satisfies monotonicity.
Second, suppose Mi(s) ⊆ Mi(s

′) but Mi(s) 
= Mi(s
′). That is, Mi(s) ⊂ Mi(s

′). Now let a

denote the outcome equal to fM(s) but with a transfer of ε ∈ (0,K) to i and i presenting evidence
Ēi(s

′) instead of Ēi(s). Then we have

ūi

(
fM(s), s

) = ui

(
f (s), s

)
> ui

(
f (s), s

) + ε − K = ūi (a, s),

and

ūi

(
fM(s), s′) = ui

(
f (s), s′) < ui

(
f (s), s′) + ε = ūi

(
a, s′).

Hence fM satisfies monotonicity in this case as well.
It is also easy to show that Maskin’s no veto power condition is trivially satisfied since no two

players can have the same most favorable outcome.23

These observations imply that if f is measurable, then the extended versions of f can be im-
plemented in a model without evidence where we treat the planner as able to “assign” evidence
to players and where we replace infeasibility with costs. This observation, by itself, does not
prove our results since it still remains to show that (a) replacing infeasibility with costs is in-
nocuous and (b) that the mechanisms still work when players choose their evidence presentation
instead of the mechanism. While we omit the details, it is true that one can complete this line
of argument and prove our results that way. Instead, our proofs construct mechanisms which are
natural analogs to the mechanisms of Maskin and Moore–Repullo and then proving directly that
the analog mechanisms do implement. This direct proof is more straightforward and transparent
than verifying that a mechanism for a different model can be appropriately reinterpreted.

While we omit the proofs, it is not hard to see why the two difficulties mentioned above do
not cause problems. Regarding the first problem, clearly, if we make the costs of presenting
“infeasible” evidence high enough, no equilibrium will involve a player choosing to presenting
such evidence. Hence the equilibrium set will not be affected.24

23 The most favorable outcome for player i must involve him receiving the largest possible transfer from the other
players and hence cannot be the most favorable outcome for any other player.
24 This is not necessarily true in considering Nash equilibria of an extensive form game since off equilibrium strategies
could involve use of such strategies.
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In the case of Theorem 1 and Moore–Repullo, the second problem is also easily addressed.
As seen in the example in Section 3.1, the only time evidence is relevant is in the response
to a challenge when the agent being challenged has a choice between two outcomes. In the
reinterpretation of our model where evidence is part of the outcome, we would give the agent
being challenged a choice between two extended outcomes where the only evidence presented
in either case is presented by the agent himself. Obviously, there is no real distinction between
having the agent choose between two outcomes which differ in the evidence he presents versus
a choice between which of the two pieces of evidence to present with the rest of the outcome
depending on his choice.25

On the other hand, this point is much more subtle in addressing the relationship between
Theorem 2 and Maskin’s theorem. To see why, recall that Maskin’s result is about one-stage
mechanisms, so exploiting this result requires us to follow suit. In particular, then, we cannot
have a separate phase of evidence presentation as we did for Theorem 1 — all evidence that is to
be presented must be presented at once. In other words, part of the outcome must be irrevocably
determined by the presentation choices of the agents.

Because of this, we cannot simply translate Repullo’s [34] mechanism for proving Maskin’s
theorem directly to this setting to prove our theorem. To see the point, recall that in Repullo’s
mechanism, if I − 1 players name a particular state s and outcome a = f (s) but the remaining
player i deviates to s′ and a′, then the outcome is f (s) if i prefers a′ to f (s) at state s and a′ oth-
erwise. But once i deviates, all evidence has been presented. Thus the mechanism is “locked in”
to the evidence provision part of the outcome. Clearly, depending on the nature of i’s deviation,
it may be impossible for the mechanism to prescribe f (s) or a′.

To address this difficulty, we can modify the Repullo mechanism so that players present both
cheap talk claims and evidence. The evidence part of the outcome is the evidence that is presented
by the players, while the (â, t) part of the outcome is determined by both the cheap talk claims
and evidence. This mechanism can be interpreted either as a “standard” mechanism for the im-
plementation problem on the extended outcome space or as a mechanism with evidence. To see
why we are able to follow Repullo’s proof, consider again our proof that measurability implies
that our extended outcome function fM satisfies monotonicity. We showed this by constructing
an alternative allocation a where the only change in the evidence component of the outcome was
for exactly one player. This enables us to essentially follow Repullo’s proof of Maskin’s theorem
since it means that we can specify a mechanism where the response to a deviation by a single
player to an “unexpected” presentation of evidence respects that presentation of evidence and
changes at most only the (a, t) part of the outcome.26 Again, our proof is similar to this, but
much more direct.

The connection between our results and those of Maskin and Moore–Repullo give another
way to understand our robustness results of Section 4. Those results showed when measurability
holds, we can implement even when the planner knows very little about the preferences of the
players and the players know little about each other’s preferences. Above, we showed that very

25 We can use large fines to ensure that he won’t choose some evidence presentation which is not one of the options we
want him to consider.
26 In particular, the monotonicity of fM ensures that if in state s′ , each player j announces state s 
= s′ and
presents Ēj (s), then there is some player i who could deviate to Ēi (s

′) and a pair (â, t) such that he prefers
((â, t), (Ēi (s

′), Ē−i (s))) to ((f (s),0), Ē(s)) at s′ but not at s. Since the evidence part of the outcome of the devia-
tion is the evidence presented by the players, SP can select this outcome without “dictating” to the players the evidence
to present.
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minimal assumptions on preferences are sufficient for measurability to imply monotonicity and
preference reversal. Hence one interpretation of our robustness results is that measurability elim-
inates the need to use preferences over social outcomes (that is, over A) to obtain monotonicity
or preference reversals over the extended outcome space.

