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SA. EXAMPLE FOR ROBUSTNESS DEFINITION

IN THIS SECTION, we give an example to show that in games with evidence, even with
independent private values, the requirements of robust incentive compatibility, dominant
strategy incentive compatibility, and ex post incentive compatibility differ.

The reason that ex post incentive compatibility and robust incentive compatibility are
not equivalent is that robust incentive compatibility requires truth-telling to be optimal
even when other agents deviate from truth-telling with maximal evidence. In the absence
of evidence, the fact that we have independent private values means that agent i is un-
affected by whether the claims of other agents are true or not. Hence these two notions
would be the same in that case. But with evidence, we can have reports by the other agents
that would be impossible under truth-telling with maximal evidence.

The reason that dominant strategy incentive compatibility is not the same as robust
incentive compatibility is that dominant strategy incentive compatibility only requires that
truth-telling and maximal evidence be a best reply to any strategy function by the other
agents. In the absence of evidence, the other agents could be playing constant strategies,
implying that truth-telling and maximal evidence must be a best reply to any reports by
the other agents. In mechanisms with evidence, however, constant strategies may not be
possible.

To see both points in a simple example, suppose I = 2 and Ti = {αi�βi}, i = 1�2. Sup-
pose Ei(αi) = {{αi}} and Ei(βi) = {{βi}}, i = 1�2. Suppose the principal has just two ac-
tions, denoted 0 and 1. Assume u1(a) = a and u2(a) = 0 for all a.1 Say that agent i re-
ports consistently if she reports (αi� {αi}) or (βi� {βi}) and reports inconsistently other-
wise. Note that all three versions of incentive compatibility say that consistent reports are
optimal and differ only in the circumstances under which consistent reports are required
to be optimal. Assume that the prior probability that t2 = β2 is strictly below 1/2.

Consider the mechanism where the principal chooses a = 1 if one of the following is
true. First, 1’s report is consistent and 2’s report (consistent or not) has evidence {α2}.
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Second, both reports are consistent and 2’s evidence presentation is {β2}. Third, both
reports are inconsistent and 2’s evidence presentation is {β2}. If the reports do not satisfy
one of these three conditions, then the principal chooses a = 0. Because 2 is indifferent
between a = 0 and a = 1, the mechanism satisfies robust incentive compatibility for him.
However, it is not robustly incentive compatible for 1. To see this, simply note that 1’s best
response to a report by 2 of (α2� {β2}) is to be inconsistent.

On the other hand, this mechanism is both ex post incentive compatible and dominant
strategy incentive compatible for 1. To see that it is ex post incentive compatible, note that
if 2 is consistent, then 1’s best response is always to be consistent, regardless of the type
profile. To see that it is dominant strategy incentive compatible, note that for any feasible
strategy for 2, 1’s expected payoff to any consistent report is at least the probability that
t2 = α2, while the payoff to any inconsistent report is at most the probability that t2 = β2.
Since the former strictly exceeds the latter, reporting consistently is a dominant strategy.

SB. EQUILIBRIUM DEFINITION

Our definition of perfect Bayesian equilibrium is identical to that of Fudenberg and
Tirole (1991) but adapted to allow type-dependent sets of feasible actions.

Given σ−i ∈ Σ−i, σP ∈ ΣP , a ∈ A, and (si� ei) ∈ Ti × Ei, let

Qi(a | si� ei�σ−i� σP)= Et−i

∑
(s−i�e−i)

σP(a | s� e)
∏
j �=i

σj(sj� ej | tj)�

This is the probability the principal chooses allocation a given that she uses strategy σP ,
agents other than i use strategies σj , j �= i, and agent i reports si and presents evidence ei.
Let μ : T × E → Δ(T) be the function that specifies the beliefs of the principal.

We say that (σ1� � � � �σI�σP�μ) is a perfect Bayesian equilibrium if the following condi-
tions hold. First, for every i and every ti ∈ Ti, σi(si� ei | ti) > 0 implies

(si� ei) ∈ arg max
s′i∈Ti�e′

i∈Ei(ti)

∑
a∈A

Qi

(
a | s′

i� e
′
i� σ−i� σP

)
ui(a� ti)�

(Recall that Qi(a | si� ei�σ−i� σP) is the probability that the actions of the other agents are
such that the principal chooses action a given that i uses action (si� ei) and given strategies
σ−i and σP .) Second, for every (s� e) ∈ T × E , σP(a | s� e) > 0 implies

a ∈ arg max
a′∈A

∑
t∈T

μ(t | s� e)v(a′� t
)
�

Third, for every (s� e), μ(· | s� e) respects independence across agents. That is, i’s report
(si� ei) only affects the principal’s beliefs about ti and his beliefs about ti and tj respect
independence for all i �= j. Formally, we have functions μi : Ti × Ei → Δ(Ti) such that, for
all t ∈ T and all (s� e) ∈ T × E ,

μ(t | s� e) =
∏
i

μi(ti | si� ei)�

Fourth, for all (s� e), μ(· | s� e) respects feasibility. That is, the principal’s beliefs must
put zero probability on any type which is infeasible given (s� e). Formally, for every ti ∈ Ti

and (si� ei) ∈ Ti × Ei, we have μi(ti | si� ei)= 0 if ei /∈ Ei(ti).
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Finally, the principal’s beliefs are consistent with Bayes’s rule whenever possible in the
sense that for every (si� ei) ∈ Ti × Ei such that there exists ti with σi(si� ei | ti) > 0, we have

μi(ti | si� ei)= σi(si� ei | ti)ρi(ti)∑
t′i∈Ti

σi

(
si� ei | t ′i

)
ρi

(
t ′i
) �

(Recall that ρi is the principal’s prior over ti.)

