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Econometrica, Vol. 59, No. 4 (July, 1991), 1105-1125 

HOW TO DECIDE HOW TO DECIDE HOW TO...: 
MODELING LIMITED RATIONALITY' 

BY BARTON L. LIPMAN 

It seems inconsistent to model boundedly rational action choice by assuming that the 
agent chooses the optimal decision procedure. This criticism is not avoided by assuming 
that he chooses the optimal procedure to choose a procedure to... to choose an action. I 
show that, properly interpreted, this regress, continued transfinitely, generates a model 
representing the agent's perception of all his options including every way to refine his 
perceptions. In this model, the agent surely must choose the perceived best option. Hence 
it is not inconsistent to model limited rationality by assuming that the agent uses the 
"optimal" decision procedure. 

KEYWORDS: Limited rationality, bounded rationality, infinite regress, optimal decision 
procedures. 

"A person required to risk money on a remote digit of v7 would, in order to comply fully 
with the theory [of expected utility] have to compute that digit, though this would really 
be wasteful if the cost of computation were more than the prize involved. For the 
postulates of the theory imply that you should behave in accordance with the logical 
implications of all that you know. Is it possible to improve the theory in this respect, 
making allowance within it for the cost of thinking, or would that entail paradox?" 

-Savage (1967). 

1. INTRODUCTION 

IT IS NO LONGER NOVEL to suggest that standard economic models make overly 
strong rationality assumptions.2 Unfortunately, taking account of this criticism is 
no easy task. A recent approach in the literature is based on the idea that if 
finding the best action is costly, then the best way to decide on an action 
involves trading off these decision-making costs with the benefits to improving 
the choice of an action. Thus imperfect action choices are endogenously 
generated by optimal decision procedures.3 Unfortunately, this approach seems 
inconsistent. If the agent chooses actions imperfectly because it is costly to do 
better, why doesn't he choose decision procedures imperfectly as well? We 
might try to model imperfect choice of a decision procedure by analyzing the 
choice of decision procedures to pick decision procedures to pick actions. 
Again, though, it is not obvious why we would simply assume optimality at this 

I This paper contains the material from Section II of my working paper "How to Decide How to 
Decide How to...: Limited Rationality in Decisions and Games." I thank Mark Bagnoli, Sugato 
Bhattacharyya, Larry Blume, Ed Green, Maria Herrero, Debra Holt, Steve Spear, Sanjay Srivastava, 
Spyros Vassilakis and two other referees, and Andreu Mas-Colell for helpful comments. Of course, 
I am responsible for any errors. I wish to acknowledge financial support from the National Science 
Foundation through Grant SES-8520296. 

2 See Simon (1955, 1976), Selten (1978), and Binmore (1987, 1988). 
3 Papers in this spirit include Green (1982), Rubinstein (1986), Abreu and Rubinstein (1988), and 

Lipman and Srivastava (1990a, 1990b). 
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level either, driving us up yet another level. Clearly, we are headed for an 
infinite regress.4 

Without a solution to this infinite regress problem, efforts to find a useful 
model of limited rationality are unlikely to succeed. Any model must either 
make direct assumptions on how agents respond to their environment or derive 
this behavior from optimality-based considerations.5 Direct assumptions on 
behavior are naturally subject to the criticism of ad hockery. Derivation of 
behavior from optimality either assumes away limited rationality or runs into 
this infinite regress problem. 

This paper has two purposes. First, I present a model of limited rationality 
based on the approach described above. The main purpose of the paper is the 
second one: within the context of the model, I show that the infinite regress 
problem, properly interpreted, does not mean that modeling limited rationality 
by the choice of optimal decision procedures is doomed. That is, in a particular 
sense, we can "solve" the infinite regress problem.6 

To explain the model and the solution to the infinite regress problem requires 
consideration of some difficult philosophical questions. In the remainder of this 
section, I address these issues, explain the idea of the model and the solution to 
the infinite regress problem, and briefly survey the relevant literature. 

The first philosophical issue that must be addressed is the most basic: what do 
we mean when we say that rationality is "limited"? I believe most economists 
would reply that limited rationality means that the agent does not choose the 
optimal action because it is too difficult to compute that action. That is, in a 
complex environment, the agent may not know the optimal action. The obvious 
next question is: why is rationality limited? If the agent knows his preferences, 
knows the feasible set, and knows how the optimal action is defined given these 
objects, why does he not know the optimal action? The reason is that knowing a 
fact does not mean that one knows all the logical implications of that fact. For 
example, the reader is likely to know the axioms of set theory and the rules of 
logical inference, but is unlikely to know all theorems of set theory, though 
these are logically implied. Similarly, the agent can fail to recognize the 
appropriate action because this requires him to process his information. While 
his information mathematically defines the appropriate choice, it is often 
difficult to learn these implications. 

The philosophy literature has long recognized the problem, dubbed logical 
omniscience by Hintikka (1975), that standard representations of knowledge 
imply that an agent knows all logical implications of his knowledge. The solution 

4This infinite regress problem has long been recognized. See, for example, Winter (1975) and the 
references therein. 

5To be sure, evolutionary models (see Blume and Easley (1989), for example), in a sense, derive 
behavior from considerations other than optimality. On the other hand, such models also must make 
assumptions on behavior to generate the evolutionary process. 

6After completing this paper, I discovered the related work of Mongin and Walliser (1988). Their 
approach to the infinite regress problem is quite different from mine as are their conclusions. 
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proposed by Hintikka, among others, is to allow impossible possible worlds.7 In 
other words, the agent believes possible something which is logically not 
possible. For example, the agent may know that p is true, know a rule of 
inference which yields q when applied to p, and yet believe that it is possible 
that q is false. 

The approach I take is based on this idea. I assume that if the agent does not 
know what some fact implies, then he believes that the true implication depends 
on the state of the world. Among the states of the world given positive 
probability by the agent may be states which are logically inconsistent. Compu- 
tation or thought in my model is the process by which the agent learns about the 
implications of his information. Essentially, he recognizes the inconsistency of 
some states and eliminates them as possible.8 

In short, when we write down a model of an agent in some situation, we 
specify a feasible set and preferences for the agent, thus defining his optimal 
choice. If we believe that the real agent might not choose this optimum because 
he is only limitedly rational, we are arguing that the agent does not perceive the 
model in exactly the way we have written it down. We must be arguing either 
that the agent is less certain than the model assumed regarding his feasible set 
and preferences or else that he faces subjective uncertainty regarding what his 
information about the feasible set and his preferences tells him he should do. 
Either way, we have not correctly specified his information or, more loosely, his 
''perception'' of the situation. 