The connection also suggests why our results hold even if there is a small cost of forging
evidence. Our results showing that measurability implies monotonicity and preference reversal
on the extended outcome space allow for arbitrarily small costs. Since, as shown in the proofs
of Theorems 1 and 2, the potential difficulties in using this to obtain implementation are solved
without having to increase these costs, we implement even when the cost of “lying” is small.

5.2. Tightness

In this subsection, we use a series of examples to show that our results are tight in the sense
that stronger results cannot be obtained without additional hypotheses.27 In particular, we demon-
strate the following:

1. With one player, it may not be possible to implement a measurable f even with unbounded
transfers. Thus Theorems 1 and 2 do not extend to the one agent case.

2. With two players, it may not be possible to implement a measurable f with ε transfers,
whether or not we require budget-balance or restrict attention to perfect information games.
Thus Theorem 1 does not extend to ε transfers and Theorem 2 does not extend to the case of
two players.

3. Even with three players, it may not be possible to implement a measurable f with ε transfers
in a perfect information game, even if we do not require budget-balance. Thus Theorem 1
does not extend to ε transfers even with more than two players and Theorem 2 does not
extend to perfect information games even with more than two players.

4. For any number of players, it may not be possible to implement a measurable f without
monetary transfers even when we allow for a general multistage mechanism. Thus Theo-
rem 2 does not extend to the case where there are no transfers.

All the examples we present are variations on Example 1 in Section 3. Throughout this section,
we assume normality to make clear that we cannot extend these results even if we assume normal
evidence.

We begin with the first point above. So consider Example 1 but now with only agent 1. Sup-
pose his preference is f (s2) �1,s f (s1) for all s. Then it is impossible to implement f , robustly
or otherwise, with large fines or small. To see this, suppose that f can be implemented. Hence
there is a mechanism with outcome f (s2) in state s2. But then player 1 can use the same strategy
in state s1 that he uses in s2 to obtain f (s2) in state s1. Since he prefers this to f (s1), it cannot
be true that we implement f .28

Turning to the second point, recall that in our discussion of Example 1 in the previous sec-
tion, we made no assumptions about preferences other than boundedness and showed that we
could implement with a perfect information mechanism and large transfers. Now we demon-
strate the second point by giving specific preferences for which we cannot implement with any

27 As we show in Appendix F, these claims hold whether or not we restrict attention to pure strategy equilibria.
28 See Glazer and Rubinstein [14,15] for an interesting treatment of the one agent case.
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perfect information mechanism restricted to “small” transfers. So consider the state independent
preferences where v1(â2) = v2(â1) = 1 and v1(â1) = v2(â2) = 0. As in Example 1, the SCF is
f (sk) = (âk,0,0). Also, player 1 can prove the state is s1 in state s1 and can prove nothing in s2,
while 2 cannot prove anything in either state. Clearly, if there are other feasible outcomes in Â

which serve the same role as transfers, then a bound on transfers is irrelevant. So we assume that
Â = {â1, â2}. We assume transfers are small in the sense that we consider only mechanisms such
that for every terminal history h, if g(h) = (â, t1, t2), then |ti | < 1/2 for i = 1,2.

In Appendix E.1, we prove the following.

Claim 1. In this example, there is no mechanism with transfers bounded below 1/2 which imple-
ments f .

For the third point, we show that we cannot combine the results of Theorems 1 and 2 to obtain
implementation in a perfect information game with ε transfers, even with three or more agents.
We show this by adding a third player to the previous example. Assume player 3 is exactly like
player 2 in the sense that he has no evidence in any state and has the same utility function as
player 2. By Theorem 1, we can implement f in a perfect information game without a bound on
transfers. By Theorem 2, we can implement f in a game without perfect information but with
only ε transfers. However, in Appendix E.2, we prove the following.

Claim 2. In this example, there is no perfect information mechanism with transfers bounded
below 1/2 which implements f .

In both of these arguments, budget-balance plays no role, so dropping such a restriction does
not overcome the negative results in the examples.

For the fourth point, we show that for any integer n, there exists an environment with n

players and a measurable SCF that cannot be implemented in a multistage mechanism without
transfers. We show this by generalizing the previous example so that there are n − 1 players in
the position of player 2 above. That is, players 2, . . . , n have no evidence in either state and have
the same state-independent utility function vi(â1) = 1 and vi(â2) = 0. Player 1, as above, can
prove s1 in state s1 and nothing in s2. He has the state-independent utility function v1(â1) = 0
and v1(â2) = 1. By Theorem 2, f can be implemented with a mechanism which involves only ε

monetary transfers. However, in Appendix E.3, we prove the following.

Claim 3. In this example, there is no multistage mechanism without transfers that implements f .

6. Conclusion

We have extended implementation theory in two ways. First, we allow the social choice func-
tion to depend on more than just the preferences of the agents. Second, we allow agents to support
their statements with hard evidence.