SC. PROOF OF THEOREM 2

Recall that T 0
i is the set of ti such that Ei(ti)= {Ti}. We first show there exists v∗

i solving

v∗
i = Eti

[
vi(ti) | ti ∈ T 0

i or vi(ti)≤ v∗
i

]
� (S1)

If Ti = T 0
i , then v∗

i = Eti (vi(ti)) satisfies (S1). If T 0
i = ∅, then v∗

i = minti∈Ti vi(ti) satisfies
(S1). In what follows, assume T 0

i �= ∅ and T 0
i �= Ti.

Write Ti \ T 0
i = {t1

i � � � � � t
N
i } where vi(t

n
i ) < vi(t

n+1
i ). (If we have ti� t

′
i ∈ Ti \ T 0

i with ti �=
t ′i and vi(ti) = vi(t

′
i), we can treat these two types as one for this calculation.) For n =

1� � � � �N , let

gn
i = Eti

[
vi(ti) | ti ∈ T 0

i or ti = tki � for some k ≤ n
]

and let g0
i = Eti (vi(ti) | ti ∈ T 0

i ).
Suppose there is no solution to equation (S1). If g0

i ≤ vi(t
1
i ), then v∗

i = g0
i satisfies (S1).

Hence g0
i > vi(t

1
i ). But g1

i is a convex combination of vi(t1
i ) and g0

i , with strictly positive
weight on each term, so vi(t

1
i ) < g1

i < g0
i . Again, if g1

i ≤ vi(t
2
i ), then v∗

i = g1
i satisfies (S1),

so we must have g1
i > vi(t

2
i ), implying vi(t

2
i ) < g2

i < g1
i . Similar reasoning gives gn−1

i > gn
i >

vi(t
n
i ) for n = 1� � � � �N . In particular, gN

i > vi(t
N
i ). But gN

i = Eti [vi(ti)], so v∗
i = gN

i solves
equation (S1), a contradiction. Hence a solution exists.

To show uniqueness, suppose v1
i and v2

i both solve (S1) where v1
i > v2

i . For k= 1�2, let

Tk
i = T 0

i ∪ {
ti ∈ Ti \ T 0

i | vi(ti)≤ vki
}
�

so vki = Eti [vi(ti) | ti ∈ Tk
i ]. Since v1

i > v2
i , we have T 2

i ⊂ T 1
i and

T 1
i \ T 2

i = {
ti ∈ Ti \ T 0

i | v2
i < vi(ti)≤ v1

i

}
�

Note that v1
i is a convex combination of v2

i < v1
i and Eti [vi(ti) | ti ∈ T 1

i \ T 2
i ]. Since every

ti ∈ T 1
i \ T 2

i has vi(ti)≤ v1
i , this expectation is also below v1

i , a contradiction.
Turning to equilibrium strategies, note that X∗

i (si� {ti}) = vi(ti). Also, it is easy to see
that if T 0

i = ∅, then v∗
i = minti∈Ti vi(ti) and the essentially unique equilibrium has every

type proving her type. This is the usual unraveling argument. So for the rest of this proof,
assume T 0

i �= ∅.
We cannot have (si�Ti) and (s′

i� Ti), both with positive probability in equilibrium with
X∗

i (si� Ti) �= X∗
i (s

′
i� Ti) as every type strictly prefers whichever report yields the larger x.

Hence we fix some s∗
i and suppose that the only (si�Ti) sent with positive probability in

equilibrium is (s∗
i � Ti) where X∗

i (s
∗
i � Ti)≥X∗

i (si� Ti) for all si ∈ Ti.
Let ṽi = X∗

i (s
∗
i � Ti). Types ti ∈ T 0

i send report (s∗
i � Ti). Any type ti /∈ T 0

i can send ei-
ther (s∗

i � Ti) and obtain response ṽi or some (si� {ti}) and receive response vi(ti). Hence ti
chooses the former only if ṽi ≥ vi(ti). Hence ṽi must be the v∗

i defined in equation (S1).
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(Note that v∗ is not changed if we add or remove from the set of types sending this mes-
sage a type with vi(ti)= v∗

i , so it does not matter how types resolve indifference.) Q.E.D.

SD. PROOF OF COROLLARY 2

When v+
i ≤ v−

i , there is only one equilibrium in the auxiliary game for i, so the claim fol-
lows. When v+

i > v−
i , however, there are (essentially) two equilibria. In one, type reports

are used to separate positive types from negative types. All positive types with evidence
and vi(ti) > v+

i prove their types, as do all negative types with evidence and vi(ti) < v−
i .

All other positive types send one type report and evidence ei = Ti, while all other negative
types send another type report and the same evidence. In what follows, we refer to this
equilibrium as the cheap-talk equilibrium as it uses the “cheap talk” of type reports to help
separate. In the other equilibrium, the principal’s beliefs depend only on the evidence
presented, so type reports are irrelevant. All positive types with evidence and vi(ti) > v∗

i

prove their types, as do all negative types with evidence and vi(ti) < v∗
i . All other types

report some fixed type report and evidence ei = Ti. We refer to this equilibrium as the
non-talk equilibrium.2

Since there are two equilibria in the auxiliary game for i in this case, we need to deter-
mine which strategies for i are used in the equilibrium of the game which has the same
outcome as the optimal mechanism. Clearly, if the principal is better off under one set
of strategies than the other, then these must be the strategies used since the equilibrium
corresponding to the optimal mechanism must be the best possible equilibrium for the
principal.

We now show that the principal’s payoff is always at least weakly larger in the cheap-talk
equilibrium, completing the proof of Corollary 2.

