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REPRESENTING PREFERENCES WITH A UNIQUE
SUBJECTIVE STATE SPACE

BY EDDIE DEKEL, BARTON L. LIPMAN, AND ALDO RUSTICHINI1

Ž .We extend Kreps’ 1979 analysis of preference for flexibility, reinterpreted by Kreps
Ž .1992 as a model of unforeseen contingencies. We enrich the choice set, consequently
obtaining uniqueness results that were not possible in Kreps’ model. We consider several
representations and allow the agent to prefer commitment in some contingencies. In the
representations, the agent acts as if she had coherent beliefs about a set of possible future
Ž .ex post preferences, each of which is an expected-utility preference. We show that this
set of ex post preferences, called the subjecti�e state space, is essentially unique given the
restriction that all ex post preferences are expected-utility preferences and is minimal
even without this restriction. Because the subjective state space is identified, the way ex
post utilities are aggregated into an ex ante ranking is also essentially unique. Hence when
a representation that is additive across states exists, the additivity is meaningful in the
sense that all representations are intrinsically additive. Uniqueness enables us to show
that the size of the subjective state space provides a measure of the agent’s uncertainty
about future contingencies and that the way the states are aggregated indicates whether
these contingencies lead to a desire for flexibility or commitment.

KEYWORDS: Unforeseen contingencies, preference for flexibility.

1. INTRODUCTION

1.1. A Brief O�er�iew of the Results

Ž .KREPS 1979 SHOWED THAT THE PREFERENCE of an agent over sets of possible
future choices or actions2 can be represented using subjecti�e states that are

Ž .interpreted as the agent’s implicit view of future possibilities. More precisely, a
subjective state is a possible ex post preference over actions that will govern the
agent’s choice tomorrow of an action from the set she chooses today. Surpris-
ingly, he showed that weak axioms on preferences were sufficient to give a
representation in which the agent has a coherent subjective state space without

Ž .assuming an exogenously given state space. Kreps 1992 reinterpreted this as a
model of unforeseen contingencies. After briefly reviewing our results, we
discuss this interpretation, which is our main motivation for this work, and then
return to a detailed description of Kreps’ work and our results.

1 We thank Jeff Ely, Matt Jackson, Peter Klibanoff, George Mailath, Jean-François Mertens,
Sujoy Mukerji, Klaus Nehring, Phil Reny, Shuyoung Shi, Rani Spiegler, Jeroen Swinkels, numerous
seminar audiences, and Drew Fudenberg and three anonymous referees for helpful comments.
Dekel and Rustichini thank the NSF and Lipman thanks SSHRCC for financial support for this
research. Lipman also thanks Northwestern and Carnegie Mellon for their hospitality while this
work was in progress. This paper was previously titled ‘‘A Unique Subjective State Space for
Unforeseen Contingencies.’’ This work was begun while the second author was at the University of
Western Ontario, and while the third author was at CORE and CentER.

2 For example, a specification of control rights in a firm can be interpreted as such a set since it
specifies a restriction on the future actions of an agent.

891



E. DEKEL, B. L. LIPMAN, AND A. RUSTICHINI892

Unfortunately, the subjective state space Kreps derived is not pinned down by
the preferences, making it problematic to interpret it as the agent’s view of what
is possible and leading to other difficulties discussed below. We enrich the
choice set to consist of sets of lotteries over future actions. We show that the
subjective state space is unique whenever we can represent the agent’s ex ante
choice of a set of lotteries under the hypothesis that her ex post choice from the
selected set satisfies the expected-utility axioms. We also show that such a
representation is possible given a surprisingly weak condition: the decision
maker must be indifferent to having the extra option of randomizing over the
lotteries in a chosen set. Normatively and descriptively, this seems like a weak
requirement. Thus, under mild assumptions, one does not need to assume the
existence of an exogenous state space to deduce that decision makers will
behave as if they have a unique such state space in mind.