We have shown that the measurability condition which is necessary for the implementation of
a social choice function f when preferences are state independent is also a sufficient condition,
with or without state independence, for the subgame perfect implementation of f when the social
planner can perform monetary transfers. Furthermore, f can be implemented even if the plan-
ner knows very little about the agents’ evidence, preferences, or their beliefs about each other’s
preferences. Theorem 1 establishes implementation with a perfect information mechanism when
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there are at least two players and the social planner can perform “large” monetary transfers. In
this case, the implementation is robust in the sense that the planner only needs to know an upper
bound on the players’ willingness to pay to change the outcome. Theorem 2 establishes that when
there are at least three players and the evidence structure is normal, f can be implemented with
a one-stage mechanism using only ε monetary transfers but which relies on an integer game. In
this case, the planner does not need any information about the preferences, nor do the players
need any information about each others’ preferences. Finally, in the special but important case
of allocation problems, Theorem 3 shows that we can implement under weak conditions using a
perfect information game with no transfers. Again, this mechanism implements regardless of the
preferences of the agents. In all cases, the only information the planner requires about evidence
is that measurability holds. In addition, the results are unchanged if we allow the possibility of
forging evidence at an arbitrary strictly positive cost. Finally, we have discussed the relationship
between our results and the classical work of Maskin [25] and Moore and Repullo [29] on im-
plementation without evidence. In particular, we showed that our condition of measurability of
the evidence structure implies monotonicity and preference reversal in a modified model with
an extended outcome space which includes evidence where infeasible evidence is replaced by
feasible but costly evidence.

There are many interesting directions for future research. First, the mechanisms we use in
our results appear to have a variety of additional robustness properties which may be worth
formalizing and exploring further. It may be of interest to characterize the mechanisms which
require the least information on the part of the planner and/or the agents.

Second, clearly, implementation with a perfect information mechanism is more appealing
than implementation by a mechanism which relies on integer games. It may be interesting to
determine what can be implemented using perfect information mechanisms that allow the social
planner to randomize but which do not rely on large monetary transfers.

Other general directions of interest are results without monetary transfers (or other “struc-
tural” assumptions which serve the same role), models with incomplete information among the
agents, restrictions on or costs of evidence provision, and models where the social planner has
less commitment power.

Appendix A. Proof of Theorem 1

Fix a bounded environment Ψ and an essential social choice function f satisfying measura-
bility. We write f as f (s) = (â(s),0, . . . ,0). Let F satisfy F > V (Ψ ) and fix any ε > 0. (Recall
that V (Ψ ) = sup

i∈I, s∈S, â,â′∈Â
vi(â, s) − vi(â

′, s). By boundedness, this is finite.) Thus, for any
player i, a monetary fine or reward of F outweighs any utility gain from changing the alternative
that is selected.

The mechanism works as follows. We have (at most) I stages, each divided into (at most)
three parts. In Stage i.A, i = 1, . . . , I , player i sends a cheap talk message cA

i ∈ S, interpreted
as a claim of a state. In Stage i.B, player i + 1 (mod I ) sends a cheap talk message cB

i ∈ S

where cB
i = cA

i is interpreted as agreeing with i’s claim and cB
i 
= cA

i is interpreted as a chal-
lenge. If i +1 challenges i, we move to Stage i.C which is explained below. Otherwise, we move
directly to Stage (i + 1).A for i � I − 1. Finally, if we get all the way through Stage I with no
challenges, the outcome is determined as follows. There are no transfers. If there is an â such that
â = â(s) for all s such that Mi(s) = Mi(c

A
i ) for all i, then this is the â that is chosen. Otherwise,

it is â(cA).
1
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If we move to Stage i.C for some i, player i presents evidence Ei . The outcome has â = â(cA
i )

with transfers which depend on Ei , cA
i , and cB

i . If Mi(c
A
i ) = Mi(c

B
i ), then i and i + 1 (mod I )

both get transfers of −F . If Mi(c
A
i ) 
= Mi(c

B
i ), then it must be possible for i either to refute cA

i if
cB
i is true (i.e., Mi(c

B
i ) � Mi(c

A
i )) or to refute cB

i if cA
i is true (i.e., Mi(c

A
i ) � Mi(c

B
i )) or both.

If it is possible to refute cA
i when cB

i is true, then the transfers are{
(−F − ε,−F) if cA

i ∈ E1,

(−F,F) otherwise,

where the first number is the transfer to i and the second is the transfer to the challenger i + 1
(mod I ). If it is not possible to refute cA

i when cB
i is true (and therefore is possible to refute cB

i

when cA
i is true), the transfers are{
(−F − ε,F ) if cB

i ∈ E1,

(−F,−F) otherwise.

In all cases, if I � 3, the other I −2 agents get the same transfers as one another, chosen to make
the total transfer equal to 0.

Note that evidence is only presented by a player in the response to the challenge stage and the
mechanism ends after this. Hence this mechanism uses limited evidence.

To see that this mechanism implements f , let s∗ denote the true state. Consider any Stage i.A.
First, suppose Mi(s

∗)� Mi(c
A
i ). Then i + 1 could challenge i and claim s∗. It is clearly optimal

for i to present evidence refuting cA
i , so i + 1 will receive F , yielding a higher payoff than could

be earned in the equilibrium of the following subgame otherwise. Second, suppose Mi(s
∗) ⊂

Mi(c
A
i ) (where this is strict inclusion). Now it is possible at cA

i to refute s∗ but not conversely.
So if i +1 challenges claiming s∗, i will be unable to refute this since it is true and the challenger
i + 1 will receive F . Hence unless Mi(s

∗) = Mi(c
A
i ), it is optimal for i + 1 to challenge. Since

this leads to a fine of at least F for i, i’s optimal strategy in Stage i.A is to make a claim cA
i

satisfying Mi(c
A
i ) = Mi(s

∗). Obviously, i could claim the true state, so such claims exist. Hence
there are no challenges and thus no transfers in equilibrium.