First, we show that v+
i > v−

i implies v+
i ≥ v∗

i ≥ v−
i with at least one strict inequality. To

see this, suppose to the contrary that v∗
i > v+

i > v−
i . Define the following sets of types:

T̂−
i = {

ti ∈ T−
i | ti ∈ T 0

i or vi(ti) ≥ v−
i

}
�

T̂+
i = {

ti ∈ T+
i | ti ∈ T 0

i or vi(ti) ≤ v+
i

}
�

T̂ ∗−
i = {

ti ∈ T−
i | ti ∈ T 0

i or vi(ti) ≥ v∗
i

}
�

T̂ ∗+
i = {

ti ∈ T+
i | ti ∈ T 0

i or vi(ti) ≤ v∗
i

}
�

In other words, the types in T̂−
i are the negative types who “pool” together in the cheap-

talk equilibrium, while T̂+
i is the set of positive types who pool together in this equilibrium.

Similarly, T̂ ∗−
i and T̂ ∗+

i are, respectively, the set of negative and positive types who all pool
together in the non-talk equilibrium. By definition,

v−
i = Eti

[
vi(ti) | ti ∈ T̂−

i

]
�

v+
i = Eti

[
vi(ti) | ti ∈ T̂+

i

]
�

v∗
i = Eti

[
vi(ti) | ti ∈ T̂ ∗−

i ∪ T̂ ∗+
i

]
�

Hence v∗
i is a convex combination of Eti [vi(ti) | ti ∈ T̂ ∗−

i ] and Eti [vi(ti) | ti ∈ T̂ ∗+
i ].

2We refer to this as a non-talk equilibrium rather than as a babbling equilibrium since, unlike in the usual
babbling equilibria in the literature, the use of evidence does enable some communication.
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Since v−
i < v∗

i , we see that T̂ ∗−
i ⊆ T̂−

i . Note that if ti ∈ T̂−
i but ti /∈ T̂ ∗−

i , then v−
i ≤ vi(ti) <

v∗
i . Hence v−

i = Eti [vi(ti) | ti ∈ T̂−
i ] is a convex combination of Eti [vi(ti) | ti ∈ T̂ ∗−

i ] and the
expectation of vi(ti) for a set of types all with vi(ti)≥ v−

i . Hence

v∗
i > v−

i = Eti

[
vi(ti) | ti ∈ T̂−

i

] ≥ Eti

[
vi(ti) | ti ∈ T̂ ∗−

i

]
�

Similarly, v+
i < v∗

i implies that T̂+
i ⊆ T̂ ∗+

i . Since the types in T̂ ∗+
i \ T̂+

i all satisfy v+
i <

vi(ti) ≤ v∗
i , we see that Eti [vi(ti) | ti ∈ T̂ ∗+

i ] is a convex combination of v+
i = Eti [vi(ti) | ti ∈

T̂+
i ] < v∗

i and an expectation of vi(ti) for a set of types with vi(ti)≤ v∗
i . Hence

Eti

[
vi(ti) | ti ∈ T̂ ∗+

i

]
< v∗

i �

But then we have v∗
i is a convex combination of two terms which are strictly smaller than

v∗
i , a contradiction. A similar argument rules out the possibility that v+

i > v−
i > v∗

i .
Consider the game between the agents and the principal. We know that there is a robust

PBE with the same outcome as in the optimal mechanism. We know i’s strategy in this
equilibrium must either be the one she uses in the cheap-talk equilibrium or the one she
uses in the non-talk equilibrium. Fix the strategies of all agents other than i. We know
these strategies are defined from the auxiliary games for these agents, independently of
which strategy i uses or the principal’s response to i. Thus, we can simply determine which
strategy by i leads to a higher payoff for the principal.

Note that the principal’s payoff for a fixed a is linear in his expectation of vi. Hence his
maximized payoff is convex in his expectation of vi. We now show that the distribution of
beliefs for the principal in the cheap-talk equilibrium is a mean-preserving spread of the
distribution in the non-talk equilibrium, completing the proof. To be precise, let (σ1

i � x
1
i )

denote the cheap-talk equilibrium strategies and (σ2
i � x

2
i ) the non-talk equilibrium strate-

gies from the auxiliary game for i. For k= 1�2, define probability distributions Bk over R
by

Bk(v̂i)= ρi

({
ti ∈ Ti |Xk

i (ti) = v̂i
})
�

(Recall that Xk
i (ti)= xk

i (si� ei) for any (si� ei) with σk
i (si� ei | ti) > 0 and that ρi is the prior

over Ti.) The law of iterated expectations implies∑
v̂i∈supp(Bk)

v̂iB
k(v̂i)= Eti

[
vi(ti)

]
� k= 1�2�

Hence the two distributions have the same mean.
Consider any v̂i < v−

i . Since v−
i ≤ v∗

i , for k = 1 or k = 2, we have Xk
i (ti) = v̂i if and

only if there is a negative type with evidence who has vi(ti) = v̂i. Similarly, since v∗
i ≤ v+

i ,
for any v̂i > v+

i , we have Xk
i (ti) = v̂i iff there is a positive type with evidence who has

vi(ti) = v̂i. Hence B1(v̂i)= B2(v̂i) for any v̂i /∈ [v−
i � v

+
i ].