This immediately suggests another question: is that all that "limited rational- 
ity" means? In other words, if we correctly and completely specify an agent's 
perception of his situation, can we assume that he is "completely rational" given 
this perception? I would argue that we have no other choice. We certainly 
cannot hope to predict behavior which is based purely on whim. Yet what else 
could explain the behavior of an agent who perceives some action to be the best 
one available for him and chooses something else anyway? Perceptions may be 
highly imperfect, even totally inaccurate, but given an agent's perception of his 
world, we must assume that he chooses what he perceives to be best for him.9 
Given this, the key to modeling limited rationality is modeling the agent's 
perceptions, not postulating a "boundedly rational" choice procedure. This 
point is crucial to the motivation for everything which follows: I focus on these 
perceptions, taking as fundamental that they are what determines choice. 

This leads to the final question: haven't we just assumed away the infinite 
regress problem? If we only have to correctly specify an agent's perception of 

7 See also Fagin and Halpern (1985) and the references cited there. 
8 Hacking's (1967) reply to the Savage quote with which I began appears to be the first discussion 

of this approach. 
9 The earliest discussion of this view known to me is Popper (1967). As he points out, we even try 

to "rationalize" the behavior of lunatics by supposing that their choices are what they perceive as 
best for them given their preferences and their sometimes rather bizarre perceptions of their 
environment. 
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his situation, where does infinite regress come in? Infinite regress arises when 
we try to construct the agent's perceptions. To see the point, suppose we are 
trying to model an agent who has a set of feasible actions A = {0, 1}. Suppose 
the agent gets $100 if he chooses a = 0 and he gets f(l) dollars if he picks 
a = 1, where ff() is a very complex function that we write down for the agent.10 
Clearly, if we assume complete rationality (and that the agent prefers more 
money to less), the prediction is trivial. The agent chooses a = 0 iff 100 >f(l). 
Since ff() is written down in front of the agent, he must know the function. 

Of course, if we believe that the agent's rationality is limited, we may believe 
that it is very difficult for him to compute the value of f(l). What we are saying, 
then, is that he knows the function in the sense that he sees what it says, but 
that he does not know it in the sense of knowing all the ordered pairs the 
definition of the function implies. Hence to predict the agent's choice accu- 
rately, we must specify his perception of what f(l) may be. That is, we must 
treat ff() as random from the agent's point of view. Once we add in this 
uncertainty, though, we must recognize that there are more options available to 
the agent than simply choosing a = 0 or a = 1-he may try to compute f(l), for 
example. More generally, the agent has available ways to resolve his subjective 
uncertainty and this must be made part of the model if we are going to predict 
his behavior. 

Bringing in these options involves constructing the set of decision procedures 
the agent has available and replacing the feasible set A with this new, larger 
feasible set. This new set, presumably, includes choices like computing f(l) on a 
calculator or computer, trying to approximate the function ff() by some more 
easily computed function, differentiating ff() to see how the function behaves 
around 1, etc. One approach we could take would be to assume that the agent 
chooses the optimal decision procedure. However, we might suspect that he is 
quite uncertain about how hard it will be to perform some of these computa- 
tions or that he doesn't know whether his calculator is capable of computing 
f(l). In short, now that we've enlarged the set of options our model of the agent 
allows, we must recognize that the agent may be uncertain about these new 
options also. The important point to keep in mind is that it is precisely our 
intuitive sense that choosing the optimal decision procedure is "hard" that leads 
to the inclusion of this additional uncertainty. Naturally, once we include this 
uncertainty, we see that the agent may have options available to help him 
choose among decision procedures-for example, he might purchase a book 
which contains various algorithms, learn a new programming language, etc. This 
leads us to construct the set of decision procedures to pick decision procedures, 
enlarging the choice set yet again. If, again, we believe the agent to be uncertain 
about these new options, we must enlarge the uncertainty, and so on. 

Thus the infinite regress problem, restated, is this: can we construct a model 
in which this regress stops? More precisely, can we construct a model in which 

10 For example, we may tell him that f(1) = 0 if a given 500-digit number is prime and is 200 
otherwise. 
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we fully represent the agent's uncertainty about each option available to him 
and, at the same time, make every way he could resolve his uncertainty an 
option? We can easily do this if we assume that the agent is perfectly rational, 
since there is no subjective uncertainty in this case. Similarly, we can easily do 
this if we assume that the agent has no options available to resolve his 
uncertainty. The real question is whether we can do this without making the 
problem trivial by either assuming away the subjective uncertainty generated by 
limited rationality or assuming away the agent's ability to compute to improve 
his choices. 

To put it differently, we are looking for a fixed point." Loosely, suppose we 
have an operator, say U, which gives us the uncertainty associated with a 
particular set of options and another operator D which gives us the options 
available to the agent to resolve some given uncertainty. The question then 
becomes whether there exists a set of options 0 such that 0 = 9(O) -- D(U(O)). 
Viewed this way, the "infinite regress" is simply the sequence 
A, 9.2(A), 9 where A is the set of actions available to the agent. 
The key question about this regress is whether it converges to a fixed point of 
S9(). As this description suggests, the view taken here is not that the agent has 
to think through some infinite sequence to try to decide what action to pick. 
Instead, the consideration of the infinite sequence is our effort (as modellers) to 
find an appropriate model for predicting the agent's action choice. The "ap- 
propriate" model is one in which we have fully represented the agent's options 
and his perception of his options. Once we have done that, as argued above, we 
must close the model by assuming that the agent chooses the option which he 
perceives to be best. 

The main result is that a fixed point does exist. One difficulty in demonstrat- 
ing this fact is the following. Let D0 =A, DI = 9(A), D2= =(D ), and so on 
for every finite number n. As I show in the next section, the countable sequence 
{Dn In = 1,2, ...} does not converge to a fixed point in general. One could 
impose a number of different assumptions which would guarantee that the 
countable sequence would converge, most of which are rather strong. However, 
the primary issue is the existence of a sequence converging to a fixed point, not 
how long the convergent sequence in question is. Hence the important point is 
that, even without these additional assumptions, if we consider "long enough" 
(transfinite) sequences, we always get convergence to a fixed point.12 This is 
shown in Section 3. 

Related Literature. There is a rapidly growing literature on bounded rational- 
ity. Much of this work focuses on the computational complexity of strategies or 
finding equilibria. See, e.g., Abreu and Rubinstein (1988), Kalai and Stanford 

I am grateful to a referee, Spyros Vassilakis, for recommending this explanation. 
12 This does not mean that there is no reason at all to be interested in the length of the 

convergent sequence. For example, if one is willing to impose a certain structure (such as a specific 
topology) on each of the D's in the sequence, one may wish to know whether the fixed point also 
has this structure. For many kinds of structure, the answer to this question will hinge on the length 
of the convergent sequence. However, these questions are not the ones on which I focus here. 
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(1988), Ben-Porath (1989), Canning (1988), Gilboa and Zemel (1989), and Spear 
(1989).13 Other approaches include evolutionary or dynamic learning models 
(such as Fudenberg and Kreps (1988), Blume and Easley (1989), and Canning 
(1989)) and models with limited reasoning (Aumann (1988), Geanakoplos (1989) 
and Brandenburger, Dekel, and Geanakoplos (1989)). Also, several authors 
have provided "resolutions" of apparent infinite regress problems. The primary 
use of this technique in economics and game theory is based on Mertens and 
Zamir's (1985) pioneering work on beliefs about the beliefs of others. For the 
reader familiar with Mertens and Zamir, I give a comparison of my construction 
with theirs in the following section. Rationalizability (Bernheim (1984), Pearce 
(1984)) is also based explicitly on analyzing an infinite regress.14 Such construc- 
tions, including transfinite sequences, have been used frequently in the philoso- 
phy literature. For example, Kripke (1975) used this approach to deal with an 
infinite regress problem which arises in defining truth. Finally, Vassilakis (1989) 
uses category theory to give a general theory of fixed points based on recursive 
constructions, such as the construction here or that of Mertens and Zamir 
(1985). 