Finally, note that there must be at least one s for which Mi(s) = Mi(c
A
i ) for all i, namely

the true state, s∗. Furthermore, measurability implies that if another state s′ also satisfies this
property, then â(s′) = â(s∗). Hence the mechanism has the outcome â(s∗), so we implement. �
Appendix B. Proof of Theorem 2

The proof is by construction of a one-stage mechanism Γf which implements f . In the mecha-
nism we construct, every agent chooses a piece of evidence and a cheap talk message in S×Â×Z

where Z denotes the positive integers. We write a typical choice of cheap talk message for i as
(si , âi , zi).

To define the outcome as a function of the profile of evidence and cheap talk reports, we
distinguish between several cases. Let Ēi(s) denote what i proves in state s if he presents all his
evidence. That is, Ēi(s) = ⋂

E∈Mi(s)
E. (Recall that we assume the evidence structure is normal,

so Ēi(s) ∈ Mi(s) for all i and s.)
First, suppose there is a state s such that (si ,Ei) = (s, Ēi(s)) for all i. In this case, the outcome

is f (s).
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Second, suppose there is a state s and an agent j such that (si ,Ei) = (s, Ēi(s)) for all i 
= j but
(sj ,Ej ) 
= (s, Ēj (s)). There are two subcases. First, suppose s /∈ Ej . In this case, the outcome
is f (s) with a transfer of ε/2 to j , ε/2 to that i 
= j who chooses the largest zi (breaking ties by
choosing the largest i who names the largest zi ), and transfers of −ε/(I − 2) to the other agents.
Second, suppose s ∈ Ej . In this case, the outcome is f (s) with a transfer of ε to that i 
= j who
chooses the largest zi (with ties broken as above) and −ε/(I − 1) to the other agents.

Finally, for any other profile of messages, the alternative that is selected is determined by the
integers chosen. Specifically, let i be the player who chose the highest integer zi (breaking ties
as above). The alternative that is selected is âi with a transfer of ε to player i and −ε/(I − 1) to
every other player.

It is easy to see that for each s, there is an equilibrium with outcome f (s). Specifically, the
strategies ((s, f (s),0), Ē1(s)), . . . , ((s, f (s),0), ĒI (s)) form a Nash equilibrium with outcome
f (s) as no feasible unilateral deviation by any player can improve the outcome for him.

We now show that there is no (pure or mixed) Nash equilibrium in state s with an outcome
different from f (s). Fix any mixed strategies σ that form an equilibrium of Γ (s). Let H ∗ denote
the set of pure strategy profiles that fall into any case where the outcome is determined by the
integers. It is easy to see that if h ∈ H ∗, then σ(h) = 0. Otherwise, there must be some player
who could increase his integer and improve his expected payoff conditional on h ∈ H ∗ and hence
improve his unconditional expected payoff.

Hence for any h with positive probability, we have (si ,Ei) = (s′, Ēi(s
′)) for all i. Clearly, this

implies that every i has (si ,Ei) = (s′, Ēi(s
′)) with probability 1. Otherwise, there is a positive

probability of a realization h ∈ H ∗.
The outcome under these strategies is f (s′). Suppose that the outcome is not f (s), so

f (s) 
= f (s′). By measurability, there is some i with Mi(s) 
= Mi(s
′). Since every i is presenting

evidence Ēi(s
′), it must be true that Ēi(s

′) ∈ Mi(s) for all i. This implies Mi(s
′) ⊆ Mi(s). To

see this, suppose to the contrary that there is E ∈ Mi(s
′) with E /∈ Mi(s). By consistency, s /∈ E.

But then s /∈ Ēi(s
′) so we cannot have Ēi(s

′) ∈ Mi(s), a contradiction.
So Mi(s

′) ⊆ Mi(s) for all i. Hence measurability implies that there must be some i for whom
this inclusion is strict. Obviously, then, this agent could deviate to the same ci but to evidence
Ei ∈ Mi(s) \ Mi(s

′). Since Ei /∈ Mi(s
′), we have s′ /∈ Ei . This would not change â, but would

yield i a transfer of ε/2 and hence make him better off, a contradiction.
Finally, to extend the result to allow costly forging of evidence, recall that the cost of providing

false evidence is δ > 0. Fix any ε ∈ (0, δ) and consider the same mechanism as above. Just
as before, the strategies ((s, f (s),0), Ē1(s)), . . . , ((s, f (s),0), ĒI (s)) form a Nash equilibrium
in state s with outcome f (s). To see this, suppose agent j deviates from this strategy. If his
evidence presentation is still consistent with s, then he changes the outcome so that some other
agent receives ε and he must pay ε/(I − 1), obviously making him worse off. If his evidence
presentation is inconsistent with s, he must have forged the evidence at a cost δ. The â does
not change, but j receives a transfer of ε/2 < ε < δ. Hence the transfer is less than the cost of
forgery, so he is worse off. Hence these strategies form a Nash equilibrium in state s.

Just as before, there can be no equilibrium, pure or mixed, where the integers affect the out-
come. Hence every equilibrium in state s has (si ,Ei) = (s′, Ēi(s

′)) for some s′ for all i. The
same argument as above shows that there can be no equilibrium in state s where every agent
i presents evidence which is feasible (without forgery) in state s but the outcome is different
from f (s). Hence if there is an equilibrium in state s with an outcome different from f (s), it
must be true that some agent is forging evidence in the equilibrium. Let j denote such an agent.
Suppose j deviates to (s, Ēj (s)) and âj = f (s′). Depending on whether this evidence is consis-
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tent with s′ or not, j either earns a transfer of ε/2 or has to pay ε/(I − 1). However, he saves the
forgery cost of δ. Hence, since δ > ε > ε/(I − 1), j gains from the deviation in either case, so
this cannot be an equilibrium. �
Appendix C. Proof of Theorem 3

Fix an allocation environment Ψ and SCF f satisfying the conditions of the theorem. Let Γf

denote the mechanism that was defined in the proof of Theorem 1. We will show that a simple
modification of Γf implements f .