Also, we have B1(v̂i) = 0 for all v̂i ∈ (v−
i � v

+
i ). Any type with vi in this range either (1) is

positive and chooses to induce belief v+
i or (2) is negative and chooses to induce belief v−

i .
Under B2, however, many of the types generating beliefs concentrated at v−

i or v+
i in the

cheap-talk equilibrium instead generate beliefs in (v−
i � v

+
i ). In particular, types without

evidence or types with evidence they prefer not to show induce the belief v∗
i , a positive

type with evidence who has vi(ti) ∈ (v∗
i � v

+
i ) generates the belief vi(ti), and similarly for

negative types. Hence B1 is a mean-preserving spread of B2. Q.E.D.
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SE. COUNTEREXAMPLES

In this section, we give a series of examples illustrating which assumptions are critical
for which results. As explained in the text, our robustness results hinge on the indepen-
dence of types across agents, our private-values assumption that agent i’s utility is in-
dependent of t−i, and the separability of the principal’s utility function. In the following
three examples, we show that if we drop any one of these assumptions, we can generate
an example where there is an optimal mechanism which is deterministic and which has
the same outcome as an equilibrium of the game without commitment, but where robust
incentive compatibility fails.

EXAMPLE S1—Independence: Consider a simple allocation problem with two agents
but where the types are correlated. Agent 1 has three types, 
, m, and h, while agent 2 has
two types, L and H. Assume vi(ti)= ti and that 
 < L<m<H <h. The joint distribution
over (t1� t2) is given by

L H


 3
4 − 3ε

2
ε
4

m 3ε
4

ε
4

h 3ε
4

1
4 − ε

2

where ε > 0 but “small.” Types 
 and h have no evidence—that is, E1(
) = E1(h) = {T1}.
Type m has evidence E1(m) = {{m}�T1}, so she can prove her type or claim to have no
evidence. Both types of agent 2 have no choice but to reveal themselves. That is, E2(L) =
{{L}} and E2(H)= {{H}}.

Because types 
 and h have the same preferences and the same evidence, there is no
way for the principal to effectively screen them. More specifically, there is an optimal
mechanism which gives both types the same outcome. Given this, the principal cannot do
better than to pool these two types but separate them from m. For ε sufficiently small, this
means that the principal will prefer giving the good to 2 if the types are (
�L) or (h�L)
and to 1 if the types are (
�H) or (h�H). To see this, note that the principal will know
2’s type but will only know that t1 is either 
 or h. If t2 = L, then t1 is almost certainly

 < L, so the principal prefers giving the good to 2. On the other hand, if t2 = H, then t1
is almost certainly h>H, so the principal gives the good to 1. If t1 =m, the principal will
learn both agents’ types and will give the good to 1 if the types are (m�L) and 2 if they
are (m�H).

It is easy to see that this is achievable in an equilibrium. Take the strategies to be that
the principal ignores cheap-talk statements and that type m proves her type. Given these
strategies, the principal will allocate the good just as above. To see that type m will not
deviate, note that if she proves her type, she gets the good with probability 3/4 as this is
the conditional probability that t2 =L given t1 =m. If she deviates to withholding her evi-
dence, the principal will only give her the good if t2 = H, which has conditional probability
1/4. Hence she prefers not to deviate, so this is an equilibrium.

On the other hand, it is not a robust equilibrium and the mechanism is not robustly in-
centive compatible. If m knew that t2 =H, she would deviate to withholding her evidence.

EXAMPLE S2—Private values: There are two agents and the principal has to allocate
one unit of a good to one of them. Agent 1’s types are α and β, while agent 2’s types are
γ and δ. Types α and γ can prove themselves, while β and δ have no evidence. Agent 2’s
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utility is 1 if he gets the good and 0 if he does not. Agent 1 is a little different and this is
where we depart from our assumptions. Agent 1 wants the good if t2 = δ, but not if t2 = γ.

Formally, A= {1�2} and

v(a� t)= u0(a)+
∑
i

ui(a� t1� t2)v̄i(ti)�

so ui depends on tj . Let

u2(a� t1� t2)=
{

1 if a = 2�
0� otherwise�

This satisfies simple type dependence and private values. Let

u1(a� t1� t2) =
{
u1(a) if t2 = δ�

−u1(a) if t2 = γ�

where

u1(a) =
{

1 if a= 1�
0� otherwise�

This satisfies a natural version of simple type dependence without private values.
Note that the principal’s utility from giving the good to 2 is

v(2� t1� t2)= v̄2(t2)�

the same as in the simple allocation problem. However, the principal’s payoff to giving
the good to 1 is

v(1� t1� t2)=
{
v̄1(t1) if t2 = δ�

−v̄1(t1)� otherwise�

Assume that v̄2(γ) > v̄1(α) > v̄2(δ) > v̄1(β) > 0. So if t2 = γ, the principal gets a negative
payoff from giving the good to 1 and a positive payoff to giving the good to 2, so he prefers
to give the good to 2. If t2 = δ, then he prefers giving the good to 1 if t1 = α and to 2 if
t1 = β.

It is easy to see that there is an equilibrium with this outcome. Assume the principal
ignores all cheap-talk messages. Types β and δ cannot prove anything. Types α and γ can
prove their types, so assume their strategies are to do so. So the principal knows exactly
what the types are when he sees the evidence (or lack thereof) and so can obtain his
preferred allocation. Type γ’s strategy is optimal since this ensures she gets the good, her
favorite outcome. Type α is also choosing a best response since proving her type means
she gets the good iff t2 = δ, exactly her favorite outcome. Since the optimal mechanism
cannot improve on this, there is no value to commitment and no value to randomization.