2. THE MODEL: COUNTABLE SEQUENCES 

A precise construction of the sequences involved requires attention to some 
uninteresting technical issues. Rather than explain these points in detail, I give 
a more heuristic construction in the text and relegate the formal details to the 
Appendix. 

The agent has a set of feasible actions, which I denote A or, interchangably, 
Do. The agent is unsure about which action is best for him, but has some 
perception of how "good" each action is. If he had to choose an action without 
computation, he would choose the action which is best according to his initial 
perception. It is not obvious what kind of structure the agent's perceptions 
should be assumed to have since this is the agent's primitive, gut-level view of 
his situation. For expositional purposes, I impose a great deal of structure on 
the agent's perceptions. However, as we will see, essentially none of this 
structure is needed for the main result. I represent the agent's perception with a 
set S0 of possible states and a utility function u0: Do X So -* R. With this 
formalization, the uncertainty of the agent regarding the best choice in Do is 
represented by his uncertainty about the true state in So and how this affects 
u0. Through the remainder of the paper, I avoid additional assumptions on the 
agent's perceptions. As we will see, this is partly responsible for the fact that 
countable sequences are not enough to converge to a fixed point. Fortunately, 
though, longer sequences do converge without strong assumptions on percep- 
tions. I let P0 = (DO, u0, SO) denote the initial problem-i.e., our initial attempt 
at a model describing the agent's problem. 

13 I do not discuss computational issues per se, but there is clearly room to consider such issues in 
this framework. The complexity literature characterizes the costs of various computations, while I 
focus on characterizing choice of computations as a function, in part, of their costs. 

14 Lipman (1990a) shows that with infinite strategy sets and discontinuous payoff functions, 
rationalizability also requires a transfinite construction. 
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To model the computation the agent may carry out to refine his perceptions, I 
introduce a set L, which will be called the language. This set is the language in 
which thought or computation is carried out. For example, if we think of 
computation as the use of a computer, we might think of L as the set of strings 
of 0's and l's. If we view computation as deriving implications in a formal logical 
system, we would assume that L is the set of well-formed formulas of the logical 
system. For convenience, an element of L will be referred to as a word. To 
avoid trivialities, I assume that L has at least two elements. A computation is a 
function c which produces a word as a function of the state.15 To explain the 
intuition, let us return to the example in the introduction. If the agent is 
uncertain about the value of f(l), he may wish to try computing this value. 
More formally, the agent perceives the value of f(l) as being a function, say 
g(s), of the state of the world s, where So is the domain of g. If he computes 
the value of f(1) exactly, this corresponds to learning exactly what the true s is. 
That is, it is as if he observes the value of c(s) where c is invertible. 

For any set of states, say S, let the set of possible computations using S be 
C(S). (An exact definition is given in a moment.) Using this, we can construct 
the set of decision procedures, which I write as D(S). The details of the 
construction are given in the Appendix. Intuitively, a decision procedure begins 
with an initial choice of either an action a E A or a computation. If the 
procedure chooses an action, it is complete and the procedure is interpreted as 
choosing that action without performing computations.16 Thus this "procedure" 
is also an element of Do, If, instead, the procedure's initial choice is a 
computation, the outcome of that computation is observed. This generates a set 
of possible outcomes, each of which is a possible "history" of the computation 
procedure. I refer to these as histories of length one. After each such history, 
the procedure must again specify either an action or another computation. If 
actions are chosen for each possible history, again, the procedure is completely 
specified. Otherwise, we continue as above."7 The set of procedures, D(S), is 
the set of functions that can be constructed this way. 

By construction, every history generated by a decision procedure has finite 
length. However, I do not assume that there is a finite bound on the length of 
the histories generated by a given procedure. Hence I allow procedures that 
compute without stopping.'8 This assumption simplifies but is not necessary for 
the analysis. It is not hard to show that all the results below hold if we only 
allow procedures for which the number of steps of computation is bounded, 

t5An equivalent formulation would be to let computations take a word as input and give some 
word as output as a function of the state. My approach simply treats computing the same function 
on different inputs as different computations. 

16 Throughout, I treat choice and evaluation as separate. An agent can always choose any action 
without computation. However, making a good choice may require evaluating several 
options-computing-before choosing. Since computation is costly, making good choices is costly. 

17 It is important that a decision procedure not include a specification of what it does on histories 
it cannot generate. Without this, Theorem 2 does not hold. 

18 One argument in favor of this approach is that in standard computability theory, there is no 
algorithm for determining whether a given procedure halts. While I do not focus on computability 
considerations, this certainly suggests that one should not assume that the agent realizes which 
procedures halt and which do not. 
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even if we require a uniform bound across procedures. As discussed below, 
there are some differences in the interpretation of the results with such bounds. 

Finally, then, the set of decision procedures for improving the choice of an 
action is Di = D(So), where Do cD1. (Throughout, I use c to denote strict 
inclusion.) Since the agent can choose any decision procedure in D1, we must 
extend "perceptions" to this set. In doing so, it is important to keep in mind 
that S0, by assumption, reflected the uncertainty over the appropriate action to 
pick and over the outcomes of computations; there is no reason why it must 
reflect all uncertainty regarding the best choice of a decision procedure. For 
example, the payoff to a decision procedure should include whatever costs are 
associated with the computations the procedure uses and the agent may be 
uncertain about these costs. It is precisely this "extra" subjective uncertainty 
which leaves us uncomfortable with the assumption that the agent chooses the 
optimal decision procedure. Thus the agent's perception of his options in D1 
are given by a utility function u1: D1 x So x S, -* R where S1 is a state set 
reflecting the additional subjective uncertainty that arises when we enlarge the 
set of options to D1. I require that the agent's perceptions be well defined in the 
sense that the enlargement of the set of options does not affect the agent's 
perceptions of the original options. That is, u1 is an extension of u0 in the sense 
that for any d E Do and s = (so, SI) E So x S1, u1(d, s) = uo(d, so). Recall that 
this construction is being carried out by the modeller, not the agent, and so the 
process of construction should not affect the agent's perceptions. I let P1= 
(D1, u1, S1), where Si = So x SI. 