For every player i, we define the following four allocations:

• a1
i . i receives ε/2 of good K + 1 and zero units of every other good. Player i + 1 (mod I )

receives everything else.
• a2

i . i receives ε/2 of good K + 1 and zero units of every other good. Player i + 1 (mod I )
receives zero of every good. The remaining goods are allocated among the remaining players
in any fashion which gives strictly positive amounts of every good to every other player.

• a3
i . Player i + 1 (mod I ) receives all goods.

• a4
i . Players i and i+1 (mod I ) receive nothing. The goods are allocated among the remaining

players in any fashion which gives strictly positive amounts of every good to every other
player.

Define the mechanism Γ̂f as follows. Only the allocations are changed from Γf , not the
structure of moves, etc. When there is a challenge in Stage i, if the transfers in Γf to i and i + 1
were (−F,F), the outcome in Γ̂f is a1

i . If the transfers were (−F,−F), the outcome is a2
i . If

the transfers were (−F − ε,F ), the outcome is a3
i . Finally, if the transfers were (−F − ε,−F),

the outcome is a4
i .

It is easy to see that the proof of Theorem 1 relies only on the following assumptions about
preferences for any player i and states s and s′. First, outcome â(s′) and receiving a payment of
F is strictly preferred by i at s to any point in the range of f . Second, any point in the range of
f is strictly preferred by i at s to outcome â(s′) and paying a fine of F . Finally, outcome â(s′)
and paying a fine of F is strictly preferred by i at s to outcome â(s′) and paying a fine of F + ε.

It is easy to see that all three properties hold for the replacements of the fines used by the
mechanism Γ̂f . More specifically, since f (s) gives every agent at least ε of the divisible good
and a3

i gives i + 1 everything and a1
i all but ε/2 of the divisible good, i + 1 must strictly prefer

a1
i and a3

i to every point in the range of f at every state. On the other hand, since a1
i and a2

i

leaves i with only ε/2 of the divisible good and nothing else, this must be strictly worse for i

than anything in the range of f at any state. Similarly, a2
i and a4

i must be strictly worse for i + 1
than anything in the range of f at any state. Finally, since a1

i and a2
i give i ε/2 of the divisible

good while a3
i and a4

i give him nothing, he prefers the former in every state. �
Appendix D. Proofs of robustness results

D.1. Proof of Theorem 4

The proof parallels that of Theorem 2. The mechanism is exactly the same as the one used
there.
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Fix an environment with partial information Ψ ∗. Fix any s ∈ S. As in the proof of Theorem 2,
it is easy to see that there is a Bayes–Nash equilibrium with outcome f (s) for all θ such that
(s, θ) ∈ Ω . Specifically, take the strategy for every agent i to be σi(θi) = ((s, f (s),0,0), Ēi(s))

for every θi ∈ Θi . Since no feasible unilateral deviation can change the outcome, these strategies
form a Bayes–Nash equilibrium with outcome f (s) in every full state (s, θ) ∈ Ω .

The proof of Theorem 2 showed that the original mechanism had no pure or mixed Nash
equilibria with an outcome different from f (s). Since no agent’s utility is affected by any other
agent’s type, the effect of uncertainty about other agents’ types is the same as allowing mixing.
Because of this, it is easy to adapt that proof to show that there is no pure or mixed Bayes–
Nash equilibrium whose outcome differs from f (s) in any full state (s, θ) ∈ Ω . In particular, we
replace H ∗ in that proof with the set of pure strategy profiles played with positive probability
given some (s, θ) ∈ Ω such that the outcome is determined by the integers. Then the proof only
has to be modified to clarify which type of a given player deviates to prevent alternative strategy
profiles from forming an equilibrium. In all cases, any type who gives positive probability to the
(s, θ) in question suffices.

For example, consider the part of the proof of Theorem 2 which establishes that H ∗ has
zero probability in equilibrium. To extend this, fix some (s∗, θ∗) ∈ Ω for which there is positive
probability of a profile of pure strategies for which the integers determine the outcome. Let i be
any agent who does not say the highest integer given this realization of the pure strategy profile
and given (s∗, θ∗). Then i must give probability strictly less than 1 to the event that zi > zj for all
j 
= i given s∗ and θ∗

i and given that the integers determine the outcome.29 Clearly, then, i would
gain by changing his strategy when he is type θ∗

i to a larger integer (possibly also changing â).
Hence there is no such equilibrium. The other parts are extended analogously. �
D.2. Proof of Theorem 5

Let Ψ ∗ be a monetary environment with partial information and fix any s ∈ S. Let Γ denote
the mechanism defined in the proof of Theorem 1 and let Γ ∗(s) denote the sequential game of
incomplete information induced by Γ and Ψ ∗ at state s.

Fix any profile of types θ̄ such that (s, θ̄ ) ∈ Ω and let Γ̄ (s) denote the complete information
game defined by Γ in the environment where it is common knowledge that the utility functions
are given by vi(·, s, θ̄i ) for each i. We now show that for every θ with (s, θ) ∈ Ω , the equilibrium
outcome of Γ ∗(s) is the same as the equilibrium outcome of Γ̄ (s).

To be more precise, note that any history of actions in the mechanism corresponds to a collec-
tion of information sets in Γ ∗(s), one information set for each type of the player whose turn it is
to move at this history. Thus, in general, there is a set of outcomes following a given history, one
for each profile of types.