The uniqueness result enables us to show that the agent’s ‘‘uncertainty’’ about
the future can be measured by the size of her subjective state space. It also
enables us to identify the aggregator�that is, the way the agent aggregates her
possible ex post utility levels into an ex ante evaluation. In particular, we also
characterize when the representation is inherently additi�e across states.3

Without the restriction to ex post preferences that are EU, the subjective
state space is not unique. However, we show that within a wide class of
preferences, the EU subjective state space we derive is the smallest possible
subjective state space.

In addition to allowing for lotteries, we modify Kreps’ assumptions in another
direction. Kreps derived the subjective state space by analyzing when flexibility
was valued by the agent. Kreps assumed that flexibility was never disadvanta-
geous�that is, that preferences are monotonic in the sense that a larger set is
always weakly better. However, the agent might have in mind some situations
where flexibility is costly. For example, the agent may envision a scenario in
which commitment is valuable for strategic reasons. Alternatively, as recently

Ž .proposed by Gul and Pesendorfer 1999 , also in a sets-of-lotteries framework,
the agent may derive disutility from temptations that might arise. Finally, the
agent may simply find larger sets more difficult to analyze because of complexity
considerations. Motivated in part by the contribution of Gul and Pesendorfer,
we drop the monotonicity assumption for most of our analysis. Unlike them, we
do not specify the particular form of the violations of monotonicity allowed. It
turns out that the representation and uniqueness results do not require restrict-
ing the agent to only conceive of circumstances in which flexibility is valuable. In
particular, our identification of the aggregator implies that we also uniquely
identify those ex post contingencies in which the agent prefers flexibility and
those in which she prefers commitment.

3 A representation with a particular subjective state space is inherently additive if it must be a
Ž .monotone transformation of an additive representation using essentially that same state space.
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1.2. The Unforeseen Contingencies Interpretation

We are interested in a model that allows for unforeseen contingencies, in the
sense that the agent does not have an exogenously given list of all possible states
of the world. This may be because she sees some relevant considerations, but
knows there may be others that she cannot specify. For example, perhaps she
sees that a particular variable x is relevant, recognizes that it is not the only
important variable, but does not know what variables are missing. For simplicity,
we assume henceforth that the agent conceives of only one situation, ‘‘some-
thing happens,’’ but knows that her conceptualization is incomplete. In the
example, this means that there is only one possible value of x.4

At first glance, the standard Savage model seems to provide no way to allow
for unforeseen contingencies. Savage takes the set of states of the world as an
exogenous element of the model and assumes that the agent has preferences
over state-contingent allocations or acts. For a model to allow for unforeseen
contingencies, it seems necessary to let the state space reflect the agent’s
subjective understanding of the world, rather than taking it to be exogenous.
More precisely, we must identify what the agent believes might happen as a
function of her action instead of taking this to be exogenously given.

A natural approach is to think of each possible payoff function as a state, thus
constructing a subjective state space. More precisely, if the set of possible
actions is A, we could construct a subjective state space where each state is a
preference relation over A. This state space seems to be a natural description of
how a ‘‘fully rational’’ person should make choices when she is aware that her
knowledge of the ‘‘true’’ state space is incomplete. Such an individual does not
care about the ‘‘real’’ states per se, caring instead only about how well she does,
how she feels as a result of her choice. With this subjective state space in hand,
one expects that an individual who is rational in the usual sense would choose in
a way that corresponds to forming subjective probabilities over these states and
maximizing expected utility.5 In effect, such a construction would replace
unforeseen external possibilities with foreseen payoff possibilities.

However, directly assuming such a state space seems problematic. By analogy,
Ž .consider the status of subjective probability prior to the work of Savage 1954 .

Ž . Ž .Writers like Keynes 1921 and Knight 1921 had advanced strong arguments
Ž . Žthat behavior under known probabilities risk and unknown probabilities un-

.certainty are significantly different. In light of these arguments, the claim that
agents under uncertainty would form subjective probabilities and treat them as
objective ones would seem quite unconvincing on its own. The importance of

Ž . Ž .Savage 1954 is that he characterized the kinds of preferences behavior that

4 Ž .Recently, Ozdenoren 1999 has shown how to extend several of our main results to the case
where there is a finite set of objective states or, in the terminology of this paragraph, values of x.