However, this mechanism is not robustly incentive compatible. In particular, if t2 = γ
but 2 does not provide proof and claims to have type δ, then type α does not want to
reveal that he is type α since this will give him the good when he does not want it. (If
the probability of type γ is above 1/2, this mechanism also fails to be dominant strategy
incentive compatible.)
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EXAMPLE S3—Additive separability: There are two agents, each with two equally likely
types, denoted α and β, where the types are independent across agents. The principal’s
set of actions is A= {0�1�2}. Both agents have type-independent utility functions with

u1(a) =

⎧⎪⎨
⎪⎩

0 if a= 0�
1 if a= 1�
3 if a= 2�

and

u2(a) =

⎧⎪⎨
⎪⎩

0 if a= 0�
1 if a= 1�
4 if a= 2�

The principal’s utility function takes the form
∑

i ui(a)vi(t1� t2), so the only difference is
that vi depends on both types. In fact, we assume that v1(t1� t2) = 1 for all t ∈ T , so only
v2 depends on both types. Specifically, assume that v2 is given by the following table:

α2 β2

α1 −1/2 −1
β1 −2 1

Finally, assume E1(α1) = {T1}, E1(β1) = {{β1}�T1}, and E2(t2) = {{t2}}. In other words, t2
has no choice but to prove her type, α1 cannot prove anything, and β1 has the option to
prove nothing or to prove her type.

First, consider the game. It is easy to see that it is an equilibrium for the principal to
ignore any cheap talk and for β1 to prove her type. To see this, suppose this is agent 1’s
strategy. Then the principal will be able to infer both agents’ types correctly. The table
below gives the principal’s payoffs from each action as a function of the type profile:

a= 0 a= 1 a= 2
(α1�α2) 0 1/2 −1
(α1�β2) 0 1/2 −1
(β1�α2) 0 −1 −2
(β1�β2) 0 2 7

Clearly, the principal chooses a= 1 if agent 1 reveals her type is α1 by not presenting any
evidence, chooses a= 0 if 1 proves her type is β1 and 2 proves she is α2, and chooses a= 2
if each i proves she is βi, i = 1�2. The only agent who could deviate is β1. Her payoff in
the equilibrium is (1/2)(0)+ (1/2)(3)= 3/2. Her payoff if she deviates to not proving her
type and pretending to be the low type is 1, so we have an equilibrium. Since the principal
gets his first-best payoff, this is the same as the outcome of the best mechanism.

To see that this is not robustly incentive compatible, note that if agent 1 knew that agent
2’s type was α2, she would deviate to imitating α1. Hence this equilibrium is not a robust
PBE and the mechanism is not robustly incentive compatible.

Next, we turn to the key assumptions for our no-need-for-commitment result. As dis-
cussed in the text, one key is our assumption of simple type dependence. This assumption
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has two implications. First, it implies that evidence is an important part of achieving incen-
tive compatibility—that screening via preferences is of limited value. Second, it implies
that there is no value to the principal in committing to “off path” punishments that he
would not follow without commitment. The following examples illustrate these points.

EXAMPLE S4—Simple type dependence 1—Screening by preferences: There is one
agent with type set T = {α�β} where these types are equally likely. We first present a
version of this example with an infinite A, contrary to our assumption that A is finite, and
then discuss a finite version. Specifically, we assume the set of actions is {y1� y2} × R+ and
write a typical a ∈A as (yk�w). The agent’s utility function is

u(yk�w� t)=
{
θ(t)+w if k= 1�
w� otherwise�

As in the text, the principal’s utility function takes the form v(a� t) = u0(a)+ u(a� t)v̄(t).
Specifically, we assume v̄(t)= 1 for all t and

u0(yk�w)=
{

−2w − c if k= 1�
−2w� otherwise�

so

v(yk�w� t)=
{
θ(t)− c −w if k= 1�
−w� otherwise�

Intuitively, the principal is deciding whether to purchase a good (y1) or not (y2) where the
cost of the good is c and the agent’s value for it is θ(t). The principal also chooses how
much money w to give the agent to help induce truthful revelation.

Assume θ(α) > θ(β)+ c, θ(β) > 0, and c > 2θ(β). For example, take θ(α) = 5, c = 3,
and θ(β) = 1. Finally, assume neither type of the agent has any evidence—that is, E(t)=
{T } for all t.

We can write a mechanism for this problem as specifying a probability distribution over
{y1� y2} and a value of w as a function of the reported type t. Since w enters linearly into
both the principal’s and agent’s utilities, there is no need to consider randomness in w.
Let p(t) denote the probability of y = y1 given report t and let w(t) denote the value
of w given report t. It is not hard to show that the optimal mechanism has p(α) = 1,
p(β) = 0, w(α)= 0, and w(β)= θ(β). In other words, the principal provides the good iff
it is efficient to do so (i.e., iff θ(t) > c). He bribes the β type θ(β) to reveal her type to
save him the cost of providing her with the good.

This mechanism is deterministic. It is also trivially robustly incentive compatible since
there is only one agent. However, this outcome cannot be achieved in an equilibrium of
the game without commitment. To see this, note that given any belief about the agent’s
type, the principal will set w = 0. Hence both types will simply wish to maximize the
probability that y = y1. So the only equilibrium is where both types pool and the principal
chooses his optimal y based on his prior. This is strictly worse for the principal than the
optimal mechanism.

For an example with finite A and the same properties, replace A = {y1� y2} × R+ with
A = {y1� y2} × {0� θ(β)}. Since the optimal mechanism in the continuum case has w ∈
{0� θ(β)}, we get the same optimal mechanism in the finite case. Also, the conclusion
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that the principal always sets w = 0 without commitment obviously still holds. Clearly,
this is “non-generic,” but is needed to retain the result that the optimal mechanism is
deterministic. With a fine grid replacing this specification, the optimal mechanism would
involve a “small” amount of randomization so that the principal could satisfy the incentive
compatibility constraint with equality.