We establish that in any equilibrium, for every state s, for every player i and every type θi

of i, i makes a claim cA
i in Stage i.A satisfying Mi(c

A
i ) = Mi(s) and is not challenged by player

i + 1 in Stage i.B. (The specific claim made by i may depend on θi .) As we explain below,
this claim together with the measurability of f imply that the outcome in any equilibrium must
be f (s).

To establish this claim, first, consider any history of actions which puts us in Stage i.C for
some i where it is i’s turn to present evidence. Clearly, i’s action only affects his transfer and

29 This statement uses both our common support assumption and the assumption that each Θi is at most countable.
Together, this ensures that μi(s

∗, θ∗)(θ∗ ) > 0.

i −i
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nothing else, so his optimal strategy at this point depends only on s, not his type or his beliefs
about his opponent’s types.

The rest of the proof is by induction on the stage. So suppose we are at Stage I and for all
i < I , the claim made at Stage i.A satisfied Mi(c

A
i ) = Mi(s) and was not challenged. It is easy to

see that in Stage I .B, 1 will challenge if and only if a challenge will be successful in the sense that
MI(c

A
I ) 
= MI(s). To see this, simply note that at 1’s turn, he has the choice between the â which

would result from not challenging and the fine or reward that would result from challenging.
Regardless of his type, the reward he would earn from a successful challenge must be preferred
strictly to â and the fine he would incur from an unsuccessful one would be strictly worse than â.
Hence he challenges if and only if the challenge would be successful — that is, if and only if
MI(c

A
I ) 
= MI(s). Given this, player I certainly makes a claim satisfying MI(c

A
I ) = MI(s) since

for every θI , his payoff if challenged is strictly lower than his payoff to any such claim.
Given this, consider Stage i for any i < I and that we have shown the claim for all larger i. If i

makes a claim such that Mi(c
A
i ) = Mi(s), then by the induction hypothesis, the outcome if i + 1

does not challenge has no transfers. Hence the outcome from a failed challenge is strictly worse,
so i + 1 will not challenge. On the other hand, if Mi(c

A
i ) 
= Mi(s), i + 1 can make a successful

challenge and will necessarily be better off than from not challenging. Hence for every type,
i +1 challenges if and only if Mi(c

A
i ) 
= Mi(s). Given this, it is easy to see that i will make some

claim satisfying Mi(c
A
i ) = Mi(s), as claimed.

Since this goes back to the beginning of the game, we see that in every equilibrium, the
equilibrium path must have claims satisfying Mi(c

A
i ) = Mi(s) for all i. By measurability, there

is only one outcome â such that â = â(s′) for some s′ satisfying Mi(c
A
i ) = Mi(s

′) for all i. Since
f (s) clearly is such an outcome, the unique equilibrium outcome is f (s), so the mechanism
implements. �
Appendix E. Proofs of tightness claims

E.1. Proof of Claim 1

Suppose by contradiction that there exists a mechanism Γ that implements f . Let Γ (sk)

and Σi(sk), k = 1,2, i = 1,2, denote respectively the game that is induced by Γ at sk and the
set of strategies of player i in Γ (sk). Let Ui : Σ1(s) × Σ2(s) → R denote the payoff functions
for the normal form of Γ (s). Since Γ implements f , there is a subgame perfect equilibrium
and hence a Nash equilibrium, (σ̂1, σ̂2), in Γ (s2) with outcome f (s2). Thus U1(σ̂1, σ̂2) = 1
and U2(σ̂1, σ̂2) = 0. Since (σ̂1, σ̂2) is a Nash equilibrium and since monetary transfers must be
strictly less than 1/2, we have that for every σ2 ∈ Σ2(s2), the probability that â1 is selected when
the profile (σ̂1, σ2) is played is strictly less than 1/2. To see this, suppose that it is not true.
Then there is a strategy for player 2, say σ ′

2, such that when (σ̂1, σ
′
2) is played, the probability

of â1 is greater than or equal to 1/2. If player 2 deviates to this strategy, his payoff is strictly
positive since he pays a fine of strictly less than 1/2. Hence (σ̂1, σ̂2) is not a Nash equilibrium
in s2, a contradiction. Given this, we must have U1(σ̂1, σ2) > 0 for every σ2 ∈ Σ2(s2) since
the alternative â2 is selected with probability at least 1/2 and player 1 pays a fine strictly less
than 1/2.

Consider now the game Γ (s1). Since σ̂1 ∈ Σ1(s1) and since Σ2(s1) = Σ2(s2), player 1 can
guarantee a strictly positive payoff by playing σ̂1. It follows that in every Nash equilibrium in
Γ (s1), player 1 obtains a strictly positive payoff. Hence there is no Nash equilibrium (let alone
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a subgame perfect equilibrium) in Γ (s1) with outcome f (s1). Hence Γ cannot implement f ,
a contradiction. �
E.2. Proof of Claim 2

Fix any perfect information mechanism Γ such that if g(h) = (â, t1, t2, t3) for some terminal
history h, then |ti | < 1/2, i = 1,2,3. We show that this game cannot implement f . The proof
works by showing that if there is a subgame perfect equilibrium of Γ (s2) with outcome â2 and
some vector of transfers t , then every subgame perfect equilibrium of Γ (s1) has outcome â2 plus
some transfers t̂ . The proof is by induction on the depth of Γ (s2).