5 An advantage of defining the state set this way is that the only exogenous element required is
the set of feasible actions, A. Kreps’ approach also takes such a set as the only exogenous element.

A ŽA related approach defines the state space from actions A and a set of consequences X as X see
Ž ..Fishburn 1970, Chapter 12.1 .
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correspond to having subjective probabilities. This characterization plays two
distinct roles. First, one can use it to ‘‘justify’’ the assumption of subjective
probability by arguing that the behavior of interest falls into the class corre-
sponding to subjective expected utility. Second, if one believes that risk and
uncertainty are different, Savage’s characterization may help identify the essen-
tial characteristics of preferences for which they do differ. This is precisely the

Ž .contribution of Ellsberg 1962 who identified the role of the sure-thing princi-
ple in ruling out uncertainty-averse behavior, paving the way for new approaches
to modeling choice under uncertainty.

Analogously, we believe that simply assuming a subjective state space rules
out potentially interesting aspects of unforeseen contingencies by fiat and hence
is, at best, a partial answer to the problem. By providing a characterization of
preferences that correspond to this model, we hope to clarify the nature of such
an assumption. As in the case of Savage, this clarification might be taken as
evidence that this approach to modeling unforeseen contingencies is appropriate
or as an avenue for identifying less ‘‘Bayesian’’ approaches. At this point in
time, it is too early for us to know which interpretation is more appropriate.

There is one difficult question of interpretation: does the agent ‘‘foresee’’ the
subjective contingencies that are part of the representation? Normally, we do
not worry about such issues. For example, in Savage, we say that the agent
behaves as if she had subjective probabilities and do not concern ourselves with
the question of whether this, in fact, describes her decisionmaking process.
Here, though, the situation is less clear. By assumption, we are representing an

Ž .agent who cannot think of all external possibilities with an agent who has a
coherent view of all payoff possibilities. If the agent does foresee the payoff
possibilities, do we really have unforeseen contingencies? We remain agnostic
on this point. The key idea is that we have allowed for the possibility of
unforeseen contingencies by dropping the assumption of an exogenous state
space and characterized the agent’s subjective view of what might happen.
Whether the agent actually fails to foresee any relevant situations is a different
matter. It could be that our representation of the agent is quite literally correct
�that is, the agent does in fact foresee the set of future utility possibilities and
maximizes as in our representation. In this sense, it is the agent, not the
modeller, who replaces unforeseen external possibilities with foreseen utility
possibilities when making decisions so that, arguably, he has no truly unforeseen
contingencies. On the other hand, as is common in decision theory, one can
interpret the model as an ‘‘as-if’’ representation of an agent who cannot imagine
the set of situations that might occur.6 For clarity, we typically refer to subjecti�e
contingencies and avoid the phrase ‘‘unforeseen contingencies.’’

6 Ž .In the context of contracting, Maskin and Tirole 1999 observe that if all relevant utility
possibilities are common knowledge, then the fact that physical possibilities may not be known is
irrelevant. On the other hand, the ‘‘as-if’’ interpretation of our representation does not seem to
permit use of their mechanism, so that their result regarding the irrelevance of unknown physical
possibilities is sensitive to this interpretational issue.



SUBJECTIVE STATE SPACE 895

1.3. Background and Detailed Results

Dropping Savage’s assumption of exogenous states requires replacing the
objects over which the agent’s preferences are defined. Instead of taking an act
to be a state-contingent consumption bundle, Kreps viewed an act as determin-
ing only the subset of actions, e.g., consumption bundles, from which the agent
will subsequently choose. Kreps’ showed that if preferences over sets are
sufficiently ‘‘well behaved,’’ then the agent indeed acts as if she had a subjective
state space describing her uncertainty regarding her ex post preferences and is a
standard expected-utility maximizer with respect to this uncertainty.