EXAMPLE S5—Simple type dependence 2—Off path punishments3: There is one agent
with two types, α and β. The principal has three actions, a1, a2, and a3, where the agent’s
utility function is given by

a1 a2 a3

u(·�α) 1 0 −1
u(·�β) 0 1 −1

These utilities cannot satisfy simple type dependence. Note that both types strictly prefer
a1 and a2 to a3 but the types differ in their ranking of a1 versus a2, a pattern not possible
under simple type dependence. As in the text, the principal’s utility function takes the
form v(a� t) = u0(a)+u(a� t)v̄(t) where we assume v̄(t)= −1 for all t. u0 and the implied
v(a� t) are shown in the following table:

a1 a2 a3

u0 1 1 −2
v(·�α) 0 1 −1
v(·�β) 1 0 −1

The agent can prove her type or prove nothing. That is, E(t)= {{t}�T } for all t.
It is not hard to see that there is a mechanism which achieves the highest possible payoff

for the principal for every type and which therefore must be optimal. Specifically, consider
the mechanism which selects a1 if the agent proves her type is β, a2 if she proves her type
is α, and a3 if she proves nothing. Clearly, the agent will always prove her type to avoid a3,
so the principal’s expected payoff will be 1, the highest possible. Clearly, this is an optimal
mechanism and it is deterministic and (trivially) robustly incentive compatible.

On the other hand, there is no equilibrium of the game without commitment with this
payoff for the principal. In the game without commitment, a3 is a strictly dominated action
for the principal, so he cannot play it at any information set. If the agent proves her type,
then the principal must choose the best action for himself given the type in equilibrium.
Hence, if the agent proves her type, she gets a payoff of 0. Given this, it is not hard to
show that the agent never proves her type in any equilibrium. Thus, the principal gets no
information in equilibrium and his payoff is max{ρ(α)�ρ(β)} where ρ is the principal’s
prior over T .

EXAMPLE S6—Principal’s utility function: In this example, we show that the prin-
cipal’s utility function is also important for obtaining the result that commitment is
not needed. As with Example S4, we use infinite A for the same reasons as discussed
there. Let A = {y1� y2} × R+. Assume there is only one agent with two possible types
α and β where we assume the types are equally likely. Assume the agent has type-
independent utility function u(y�w) = θA(y)+w and that the principal’s utility function

3We thank an anonymous referee for this example.
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is v(y�w� t)= θP(y� t)− λw where

y1 y2

θA(y) 1 0
θP(y�α) −1 1
θP(y�β) 1 −1

Intuitively, think of y1 as giving a good to the agent which the agent values at 1 and y2 as
not giving the good. The principal wants to give the good to the agent iff her type is β.
The principal can use bribes of w to induce truth telling.

Assume E(α) = {{α}�T } and E(β) = {T }, so α can prove her type but β cannot prove
anything. Assume λ ∈ (0�1). Then it is not hard to show that the optimal mechanism has
the principal choosing y1 with probability 1 for type β and probability 0 for type α and
setting w = 1 for type α and 0 for type β. In other words, the principal pays 1 to type
α to reveal her type so that he can provide the good only for type β. This mechanism is
deterministic and trivially is robustly incentive compatible.

In the game without commitment, though, the principal always sets w = 0. It is not hard
to show that the principal’s expected payoff in any equilibrium is 0, which is strictly worse
for the principal than the optimal mechanism.

SF. ROBUST INCENTIVE COMPATIBILITY

In this section, we show the result mentioned in the conclusion that any incentive com-
patible mechanism is payoff equivalent to some robustly incentive compatible mechanism.
That is, if P is an incentive compatible mechanism, then there is a robustly incentive com-
patible mechanism P∗ such that the principal and every type of every agent gets the same
expected utility in P and P∗.

Formally, given a mechanism P , let

Ui(r;P) =
∑
a

P(a | r)ui(a)

and

Ûi(ri;P)= Et−i
Ui

(
ri� t−i�M−i(t−i);P

)
�

where r ∈ T × E and ri ∈ Ti × Ei. P and P∗ are payoff equivalent if Ûi(ti�Mi(ti);P) =
Ûi(ti�Mi(ti);P∗) for all ti ∈ Ti and all i and

EtP
(
a | t�M(t)

) = EtP
∗(a | t�M(t)

)
�

To understand the latter condition, note that if P is incentive compatible, then we can
write the principal’s payoff from P as

Et

∑
a

P
(
a | t�M(t)

)
v(a� t)= Et

∑
a

P
(
a | t�M(t)

)[
u0(a)+

∑
i

ui(a)vi(ti)

]

=
∑
a

EtP
(
a | t�M(t)

)
u0(a)+

∑
i

Eti Ûi(ti)vi(ti)�
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So under the conditions above, the principal’s expected payoff is the same under P and
P∗.

A mechanism P is incentive compatible iff for all i,

Ûi

(
ti�Mi(ti);P

) ≥ Ûi(si� ei;P)� ∀ti ∈ T+
i � si ∈ Ti� ei ∈ Ei(ti)�

Ûi

(
ti�Mi(ti);P

) ≤ Ûi(si� ei;P)� ∀ti ∈ T−
i � si ∈ Ti� ei ∈ Ei(ti)�

(S2)

This condition states that any feasible report for any positive type ti reduces the expec-
tation of ui(a) relative to reporting truthfully and presenting maximal evidence, while
any feasible report for any negative type raises the expectation of ui(a). Hence any other
feasible report for any type is weakly worse than reporting truthfully and presenting max-
imal evidence. Similarly, P is robustly incentive compatible iff for all i, all si ∈ Ti, and all
r−i ∈ T−i × E−i,

Ui

(
ti�Mi(ti)� r−i;P

) ≥ Ui(si� ei� r−i;P)� ∀ti ∈ T+
i � ei ∈ Ei(ti)�

Ui

(
ti�Mi(ti)� r−i;P

) ≤ Ui(si� ei� r−i;P)� ∀ti ∈ T−
i � ei ∈ Ei(ti)�

(S3)

We now show that for any incentive compatible mechanism P , there is a payoff equivalent
mechanism P ′ such that, for all ri� r ′

i ∈ Ti × Ei, Ûi(ri;P) ≥ Ûi(r
′
i;P) implies Ui(ri� r−i;P ′)≥

Ui(ri� r−i;P ′) for all r−i ∈ T−i × E−i. Since P is incentive compatible, it satisfies equations
(S2). Hence this will show that P ′ satisfies equations (S3), implying that it is robustly
incentive compatible.