Once we add in S1, this enlarges the set of computations to C(Sl) and 
correspondingly enlarges the set of decision procedures to D2 = D(S1). Again, 
this necessitates introducing an additional state set S2 and extending prefer- 
ences to u3. I will not explicitly construct an operator U(D) giving the agent's 
perceptions of each D. Instead, I take a sequence of state sets as given and 
extend the u function as necessary. As we will see, this approach is sufficient for 
ensuring that a fixed point exists. 

I have delayed giving a precise definition of C(S) to be able to better 
motivate the definition. A natural candidate for the definition is to let 

C(S) = {clc: S -L}. 

However, it is easy to show that no fixed point exists if we define C(S) this way. 
To see this, suppose that using this definition, there is a fixed point, D, where u 
and S summarize all the uncertainty the agent has about D. With C(S) defined 
this way, for any S c S and any w* E L, there is a computation c with c(s) = w* 
iff s E S. Hence the set of computations is at least as large as the power set of S. 
For each possible computation, though, we can construct a decision procedure 
which uses only that computation. Hence D is strictly larger than the power set 
of S. But then how can S capture all the uncertainty the agent might have about 
D? I restrict the set of feasible computations by requiring that no computation 
generate "too much" information. This can be viewed as a restriction on the 
complexity of the calculations the agent can carry out. 
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More precisely, suppose S = HGE Sa where a is some set of indices. For 
each yy E a, let py(s) give the projection of s onto S',. For any c: S -- L, I will 
say that c uses information in S if there exists s, s' E S with py(s) = p(s') for 
all y f3 but c(s) # c(s'). That is, c uses information in S.3 if the outcome of 
the computation may depend on the f3th component of s. For any set B, let #B 
denote the cardinality of B. I let 

C( S) = {c Ic: S -L and #{1,3 lc uses information in S3} <s:} 

where g is some cardinal number. Intuitively, f is a bound on the number of 
aspects of his uncertainty the agent can learn about using one computation. 
Since f can be a very large infinite cardinal, this assumption does not seem to 
be too restrictive. In Remark 5 below, I briefly explain how one can substantially 
relax this assumption. 

Clearly, these definitions generate a countable sequence of models, P, 
n = 1, 2,.... We begin with A = Do, This generates u0 and So, in turn giving us 
C(SO) and DI = D(SO). We then enlarge S0 to capture the additional uncer- 
tainty, giving us S1 = So x S, and u1. This in turn gives us D2 = D(S1), etc. 

REMARK 1: The reader familiar with Mertens and Zamir's (1985) work on 
beliefs about beliefs may find a comparison useful at this point. For ease of 
exposition, I only describe a simple two-player version of their construction. 
Mertens and Zamir begin with a set of possible states, say &, analogous to my 
A. They then consider the set of probability distributions over &, say A(). This 
is the set of possible beliefs the players may have regarding the true state, called 
first-level beliefs, and is analogous to my DI. Next, Mertens and Zamir consider 
the set of second-level beliefs, or beliefs about the other player's beliefs, which 
is just A(A(&)) or, in the obvious notation, A2(&), analogous to my D2. More 
generally, their An(&) is the analogue of my Dn. My construction is made 
slightly more complex by the fact that one has to go through two steps to go 
from Dn to Dn+i-construct the extension of Sn-1 and then extend the set of 
decision procedures. Notice that one brings in a new object at this step, namely 
Sn. As we will see shortly, in part because of this, my construction also differs 
from theirs in the continuity of the operators involved. 

As discussed in the introduction, we would like this sequence to converge to a 
fixed point, giving us a model in which each way the agent could resolve his 
subjective uncertainty is an option and the uncertainty about each option is 
represented. Unfortunately, though, this sequence does not converge to a fixed 
point in general. To see this intuitively, notice that at each level, the agent is 
only able to ask questions about the levels below him. Nowhere in the structure 
can the agent think about the entire sequence. That is, the agent can learn 
about Sn for any finite n, but he cannot learn about the limiting state set. On 
the other hand, this is an option at the limit. 
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To see this formally, let w denote the first infinite ordinal-that is, 

co= {1, 2,.. } 

Let D. be the limit of Dn as n -> oo, i.e., 

Do= UDDn 
n<co 

Similarly, let 

sw r Sn 
n<co 

and let u. be the limit of {un In = 1, 2,... }. It is easy to see that u,, and SW do 
capture all the uncertainty about D. in a very natural sense. More precisely, 
consider any d E D.. Clearly, d is in Dn for some n, so the agent's perception of 
d is defined by un and Sn. Since u.O and SW simply extend un and sn , they 
contain this information as well, so that uncertainty about every d e D. is 
captured by these objects. However, D. does not contain all the agent's options 
for learning about his uncertainty. That is, in general, 

(1) DO) CD(Sw)). 

(Recall that c denotes strict inclusion.) Hence D. is not the fixed point we 
sought to construct. Put loosely, the problem is that 

(2) lim D(Sn) =D( lim Sn). 
nco noo 

The reason why (1) holds is quite simple. Consider the decision procedure, 
d* e D(SW), defined as follows. The procedure begins by performing some 
computation in C(SO). Then it performs some computation in C(SD)\C(SO), 
then some computation in C(S2) \ C(S1), etc. If 

(3) C(Sn) c C(Sn + 1) 

for all n < w)9 d* is well-defined. Clearly, though, d* 0 Dn for any finite n and 
so d* 4 Do, even though d* E D(SW). It is not hard to show that (3) holds for all 
n whenever Sn has at least two elements for all n. Clearly, with a slightly more 
involved construction, essentially the same argument works under the weaker 
hypothesis that infinitely many of the Sn sets have at least two elements. 

There are several approaches one might take to avoid this problem. An 
obvious possibility is to assume that all but finitely many of the S)s are 
singletons. Recall, though, that the S)s represent the agent's subjective uncer- 
tainty about decision procedures or, more loosely, the limits of his rationality. 
Given this, such an assumption seems far too strong. For this reason, I assume 
that Sn+ ? is a singleton iff Dn +? = Dn. In other words, if D, + = Dn, there are 
no new decision procedures introduced at level n + 1, so there is no need to 

19 To be more precise, C(Sn) and C(Sn + 1) are sets of functions on different domains and so one 
cannot be a subset of the other. However, it is natural to view c: Sn -* L as the same as its trivial 
extension to c: -+1- L (i.e., where c^ does not use information in Sn +, ). I adopt this convention 
throughout. 
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represent any new uncertainty. If, however, the set of options expands, the 
agent's uncertainty must increase to reflect his uncertainty about these options. 

A second alternative would be to bound the number of steps of computation 
a procedure may perform. This assumption is clearly appropriate for some 
contexts. For example, if the agent must make a decision within a finite amount 
of time and the length of time it takes to perform a computation is bounded 
away from zero, then such a bound must exist. On the other hand, for many 
problems, there is no obvious maximum on the amount of time the agent can 
take. In such a case, it seems rather artificial to impose a bound-typically, 
there should be time for one more computation.20 Aside from this objection, 
though, this approach to overturning (1) may not work. To see this, suppose L is 
infinite. This would be the case if, for example, L is the set of all finite length 
strings generated by some finite set of characters or the set of possible sentences 
in the English language. Suppose also that at least one Sn is infinite. Then, even 
if g = 1, there is a computation whose range is countable. Consider the decision 
procedure d** which begins by performing any'such computation. Clearly, d** 
produces countably many histories of length 1. So if (3) holds for infinitely many 
n, we can have d** perform any computation in C(S1)\C(S0) on the first of 
these histories, any computation in C(52)\C(S1) on the second, etc. This 
procedure does not even need to perform more than two steps of computation! 