Intuitively, Kreps identifies the agent’s view of the possible states of the world
from preferences for flexibility in the same way that Savage identified subjective
probabilities from preferences over bets. For concreteness, imagine the problem
of an agent who must decide now on the menu from which she will have to
choose at dinner on a specific night several months away. Let B denote the

Ž .finite set of deterministic options�food items in this example�and consider
the agent’s preference, �, over nonempty subsets of B�called menus�which�

B � 4are denoted as x�X�2 � � . A choice of a menu is interpreted as a
commitment to choose ‘‘in the future’’ from this subset. If the agent knows
exactly what her future preference over B will be, say �*, we can derive her

Ž .preference over X from it as follows: If the best according to �* element of x�
is preferred to the best element of x�, then x�x�. It is easy to see that such a�
preference over menus will not value flexibility. That is, no preference over

� 4 � 4 � 4 � 4menus that is generated in this way can have both b, b� � b and b, b� � b� .
In this sense, Kreps argued, it is the desire for flexibility that reveals the agent’s
uncertainty about her ex post preferences over B. Given our assumption that
the agent can only conceive of one possible exogenous situation, this means that
the agent perceives other subjecti�e contingencies.

Turning to the specifics of the representations, under mild axioms, Kreps
Ž .1979 derives a representation of preferences over menus, where menu x is
evaluated by

Ž . Ž . Ž .1 V x � max U b , s .Ý
b�xs�S

To understand this representation, imagine that the agent chooses menu x,
knowing that at some unmodeled ex post stage, she will learn the state of the

Ž .world, s, and thus learn her preferences as represented by U �, s . She then
chooses the best object from menu x according to these ex post preferences. Ex
ante, these preferences are aggregated by summing the maximum utilities across
states. Equivalently, we can think of the states as equally likely and view this as
an expectation over s. We refer to this as an additi�e representation since the

Ž .payoffs are being summed over S. One important point is that S and the U �, s
functions are part of the representation, not a primitive of the model. In this
sense, the model does not assume that the agent foresees all possible future
circumstances but yields the conclusion that the agent acts as if she had a
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coherent view of the possible future utilities. The set S itself is not directly
relevant�it is merely an index set. The important aspect of the agent’s beliefs is
the set of possible ex post preferences, those induced by the collection of utility

� Ž . 4functions U �, s �s�S . We refer to this collection of possible ex post prefer-
ences as the subjecti�e state space. We use the less specific term state space to
refer to any convenient index set such as S.

Kreps also considered ordinal representations, where � is represented by�

Ž . Ž . Ž .2 V x �u max U b , s ,ž /ž /b�x s�S

where u is some strictly increasing but not necessarily additive function. He
showed that the set of preferences with a representation of this form is the same

Ž .as the set of preferences represented by 1 �thus additivity does not impose a
restriction on preferences. In either case, the representation is hardly pinned
down. To see the point, consider the following example.

� 4Example 1: Suppose B� b , b , b and the agent’s preferences over menus1 2 3
are that she prefers longer menus to shorter. That is, letting �x denote the
number of items in the set x, we have x�x� if and only if �x��x�. This
preference satisfies Kreps’ axioms and therefore has an additive representation.
In fact, it has several such representations. In particular, consider the subjective

ˆ� 4 � 4 Ž .state spaces S� s , s , s and S� s , s , s with utility functions U b, s andˆ ˆ ˆ1 2 3 1 2 3
Ž̂ .U b, s given by

s s s s s sˆ ˆ ˆ1 2 3 1 2 3

b 2 1 1 2 1 01

b 1 2 1 0 2 12

b 1 1 2 1 0 23

Ž . Ž .With either subjective state space, the function V x as defined in 1 gives
Ž . Ž .V x �V x� if and only if �x��x�, so each of these V functions represents

the preferences. Note that the collection of ex post preferences in S is disjoint
ˆfrom the collection in S: in the latter, there are never any ties in the ex post

preferences, while there always are ties in the former. It is also easy to see that
the union of these two subjective state spaces also yields an additive representa-
tion.