So suppose Γ (s2) has a subgame perfect equilibrium with outcome (â2, t1, t2, t3).
First, suppose the depth of Γ (s2) is 1. Suppose player 2 is the only one who moves. Then

it must be true that given any choice he makes, the outcome is â2 and some vector of trans-
fers t̂ . To see this, suppose that there is some choice which leads to outcome â1 and some vector
of transfers t̄ . Player 2’s payoff from this choice is 1 + t̄2. Since the equilibrium outcome is
(â2, t1, t2, t3), we must have

1 + t̄2 � t2

or t2 − t̄2 � 1. Hence

|t2| + |t̄2| � |t2 − t̄2|� 1,

so

max
{|t2|, |t̄2|} � 1

2
,

contradicting our bound on transfers. Hence, as asserted, every choice available to 2 in Γ (s2)

leads to â2 and some vector of transfers.
Given this, consider state s1. Since player 2 has no proof available, his strategy set in Γ (s1)

is the same as his strategy set in Γ (s2). So in state s1, the equilibrium outcome must be â2 with
some vector of transfers. Obviously, a symmetric argument applies to player 3.

So now suppose it is player 1 who moves in this game. Then there must be some cheap
talk message available to player 1 which yields outcome â2 and some vector of transfers t . So
consider the game Γ (s1). Since player 1 has proof, his set of strategies is larger in this game.
Also, it is possible that the game now has larger depth, since presentation of proof might lead to
a subgame. However, it must still be true that player 1 has available a message which leads to
outcome â2 and transfers t . Suppose that in Γ (s1), there is an equilibrium with outcome â1 and
some vector of transfers t̄ . Then player 1 must prefer this outcome to â2 with transfers t . Similar
reasoning to the above shows that this implies

max
{|t1|, |t̄1|} � 1

2
,

again violating our bound on transfers. Hence any subgame perfect equilibrium in state s1 must
have outcome â2 with some vector of transfers, as asserted.

Now consider the induction step. So suppose we have proved the claim for all mechanisms
such that the depth of Γ (s2) is less than or equal to k − 1 and consider a mechanism such that
Γ (s2) has depth k. Suppose player 2 moves first. An argument similar to the one above for the
depth 1 case shows that if a subgame perfect equilibrium has outcome â2 and some vector of
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transfers t , then it must be true that each choice available to player 2 leads to a subgame in
which every subgame perfect equilibrium has outcome â2 and some vector of transfers. By the
induction hypothesis, this remains true in state s1, so every initial choice available to player 2
in Γ (s1) leads to a subgame in which every subgame perfect equilibrium has an outcome of â2
and some vector of transfers. It readily follows that every subgame perfect equilibrium of Γ (s1)

has such an outcome. Thus we have proved the claim for this mechanism if player 2 moves first.
A similar argument applies if player 3 moves first.

So suppose player 1 moves first. Since there is a subgame perfect equilibrium with outcome
â2 and transfers t in Γ (s2), player 1 has a cheap talk message available that leads to a subgame
with a subgame perfect equilibrium that has this outcome in state s2. By the induction hypothesis,
every subgame perfect equilibrium of this subgame will have an outcome of â2 and some vector
of transfers t̂ in state s1. Using the same reasoning as in the depth 1 case, the bound on transfers
implies that this is better for player 1 than any feasible outcome with â = â1. Hence in state s1,
1’s optimal choice must lead to an outcome with â = â2. �
E.3. Proof of Claim 3

Fix any multistage mechanism Γ such that for every history h, g(h) = (â,0, . . . ,0) for some
â ∈ Â. That is, there are no transfers on any history. Let Σi(sk) denote the set of strategies for
player i in Γ (sk). We show that Γ cannot implement f . The proof works by showing that if
Γ (s2) has a subgame perfect equilibrium with outcome â2, then Γ (s1) has a subgame perfect
equilibrium with outcome â2 as well. The proof is by induction on the depth of the game Γ (s2).

First, suppose that the depth of Γ (s2) is 1. Let σ = (σ1, . . . , σn) be a subgame perfect equi-
librium of Γ (s2) with outcome â2. We claim that â2 is a subgame perfect equilibrium outcome
of Γ (s1) as well. To see this, define a profile of strategies σ̂ in Γ (s1) as follows. At the first stage
of the game, each player i plays the action σi . (Note that Σi(s2) ⊆ Σi(s1) for all i, so this is
feasible.) Let b = (b1, . . . , bn) be some profile of actions that is played in the first stage. If b is a
profile of actions which is feasible in Γ (s2), the game must terminate when b is played since the
depth of Γ (s2) is 1. So suppose Γ (s1) does not terminate when b is played. Then b must not be
feasible in s2, implying that player 1’s action, b1, involved presentation of a proof that the state
is s1. Let Γ b(s1) denote the subgame that is the continuation of Γ (s1) after the play of b and let
τb be any subgame perfect equilibrium of Γ b(s1). For any history h within the subgame Γ b(s1),
let σ̂ (b,h) = τb(h).

We now show that σ̂ is a subgame perfect equilibrium of Γ (s1). Obviously, the outcome when
σ̂ is played is â2, so this will establish our claim for depth 1. Since the restriction of σ̂ to every
subgame of Γ (s1) that starts at the second stage of the game is a subgame perfect equilibrium
of the subgame, the only thing we need to show is that no player i can gain from a unilateral
deviation in the first stage of the game.

To see that this holds, note that player 1 gets his best possible outcome, â2, when σ̂ is played
so clearly he cannot gain from deviating. For any player i 
= 1, any action bi 
= σi that he can
play at the first stage of Γ (s1) is an action that he can play in the game Γ (s2) as well. Hence
the fact that Γ (s2) has depth 1 implies that any such action leads to the termination of the game
Γ (s1) with an outcome that is identical to the outcome in Γ (s2) when i deviates to bi . Since σ

is an equilibrium in Γ (s2), we conclude that player i cannot gain from deviating. Hence σ̂ is a
subgame perfect equilibrium of Γ (s1) with outcome â2.