First, to simplify the argument, note that Lemmas 3 and 4 together imply that there is
a mechanism, say P̄ , which is payoff equivalent to P such that, for every ri ∈ Ti × Ei, there
is some ti such that P̄(· | ri� r−i)= P̄(· | ti�Mi(ti)� r−i) for all r−i ∈ T−i ×E−i. In other words,
every report is treated exactly the same way as some report of the form (ti�Mi(ti)). Hence
it suffices to show that there is a mechanism P ′ which is payoff equivalent to P with the
property that, for every ti� t

′
i ∈ Ti, Ûi(ti�Mi(ti);P) ≥ Ûi(t

′
i�Mi(t

′
i);P) implies

Ui

(
ti�Mi(ti)� t−i�M−i(t−i);P ′) ≥ Ui

(
t ′i�Mi

(
t ′i
)
� t−i�M−i(t−i);P ′)

for all t−i ∈ T−i.
To simplify the notation, let U ∗

i (t;P) = Ui(t�M(t);P) and Û ∗
i (ti;P) = Ûi(ti�Mi(ti);P).

Similarly, given a mechanism P , define P∗ : T → Δ(A) by P∗(a | t) = P(a | t�M(t)). Using
this notation, we show that if P is incentive compatible, then there exists a payoff equiv-
alent P ′ with the property that Û ∗

i (ti;P) ≥ Û ∗
i (t

′
i;P) implies U ∗

i (ti� t−i;P ′) ≥ U ∗
i (t

′
i� t−i;P ′)

for all t−i ∈ T−i.
This proof is essentially the same as the proof of Lemma 1 in Gershkov et al. (2013).

We present it here for completeness.
Given P , let P̄ solve the problem of minimizing the variance of agents’ utilities subject

to being payoff equivalent to P . That is, P̄ minimizes

Et

∑
i

[
U ∗

i (t; P̄)
]2

subject to P̄ being payoff equivalent to P . (Existence of a minimizer follows from conti-
nuity of the objective function and compactness of the set of mechanisms satisfying the
constraint.) We now show that Û ∗

i (ti; P̄) ≥ Û ∗
i (t

′
i; P̄) implies U ∗

i (ti� t−i; P̄) ≥ U ∗
i (t

′
i� t−i; P̄).
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To see this, suppose not. Then there exist i, t̄i� t̄ ′i ∈ Ti and t̄−i ∈ T−i with Û ∗
i (t̄i; P̄) ≤

Û ∗
i (t̄

′
i; P̄) but U ∗

i (t̄i� t̄−i; P̄) > U ∗
i (t̄

′
i� t̄−i; P̄). Clearly, this implies that there must be some

t̄ ′−i ∈ T−i such that U ∗
i (t̄i� t̄

′
−i; P̄) < U ∗

i (t̄
′
i� t̄

′
−i; P̄).

Without loss of generality, assume the prior probability of the four type profiles t̄, t̄ ′,
(t̄i� t̄

′
−i), and (t̄ ′i� t̄−i) are the same.4 Let T̄ denote this set of type profiles.

Fix a small ε > 0 and let

λ= ε

U ∗
i (t̄; P̄)−U ∗

i

(
t̄ ′i� t̄−i; P̄

) �
λ′ = ε

U ∗
i

(
t̄ ′; P̄) −U ∗

i

(
t̄i� t̄

′
−i; P̄

) �
Both denominators are strictly positive by hypothesis, so by choosing ε sufficiently small,
we guarantee λ�λ′ ∈ (0�1).

Consider a new mechanism, P̂ , where

P̂∗(· | t̄) = (1 − λ)P̄∗(· | t̄)+ λP̄∗(· | t̄ ′i� t̄−i

)
�

P̂∗(· | t̄ ′i� t̄−i

) = (1 − λ)P̄∗(· | t̄ ′i� t̄−i

) + λP̄∗(· | t̄)�
P̂∗(· | t̄i� t̄ ′−i

) = (
1 − λ′)P̄∗(· | t̄i� t̄ ′−i

) + λ′P̄∗(· | t̄ ′)�
P̂∗(· | t̄ ′) = (

1 − λ′)P̄∗(· | t̄ ′) + λ′P̄∗(· | t̄i� t̄ ′−i

)
�

and P̂(· | r) = P̄(· | r) for all other r ∈ T × E . To see that P̂ is payoff equivalent to P̄ and
therefore to P , note that

Et P̂
∗(a | t)= Pr[T̄ ]Et

[
P̂∗(a | t) | t ∈ T̄

] + (
1 − Pr[T̄ ])Et

[
P̂∗(a | t) | t /∈ T̄

]
�

Since P̂ is the same as P̄ for t /∈ T̄ , we have Et[P̂∗(a | t) | t /∈ T̄ ] = Et[P̄∗(a | t) | t /∈ T̄ ].
Since the type profiles in T̄ are equally likely,