Even aside from this, if f > w, we will not have Do = D(Sw). If f is not finite, 
then C(Sw) contains computations using information in every Sn. Clearly, such a 
computation is not in any C(Sn). Hence any decision procedure d E D(Sw) 
which uses such a computation is not in D,. 

One alternative which does work is to restrict the computation sets to contain 
only computations whose ranges are finite. This can be viewed as an additional 
restriction on the complexity of the computations the agent can perform and so 
seems less objectionable than requiring L or the Sr's to be finite. If we make 
this assumption, assume a finite bound on the number of steps of computation, 
and assume that ( is finite, then D. = D(Sw). (This claim is a simple corollary 
of Theorems 1 and 2 in the next section.) On the other hand, as we will see in 
the next section, these assumptions are unnecessary if we are willing to use 
longer sequences to find our fixed point. 

REMARK 2: A reader familiar with Mertens and Zamir may be quite sur- 
prised by the need to go beyond countable sequences. Why does {An(&)In <W} 
converge to a fixed point when {Dn In < } does not? As (2) should make clear, 
the answer is simply that A( ) is continuous at H n <on(a) while DQ ) is not 
continuous at S. The reason for this, intuitively, is that the process of 
constructing decision procedures over SX is quite different from the process of 
constructing probability distributions over H n < ( An(o). Every probability distri- 

20 On the other hand, this criticism only applies to a uniform bound across procedures. There 
seems to be no contradiction between the view that one more computation is always possible and 
the view that each procedure must eventually stop computing. The comments below apply to 
uniform or nonuniform bounds, however. 
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bution over the infinite space implies a sequence of probability distributions 
over the smaller spaces. In this sense, no new probability distributions come in 
at the limit. On the other hand, a decision procedure in D(SW) is not equivalent 
to a sequence of decision procedures in D(S'), n = 1, 2, ... 

To see the point more concretely, fix any measurable set, B C ln <o An(9). 
Suppose that for every n, the projection of B onto 'An(&) is a proper subset of 
An(o). There is no sense in which the probability of B is defined at some finite 
level N. However, its probability is determined by the infinite sequence; the 
probability of B is the limit of the probabilities of "truncations" of B to N 
dimensions. 

Clearly, the procedure d* constructed above is the analogue of B. Just as B 
could be defined as a limit of truncations, we can define d* as a limit. To see 
this, fix some action a*. For each n, let d,* be the procedure which follows d* 
for n steps, but then picks action a* at step n + 1. By the construction of d* 
and d*, we have d * e Dn for all n. Furthermore, there is an obvious sense in 
which lim,1 d * = d*. However, here is where the analogy to Mertens and 
Zamir breaks down: while probabilities must be continuous in this kind of limit, 
there is no obvious reason why the agent's perceptions must be. In other words, 
one can show that if f is finite, then, with this alternative definition of the limit, 
formalized appropriately, limnoo Dn = D(SW). However, unless we assume that 
the agent's perceptions of decision procedures are continuous in this topology, 
then the agent's perceptions of the procedures in D,, need not be completely 
specified by S@ and u... Since it is not obvious why this kind of continuity 
assumption would be a sensible restriction, it is fortunate that it is not needed if 
we consider longer sequences. 

3. TRANSFINITE SEQUENCES 

Summarizing, then, we can find a fixed point using a countable sequence, but 
only if we make stringent assumptions on the amount of subjective uncertainty 
facing the agent or on the ways he can resolve his uncertainty. If we do not wish 
to make these assumptions, we can still find a fixed point, but must work a bit 
harder. As noted in the introduction, it is the existence of the fixed point that I 
am concerned with here; the length of the sequence that finds a fixed point for 
us is of secondary importance. Analyzing the model the fixed point gives us is 
not made more complex by the fact that we used a transfinite argument to 
establish the existence of the fixed point. 

To define longer sequences, we must continue the construction used above 
transfinitely. Thus I define Pn for n E a) as above. P. is defined to be the limit 
of P,-that is, it is the collection (Do, uW, SW). As noted above, D,, # D(SW), so 
let DA + 1 = D(SW(). Extending the set of options in this way again requires us to 
expand the state set and extend the utility function, giving us u ?+I and SW + 1 

where Sw + 1 = SX x St + V Let P,, + 1 = (D) + u1, S + +1). Clearly, we can con- 
tinue this process to generate P, + 2, Pw +3, . ., or P. for every n Ew w. Again, 
we can take limits in the same way to define P,+,, and then continue on to 
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P? , etc. This generates a problem Pa for every ordinal number a. I denote 
this transfinite sequence {Pa I a E ON}, where ON is the ordinal numbers, and 
will occasionally refer to it as the hierarchy. 

Does this transfinite recursion find a fixed point for us? More precisely, if we 
consider some longer infinite sequence, does this sequence converge to a fixed 
point? To make the question precise, we require some definitions. A limit 
ordinal is an ordinal a for which there is no ,3 such that a =, 3 + 1. In other 
words, a limit ordinal is an ordinal we must take limits to "get to," such as w or 
w + w. For a limit ordinal a, an a-sequence is a function with domain a. This is 
just the generalization of the usual notion of a sequence, which in this terminol- 
ogy is an co-sequence. In short, "longer sequences" are just a-sequences where 
a > w. The question, then, is whether there exists a limit ordinal a such that the 
a-sequence given by {PO 13, < } converges to a fixed point. 

Just as when a = w, the key is the convergence of D.. To see the point, 
suppose a is a limit ordinal. Then, just as when a = w, there is a very natural 
sense in which Sa and ua summarize the agent's uncertainty about Da. Since 
any d E Da is in DO for some 18 < a, the agent's perception of d is summarized 
by SO and u3. Since Sa and ua simply extend SI and u3, they contain this 
information as well. Hence the key question is whether Da = D(Sa). 