So suppose that the claim has been proved for every mechanism Γ ′ such that the depth of the
game Γ ′(s2) is smaller than K . Let Γ be a mechanism such that the depth of Γ (s2) is K and let



1722 E. Ben-Porath, B.L. Lipman / Journal of Economic Theory 147 (2012) 1689–1724
σ be a subgame perfect equilibrium of Γ (s2) with outcome â2. We will show that Γ (s1) has a
subgame perfect equilibrium σ̂ with outcome â2.

For each profile of actions b which can be played in the first stage of Γ (s2) and does not
terminate the game, let Γ b denote the game form that is the continuation of Γ following a play
of b in the first stage. Γ b is a mechanism such that Γ b(s2) has depth less than K . Let σb denote
the profile of strategies in Γ b(s2) that is induced by σ . Since σ is a subgame perfect equilibrium
of Γ (s2), σb is a subgame perfect equilibrium of Γ b(s2). If the outcome under σb is â2, then
the induction hypothesis implies that Γ b(s1) has a subgame perfect equilibrium, say σ̃ b , with
outcome â2.

With this in mind, we construct a subgame perfect equilibrium σ̂ of Γ (s1) with outcome â2
as follows. In the first stage of the game, each player i chooses his action according to σi . Let
b be a profile of first stage actions which does not terminate the game. If b is feasible in state
s2 and if the outcome of Γ b(s2) under σb is â2, then let σ̂ on Γ b(s1) be the subgame perfect
equilibrium σ̃ b . For any other b, choose any subgame perfect continuation strategies.

To see that the outcome under σ̂ is â2, note that the first stage strategies under σ̂ are the same
as those under σ . Hence the resulting profile of actions b must either terminate the game with
outcome â2 or lead to a subgame where the continuation equilibrium has outcome â2. To see
that σ̂ is a subgame perfect equilibrium of Γ (s1), note that the restriction of σ̂ to every proper
subgame in Γ (s1) is subgame perfect so we just need to show that no player i can gain from
a deviation at the first stage of the game. The outcome â2 is the best outcome for player 1 so,
clearly, he will not gain by deviating.

So consider a deviation in the first stage by any player i 
= 1 to an action bi which has zero
probability under σ̂i . Note that i’s deviation is also feasible in s2. Hence the outcome in Γ b(s2)

under σb must be â2 as this is the equilibrium outcome and the worst possible outcome for i.
Therefore, the equilibrium σ̃ b is played in the subgame Γ b(s1) and the outcome is â2. Thus
player i does not gain from deviating. �
Appendix F. Mixed strategies

Our discussion has focused on implementation in pure strategy subgame perfect equilibrium.
In this section, we show that all our results carry over for the case where the solution concept is
mixed strategy subgame perfect equilibrium.30 First, it is easy to see that Proposition 1 holds for
mixed equilibria as well as pure. It is also easy to see that the proofs given earlier for Theorems 2
and 4 and Claims 1 and 3 apply to implementation both in pure and in mixed strategies.

Finally, we turn to the extension for the results that refer to implementation in perfect infor-
mation games, namely, Theorems 1, 3, and 5 and Claim 2. For Theorems 1, 3, and 5, we claim
that the mechanisms which were defined in Appendices A, C, and D.2 implement the SCF f in
mixed strategies as well. To see this, consider the mechanism Γf which is defined in the proof
of Theorem 1 (the arguments for Theorems 3 and 5 are identical). We first note that the proof
of Theorem 1 establishes that for every state s, there exists a subgame perfect equilibrium in the
game Γf (s) with outcome f (s). It is easy to see that the argument which establishes that there is

30 The fact that the mixed equilibria include the pure equilibria can make implementation with mixed strategies easier
or more difficult. More specifically, let f be a SCF and Γ a mechanism. It is possible that Γ implements f in mixed
strategies but not in pure strategies (because there may exist only a non-pure equilibrium in Γ (s) with outcome f (s))
and it is possible that Γ implements f in pure strategies but not in mixed strategies (because there may exist a non-pure
equilibrium which induces an outcome different than f (s) at state s while all the pure equilibria have outcome f (s)).
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no pure subgame perfect equilibrium with a different outcome than f (s) also implies that there
is no mixed subgame perfect equilibrium which gives positive probability to an outcome differ-
ent from f (s). Specifically, if every player i claims a state cA

i such that Mi(s) = Mi(c
A
i ), then,

in equilibrium, it must be the case that no players challenge any other player and the outcome
is f (s). On the other hand, if player i chooses a claim cA

i such that Mi(s) 
= Mi(c
A
i ), then the

argument given in the proof shows that he will end up with an outcome that is inferior to f (s).
Hence in equilibrium, player i will not make such a claim with positive probability.

For Claim 2, it is easy to see that the proof of the claim in Appendix E.2 establishes that if
Γ is a perfect information mechanism such that there exists a pure subgame perfect equilibrium
of Γ (s2) with outcome â2 plus some transfers t , then every pure subgame perfect equilibrium of
Γ (s1) has outcome â2 plus some transfers t̂ . Since Γ (s2) is a perfect information game, it has
a pure strategy equilibrium. Therefore, if Γ implements f in a subgame perfect equilibrium in
mixed strategies, then there is a pure subgame perfect equilibrium in Γ (s2) with an outcome â2
and some vector of transfers t . Hence there is a (pure) subgame perfect equilibrium with outcome
â2 and a vector of transfers t̂ in Γ (s1), so f cannot be implemented.
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