Et

[
P̂∗(a | t) | t ∈ T̄

] = 1
4
[
P̂∗(a | t̄)+ P̂∗(a | t̄ ′i� t̄−i

) + P̂∗(a | t̄i� t̄ ′−i

) + P̂∗(a | t̄ ′)]
= 1

4
[
P̄∗(a | t̄)+ P̄∗(a | t̄ ′i� t̄−i

) + P̄∗(a | t̄i� t̄ ′−i

) + P̄∗(a | t̄ ′)]�
so Et P̂

∗(a | t) = Et P̄
∗(a | t). Also, clearly, for ti /∈ {t̄i� t̄ ′i}, we have Û ∗

i (ti; P̂) = Û ∗
i (ti; P̄)

since the mechanisms treat such ti the same way. For other types, we have

Û ∗(t̄i; P̂)= Et−i
U ∗

i (t̄i� t−i; P̂)
= Pr[T̄−i]Et−i

[
U ∗

i (t̄i� t−i; P̂) | t−i ∈ T̄−i

]
+ (

1 − Pr[T̄−i]
)
Et−i

[
U ∗

i (t̄i� t−i; P̂) | t−i /∈ T̄−i

]
�

4If this is not true, we can split each type into two equivalent types where one of the new types has some
fixed probability. Then we can apply the argument to these new type profiles.
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Again, Û ∗
i (t̄i� t−i; P̂)= Û ∗

i (t̄i� t−i; P̄) if t−i /∈ T̄−i. Also,

Et−i

[
Û ∗

i (t̄i� t−i; P̂) | t−i ∈ T̄−i

] = 1
2
[
Û ∗

i (t̄i� t̄−i; P̂)+ Û ∗
i

(
t̄i� t̄

′
−i; P̂

)]
�

Substituting from the definition, this is

1
2
[
U ∗

i (t̄; P̄)+ λ
(
U ∗

i

(
t̄ ′i� t̄−i; P̄

) −U ∗
i (t̄; P̄)

) +U ∗
i

(
t̄i� t̄

′
−i; P̄

) + λ′(U ∗
i

(
t̄ ′; P̄) −U ∗

i

(
t̄i� t̄

′
−i; P̄

))]
�

Using the definition of λ and λ′, this is

1
2
[
U ∗

i (t̄; P̄)+U ∗
i

(
t̄i� t̄

′
−i; P̄

) − ε+ ε
] = 1

2
[
U ∗

i (t̄; P̄)+U ∗
i

(
t̄i� t̄

′
−i; P̄

)]
�

which is Et−i
[U ∗

i (t̄i� t−i; P̄) | t−i ∈ T̄−i]. Hence Û ∗
i (t̄i; P̂)= Û ∗

i (t̄i; P̄). The calculation for t̄ ′i is
analogous.

So P̂ is payoff equivalent to P̄ . We now show that P̂ has strictly lower variance, a con-
tradiction that establishes the result. Note that

Et

∑
i

[
U ∗

i (t; P̂)
]2 = Pr[T̄ ]Et

(∑
i

[
U ∗

i (t; P̂)
]2 | t ∈ T̄

)

+ (
1 − Pr[T̄ ])Et

(∑
i

[
U ∗

i (t; P̂)
]2 | t /∈ T̄

)

= Pr[T̄ ]Et

(∑
i

[
U ∗

i (t; P̂)
]2 | t ∈ T̄

)

+ (
1 − Pr[T̄ ])Et

(∑
i

[
U ∗

i (t; P̄)
]2 | t /∈ T̄

)
�

so it suffices to show that

Et

(∑
i

[
U ∗

i (t; P̂)
]2 | t ∈ T̄

)
< Et

(∑
i

[
U ∗

i (t; P̄)
]2 | t ∈ T̄

)
� (S4)

It is easy to see that the left-hand side is 1/4 times

[
(1 − λ)2 + λ2

]∑
i

[
U ∗

i (t̄; P̂)
]2 + [

(1 − λ)2 + λ2
]∑

i

[
U ∗

i

(
t̄ ′i� t̄−i; P̂

)]2

+ [(
1 − λ′)2 + (

λ′)2]∑
i

[
U ∗

i

(
t̄ ′; P̂)]2 + [(

1 − λ′)2 + (
λ′)2]∑

i

[
U ∗

i

(
t̄i� t̄

′
−i; P̂

)]2

+ 4λ(1 − λ)

(∑
i

U ∗
i (t̄; P̂)

)(∑
i

U ∗
i

(
t̄ ′i� t̄−i; P̂

))

+ 4λ′(1 − λ′)(∑
i

U ∗
i

(
t̄ ′; P̂))(∑

i

U ∗
i

(
t̄i� t̄

′
−i; P̂

))
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=
∑
t∈T̄

∑
i

[
U ∗

i (t; P̄)
]2

− 2λ(1 − λ)

[∑
i

[
U ∗

i (t̄; P̂)
]2

− 2
(∑

i

U ∗
i (t̄; P̂)

)(∑
i

U ∗
i

(
t̄ ′i� t̄−i; P̂

)) +
∑
i

[
U ∗

i

(
t̄ ′i� t̄−i; P̂

)]2
]

− 2λ′(1 − λ′)[∑
i

[
U ∗

i

(
t̄ ′; P̂)]2

− 2
(∑

i

U ∗
i

(
t̄ ′; P̂))(∑

i

U ∗
i

(
t̄i� t̄

′
−i; P̂

)) +
∑
i

[
U ∗

i

(
t̄i� t̄

′
−i; P̂

)]2
]

=
∑
t∈T̄

∑
i

[
U ∗

i (t; P̄)
]2 − 2λ(1 − λ)

∑
i

[
U ∗

i (t̄; P̂)− U ∗
i

(
t̄ ′i� t̄−i; P̂

)]2

− 2λ′(1 − λ′)∑
i

[
U ∗

i

(
t̄ ′; P̂) −U ∗

i

(
t̄i� t̄

′
−i; P̂

)]2
�

which implies equation (S4).
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