For a decision procedure d, let Hd denote the set of histories generated by d. 
The reason that we cannot have D. = D(Sw) without the additional assumptions 
discussed in Section 2 is that otherwise, it is easy to find a decision procedure d 
for which Hd is at least countably infinite. Such a decision procedure can use 
computations which are in countably many different levels of the hierarchy and 
so the procedure is not in Dn for any finite n. Hence to find a fixed point, we 
need to be sure that for every d, Hd is not too large. "Too large" can be made 
precise using the notion of cofinality. Intuitively, the cofinality of a limit ordinal 
a is the length of the shortest sequence of ordinals converging to a from below. 
Formally, if a is a limit ordinal and {(3,, Ip < 0} is an increasing 0-sequence of 
ordinals with 8, < a for every v, we say that the sequence is cofinal in a if its 
limit is a-that is, if 

U /3V=a. 
v<0 

The cofinality of a, denoted cf (a), is the smallest limit ordinal 0 such that there 
is an increasing 0-sequence cofinal in a. For example, it is easy to see that 
cf(w) = w. This is true because the collection of ordinals smaller than w is 
certainly an w-sequence converging to w and there is no smaller limit ordinal. 
More generally, a) < cf (a) < a for any limit ordinal a.21 

To see why this concept is useful for characterizing the notion of "too large" 
a set of histories, suppose we can find a decision procedure in D(Sa) which 
generates more histories than cf (a). Just as in the countable case, this proce- 
dure can use computations at enough different levels of the hierarchy to 

21 Devlin (1979, Chapter III) is a good source of information on cofinality. 
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guarantee that the procedure is not contained at any level below a. If so, 
Da= #D(Sa) and thus the a-sequence {P,313 < a} will not converge to a fixed 
point. Similarly, if g > cf (a), then there are computations in C(Sa) which are 
not in C(S3) for any a < a. Hence a decision procedure d E D(Sa) using such a 
computation is not in Da. This is the reasoning behind the following theorem, 
proven in the Appendix. 

THEOREM 1: If a is a limit ordinal, then Da = D(Sa) if for all d E D(Sa), 

cf(a) >max{I ,#Hd). 

As noted above, cf(w) = w. Hence Theorem 1 indicates why the countable 
sequence {Pn In < w)} does not converge to a fixed point in general: except under 
very stringent assumptions, there are always decision procedures with #Hd > a). 

While there are generally decision procedures with #Hd > a), one can con- 
struct an upper bound on #Hd. Clearly, if a procedure begins by performing a 
computation, this computation cannot have more possible outcomes than the 
number of feasible outputs, #L. Hence the set of histories of length one cannot 
be any larger than #L. If a computation is performed after each of these 
histories, again, each cannot generate more than #L different outcomes, so the 
cardinality of the set of histories of length two cannot be larger than (#L)2. 
Continuing with this reasoning and recalling that every history of a decision 
procedure has finite length, we obtain a bound on the total number of histories 
of all lengths a procedure can generate. 

THEOREM 2: For any a E ON, for every d E DaI #Hd < E, <.(#L) .22 

The upper bound of this theorem demonstrates one point made in the 
previous section: if we assume that L is finite and bound the number of steps of 
computation (uniformly or not), then no decision procedure can produce more 
than a finite number of histories. Hence, by Theorem 1, these restrictions imply 
that the countable sequence {Pn In < } converges to a fixed point if f is finite. 
On the other hand, even without these assumptions, Theorems 1 and 2 together 
imply the existence of a fixed point. It is well known that for any ,3, there is a 
limit ordinal with cofinality larger than ,3.23 Hence there is a limit ordinal a 

22 The summation and exponentiation here both refer to cardinal arithmetic. The cardinal sum of 
two or more sets is simply the cardinality of the union of the sets (where we treat the sets as if they 
were disjoint by "labelling" each element according to the set from which it is drawn). The cardinal 
product of a family of sets is the cardinality of the product of the sets. Finally, cardinal exponentia- 
tion is defined as the cardinal product of a set with itself the requisite number of times. For finite 
numbers, these operations are the same as standard arithmetic. 

23 For example, let /3' be any cardinal larger than /3. It is easy to show that cf(2 ') > /3' > /3 (see 
Devlin (1979, page 116)), so that 20' is such a limit ordinal. 
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such that 

cf (a)>max((, E (#L)n} 
n<co 

Thus Theorems 1 and 2 imply the following corollary. 

COROLLARY: There is a limit ordinal a such that Da = D(Sa). 

Thus if we consider long enough sequences, we can always find a fixed point. 
As discussed above, Sa necessarily describes all the agent's uncertainty regard- 
ing Da. Hence when Da = D(Sa), we have a fixed point: Da gives every option 
the agent might consider for resolving his uncertainty Sa and Sa describes all 
the agent's uncertainty about Da. Hence Da+ 1 = Da, so that Sa I 1 is a singleton, 
making Da2 =Da, etc. In short, for all y > a, Dy =Da and Sy is a singleton. 
As argued in the introduction, given that this model completely characterizes 
the agent's perception of his problem, including his perception of how he can 
improve his perceptions, we must complete the model by assuming that the 
agent chooses the option he perceives to be the best one. While the agent's 
perception of what is best may be seriously flawed, why would he not choose 
what he thinks is best? In this sense, the assumption that the agent chooses the 
"optimal" decision procedure in Da is without loss of generality. As noted 
above, the a itself is irrelevant-it is only part of the process the modeller, not 
the agent, goes through to construct the appropriate representation of the 
agent's perception. The main point is that since a fixed point exists, we know 
that there is a set of options D, a state set S, and a "perception" or utility 
function u such that the agent chooses what he perceives to be the best d E D. 

Of course, the Corollary does not imply that we can assume this for any D, S, 
and u. Instead, it says that such objects always exist for which this assumption is 
without loss of generality. It is also important to emphasize that this result is 
nonconstructive in the sense that it does not tell us how to construct the 
appropriate objects. Put differently, this model does not provide a mapping 
giving the agent's subjective perception of the world as a function of the 
objective data of the problem. Instead, it takes the agent's subjective percep- 
tions as given and focuses on how we can work with them. 

Still, the result is quite useful. First, it implies that the infinite regress 
problem which has seemed to prevent the development of a useful model of 
limited rationality is not necessarily a problem at all. Furthermore, it provides 
an approach to modeling limited rationality which may generate useful results. 
Of course, one must add further assumptions on the D, S, and u which are the 
fixed point in order to obtain such results. In Lipman (1989), I describe one way 
to extend the approach to games and give some results characterizing equilibria 
with limitedly rational players under alternative assumptions on the u's. I also 
use this approach in Lipman (1990b) to explain the use of incomplete contracts. 
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REMARK 3: It is important to note that very few restrictions are needed to 
obtain the fixed point. Virtually no structure is needed on u or S. I have only 
required the agent's perceptions to be consistent in the sense that adding 
options does not change the way the agent perceives the existing options. Since 
the adding of options is done by the modeller, not the agent, this does not seem 
unreasonable. The importance of this point stems, in part, from the fact that u 
is supposed to represent the agent's view of his options prior to computation. 
This is quite different from the kind of preference we normally work with. Many 
common assumptions on preferences seem quite sensible when we have in mind 
preferences based on careful consideration. However, when we model the 
process behind such consideration, we ask for more primitive, "gut-level" 
preferences. It is not obvious what kind of structure these preferences should be 
assumed to have. The fact that these results use such weak requirements is thus 
very important. 

REMARK 4: As emphasized above, the model generated by the fixed point has 
the property that it contains all the uncertainty the agent has about each of his 
options and contains all options for resolving the agent's uncertainty. One point 
of interest is that no procedure can resolve the uncertainty about itself. In this 
sense, the agent is never able to resolve all the uncertainty he faces. 

REMARK 5: The requirement that no computation uses information in more 
than f of the state sets can be substantially relaxed. Suppose we simply assume 
that a computation c is feasible only if the collection of /3's such that c uses 
information in S.3 is a set. Under this assumption, in general, there will not be 
any limit ordinal a such that Da = D(Sa). However, it will always be true that 

U a ( I a) 
a eON (aEBNaON 

This is essentially the result of Theorem 2 of an earlier version of this paper, 
Lipman (1989). As discussed there, this version of the fixed point is more 
delicate since the objects involved may be proper classes. However, much the 
same interpretation can be given. 

5. CONCLUSION 

While many have argued the need to study bounded rationality, finding the 
appropriate model is quite difficult. Perhaps the most obvious objection to the 
recent approach of modeling limitations on rationality in the form of con- 
straints or costs has been to the way these models have been closed: by the 
assumption that agents deal optimally with their limitations. I have shown here 
that this assumption is, in a particular sense, without loss of generality. Given 
that we have described the agent's perception of each of his options where his 
options include all feasible ways to refine his perceptions, the only appropriate 
assumption about choice is that the agent chooses what he perceives to be best. 
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While the agent's perception of what is best may be far from correct, it is surely 
what determines his choice. Hence in analyzing the fixed point, there is no 
inconsistency between supposing the agent is limitedly rational and assuming 
that he chooses optimally given his limitations. 

There are many interesting potential applications of the model in game 
theory and economics. For example, it has long been suggested that the fact that 
real contracts are simpler and less complete than seems optimal might be due to 
bounded rationality.24 In Lipman (1990b), incomplete contracts emerge endoge- 
nously in a model using this approach to limited rationality. As another 
example, the use of a model of limited rationality to (rigorously) explain 
deviations of experimental/econometric evidence from theories based on per- 

25 fect rationality seems quite exciting. 
An important and difficult problem is the formation of priors. As noted 

above, a complete model should go from the objective data of the problem to 
the individual's subjective perception of it and then to the individual's choice of 
action. This model only addresses the second step. The modeling involved in the 
first step raises some difficult problems. For example, the fact that the agent 
cannot be assumed to know all logical implications of his knowledge means that 
the form in which he knows the problem is crucial. This means much more than 
simply that games in normal form, extensive form, reduced form, etc., are not 
equivalent. It means that even permuting rows in a normal form game may lead 
to changes in behavior.26 More generally, all sorts of framing effects can be 
expected to affect behavior-precisely as occurs in experimental settings.27 
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APPENDIX 

FORMAL CONSTRUCTION OF THE TRANSFINITE HIERARCHY 

I define the set of decision procedures by identifying procedures with certain trees. The idea is to 
let paths in the tree represent histories of computation and let the nodes of the tree represent the 
agent's choice of either an action or a computation given the history represented by the path to this 
node. A node at which the agent chooses an action will be a terminal node. If the agent chooses a 
computation at some node, then there is one arc from that node for each possible outcome of the 
computation. 

24 See Hart and Moore (1988). 
25 For recent work motivated by similar considerations, see Holt (1990). 
26 For an intuitively plausible example, consider an agent with 45,000 strategies. If the first 

strategy is dominated by the second one, this fact is likely to be noticed, so the first strategy is very 
unlikely to be used. On the other hand, if we move the second strategy to the 20,000th row and the 
first one is dominated by no other strategy, it seems more likely that the first strategy will be used. 

27 See, e.g., Tversky and Kahneman (1987). Interestingly, they note that the standard rationality 
axioms "are obeyed when their application is transparent and often violated in other situations," 
just as one would expect if making good choices is costly to the agent. 
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More formally, we have a set of states S and let C = C(S). A labelled tree in S consists of the 
following collection. First, we have a set of nodes, N, which is a subset of C U A. Second, we have a 
partial order -< on N interpreted as precedence, where -< totally orders the class {n E Nn -< n'} 
for all n'. If n -< n' and there is no n" such that n -< n" -< n' then n' is a successor of n. Third, we 
have a function, y, which labels ordered pairs (n, n') such that n' is a successor of n with elements 
of L. Finally, we have an initial node nO E N satisfying nO -< n for all n E N, n * no. For any node 
n', I refer to the set {n E Nt n -< n'} U {n' as the path to n'. 

I will say that a labelled tree S-/= (N, -< , y, no) is acceptable iff: 

(Al) If n eA, then n has no successors. 

(A2) If n E C, say n = c, then for every w' such that c(s) = w' for some s E S, there exists 
exactly one successor of n, say n', such that y(n, n') = w'. The node n has no other 
successors. 

(A3) For every n E N, the path to n is finite. 

Every acceptable labelled tree, or a.l.t., corresponds to a decision procedure. The initial node 
gives the first choice made by the agent. If an action is chosen, the procedure stops there. If a 
computation is chosen, there is a successor of the initial node for each possible output. Each of 
these possibilities corresponds to a possible history of length one. At each such history, the decision 
procedure makes another choice and so on. The path to each node must be finite because every 
history of computation has finite length. The fact that there is no upper bound on the length of a 
path means that there is no requirement that the procedure terminates. 

I will say that a label w follows the path to nk if there is a successor of nk, say nk +II such that 
y(nk, nk+1) = w. A history is an ordered pair consisting of a path to some node and a label which 
follows that path. (Hence if the path leads to a terminal node, it is not a history.) That is, the history 
gives the sequence of computations chosen and, through the labeling, the outcome of each. The 
length of a history is the number of nodes in the path, or the number of computations performed so 
far. It is convenient to also define the ex ante history, which I denote e, as the history preceding the 
choices we are modeling. This is the unique history of length zero. For a given a.l.t., gr, let H(S7) 
denote the set of histories in S2. The decision procedure corresponding to 9', or d(SI), is the 
function d: H(M ) -* N(MY) giving the node following the history. That is, for any path, d gives the 
next choice made. Thus d gives the same information as gr, but in a different form. For 
convenience, I write the set of histories HMY) as Hd where d = d(S'). Finally, the set of decision 
procedures D(S) is the set of d(S/T) such that 3 is an a.l.t. in S. 

The construction of the hierarchy is by transfinite recursion. To provide the basis for the 
recursion, I first define PO. Let Do be the set of maps from {e} to A. We also have a probability 
space (SO, S, po), where SO is a compact metric space and 90 is the or-algebra generated by the 
open sets. Finally, we have a utility function uo: Do x So -* R. Po is defined to be the collection 
(DO, uo, (SO, Yo, po)). 

For any ordinal a, let 

Pa+1 = (Da+i,Ua+i, (Sa+1, aa+ a+l)), 

where Da +1 = D(Sa). The utility function ua + l: Da +1 x Sa +1 -* R extends Ua in the sense that for 
any d E Da and s E 5a + l, Ua + 1(d, s) = Ua(d, s') where s' is the projection of s onto Sa. sa + 1 - 
Sa X S, + 1 where SO = So and Sa + 1 is a compact metric space. The oa-algebra, Fa + 1, is the direct 
product of Fa and Sa & +I where the latter is the c--algebra of Sa+1 generated by the open sets. 
The measure Pa+1 is consistent with Pa in the sense that for any B E -, Pa+Il(B x Sa+I1) = Pa(B). 
(These assumptions are used only to guarantee that the limits are well-defined; they are not used in 
the proofs of Theorems 1 and 2.) 

For any limit ordinal a, we define 

Pa = (Da, Ua ( S a, ,aPa)), 

where 

Da= UDp, 
f3<a 

sa H1 Se, 
/3<a 
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and Fa is the limit of the direct products F, /8 <a. The utility function Ua is the uniquely 
defined limit of {up 1,8 <a). (It is easy to show that the limit exists and is unique.) Finally, 
Kolmogorov's existence theorem guarantees the existence of a unique Pa consistent with p,, for all 
,8 < a. (See Shiryayev (1984, Theorem 11.3.4 and the remarks following the proof.) Note that the 
consistency conditions required are implied by the consistency of p. +I with p,,. Hence Pa is 
well-defined for every ordinal a. I assume that Sa +I is a singleton iff Da +1 = Da. 

Some additional notation is needed for the proof of Theorem 1. The set of length k histories in 
Hd is denoted Hd(k). Also, the rank of a computation c is the least ordinal a such that c E C(Sa). 
Similarly, the rank of a decision procedure d is the least ordinal a such that d E Da. Finally, for any 
d, e(d) denotes the set of computations used by d-that is, the set of c such that d(h) = c for some 
h eHd. 

PROOF OF THEOREM 1: (If.) For any decision procedure d e D(Sa), let R(?(d)) denote the set 
of ranks of the computations in e(d). It is easy to see that the rank of d is simply the largest ordinal 
in R(e(d)). Also, #?(d) S #Hd. Hence if for every d E D(Sa), cf(a) > #Hd, then cf(a) > #ve(d) 
for all d e D(Sa). But then any #e(d)-sequence of ordinals each strictly less than a has a limit 
strictly less than a. Hence if a 0 R(e(d)), then the #e(d)-sequence given by the sequence of 
ordinals in R(e(d)) has a limit strictly less than a. Thus if there is no computation in C(Sa) of 
rank a, then the rank of each d E D(Sa) is strictly smaller than a, implying 

D(Sa) = UDp = Da. 
,P<a 

I now show that cf(a) > 6 implies that there is no computation of rank a, completing this part of 
the proof. So suppose that cf(a) > 6 and consider any c E C(Sa). Consider the sequence of y's such 
that c uses information in S,. By definition, the length of this sequence is less than 6. Since 
6 < cf(a), the limit of this sequence, say /3, is necessarily strictly less than a. Hence c E C(S10) for 
/8 < a and so rank (c) < a. 

(Only if.) First, suppose cf (a) S 4,. Then consider any increasing 6-sequence {,8, I y < 61 converg- 
ing to a and consider a computation c E C(Sa) which uses information in S,3 for all y < 6. Clearly, 
rank (c) = a. But let d* be any decision procedure in D(S) using such a computation. Clearly, the 
rank of d* is a so that d* OD for any /3 <a, implying Da c D(Sa). 

So suppose cf(a) > 6 but there exists d E D(Sa) such that #Hd > cf(a). I will show that we 
again have Da cD(Sa). The following lemma is useful for this purpose. 

LEMMA: For every limit ordinal a, cf(cf(a)) = cf(a). 

PROOF: Let 0 = cf(a) and suppose cf(0) * 0. Recall that the cofinality of an ordinal is always 
weakly less than the ordinal itself, so we must have cf(0) < 0. Let A = cf(0), let {/B, I v < 01 be an 
increasing 0-sequence converging to a, and let {YK I K < A) be an increasing A-sequence converging to 
0. Consider the sequence {/3K IK < A). It is easy to see that this is an increasing A-sequence which 
converges to a. But since A < 0 = cf(a), this is impossible. Q.E.D. 

To complete the proof, first, suppose cf(a) = cw. Then there is an increasing sequence of ordinals 
{tyn In cE with yn < a for all n such that the limit of the sequence is a. If yn is not a limit ordinal, 
then there must be a computation of rank yn. To see this, recall that none of the state sets are 
singletons by assumption, so that there must be a computation which only uses information at S,,'. If 

y,n is a limit ordinal, then there may be no computation with rank yn. However, if yn is a limit 
ordinal, there must be an ordinal /3 which is not a limit ordinal with ynv- 1 < / < yn. In this case, we 
can certainly find a computation of rank /3. Hence we can construct a procedure which chooses a 
computation of rank between yn -1 and y,n on each history of length n. It is easy to see that the rank 
of this procedure is also the limit of the sequence {fyn In < co = a. Hence Da cD(Sa). Therefore, we 
may as well assume cf (a) > co. 

Without loss of generality, we can assume that the d maximizing #Hd computes forever in every 
state. That is, for every h E Hd, d(h) OA. This is without loss of generality because if d does not 
compute forever in every state, we can construct an alternative procedure which follows d until d 
terminates and then continues to compute. Obviously, this will (weakly) increase the cardinality of 
the set of histories generated. Since d does not terminate in any state, #Hd(n + 1) > #Hd(n). Let 
N c co denote the set of n such that #Hd(n + 1) > #Hd(n). I now show that there must be a finite k 
such that #Hd(k) > cf (a). 
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Case 1: Suppose N is finite. Then there exists a k such that #Hd(n + 1) = #Hd(n) for all n > k. 
The cardinality of Hd is the cardinal sum of the cardinalities of the Hd(n) sets. Hence if #Hd(k) is 
finite, then #Hd = w. But this implies cf(a) < co, a contradiction. Hence #Hd(k) > cW. Since the sum 
of an infinite cardinal and any other cardinal is just the larger of the two, we see that #Hd = #Hd(k). 
This implies #Hd(k) > cf(a). 

Case 2: Suppose N is countable. Then the sequence {#Hd(n)In E N} is an increasing co- 
sequence converging to #Hd, implying that #Hd is a limit ordinal with cofinality cW. Suppose that 
#Hd = cf(a). Then cf(#Hd) = cf(cf(a)). By the Lemma, the right-hand side is cf(a), implying 
cf(a) = C,t a contradiction. Hence #Hd > cf(a). But then we must be able to find an k E cW such 
that #Hd(k) > cf (a). 

Since there exists a finite k such that #Hd(k) > cf(a), we can construct a decision procedure, d', 
which is identical to d on histories of length less than k. On each different k length history, d' 
chooses a computation of a different rank, where the sequence of the ranks has limit a. (This 
sequence can be constructed just as in the case where cf(a) = c.) Since #Hd(k) > cf(a), this is 
possible. Again, though, this implies that there is no / <a such that d' E D,, so Da c D(Sa). 

Q.E.D. 
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