The indeterminacy of the subjective state space is troubling for several
reasons.7 First, it undermines the strength of the conclusion that the agent acts
as if she had a coherent subjective state space. By analogy, part of the appeal of

Ž . Ž .Savage 1954 or Anscombe-Aumann 1963 as a justification of subjective

7 In principle, we may not need to achieve uniqueness. By analogy, in modeling risk, utility
functions are only identified up to positive affine transformations, not uniquely, yet the Arrow-Pratt

Ž .measure of risk aversion is well defined. In fact, Kreps 1979, Theorem 2 characterizes the set of
transformations of state spaces that preserve preferences. However, there does not seem to be any
simple or useful statement of this set of transformations.
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probability is the fact that the subjective probabilities are unique. Second, it
clearly causes difficulties in deriving subjective probabilities. It seems impossible
to identify the agent’s probability distribution on the subjective state space
without identifying the latter. In a related vein, applications of the model
naturally involve more than one agent. But in a multi-agent extension, we would
want to formalize the notions of common knowledge and common priors, which
depend on the joint subjective state space. Finally, applications of the model
seem to require some measure of the agent’s aversion to uncertainty regarding
future contingencies, which would presumably be based on the size of S, and,

Ž .loosely, on the variance of U �, s across states. If we cannot identify the
subjective state space in a meaningful way, then we have no obvious way to
characterize such notions and hence seem unable to use the model effectively.
For instance, a natural intuition is that if, after specifying exogenous states as
completely as possible, one agent has a larger subjective state space than
another, then she is more ‘‘averse to subjective contingencies.’’ Yet Example 1

Ž .shows that one agent’s subjective state space say, S can be a strict subset of
ˆŽ .another’s S�S while both have the same preferences.

To address this problem, we enrich the choice space by allowing menus of
lotteries, instead of considering only menus of deterministic options.8 To see
why this helps, consider Example 1 again. Suppose we take the utilities given in
the two subjective state spaces to be von Neumann-Morgenstern utilities.
Consider the menus

� Ž . Ž . 4x � b , .5 b � .5 b ,1 1 2 3

where the second item is a lottery giving b with probability 1	2 and b2 3
otherwise, versus

� Ž . Ž . Ž . Ž . 4x � b , .5 b � .5 b , .5 b � .5 b .2 1 2 3 1 2

Ž . Ž .With the first representation, the payoffs to these are V x �V x �5 so the1 2
agent is indifferent between these menus. Note, in particular, that the lottery
Ž . Ž . Ž ..5 b � .5 b is never useful to the agent since she always at least weakly2 1

Ž . Ž .prefers b or .5 b � .5 b . On the other hand, with the second representation,1 2 3
there is an ex post preference, namely s , in which the agent strictly prefers2̂

8 Extending the preferences to sets of lotteries is of interest for other reasons as well. First, it is
overly restrictive to assume that menus are chosen in a way that the options are deterministic. For
example, while menus of lotteries are artificial in the case where B is a set of food items,
presumably, the agent is primarily concerned with the ‘‘taste attributes’’ of the food�the kinds of
spices used, the temperature and texture of the food, etc.�rather than the dish itself. It seems quite
realistic to suppose that a given dish will correspond to a probability distribution on this space,
though admittedly a subjective interpretation of these probabilities is more natural. Second, if one is
to apply these preferences, then allowing for uncertainty seems necessary, especially in games, where
one would want to allow for mixed strategies and incomplete information. Finally, it is worth noting
that the set of lotteries is easy to conceptualize and create. In this interpretation, the construction

Ž .here is analogous to that in Anscombe-Aumann 1963 , where preferences are assumed to extend to
such objects.
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ˆŽ . Ž . Ž ..5 b � .5 b to either of the other lotteries. As a result, we get V x �4.5,2 1 1
Ž̂ .while V x �5, implying that the agent strictly prefers x and hence that these2 2

representations no longer reflect the same ex ante preferences. What this
illustrates is that if we restrict attention to subjective state spaces where all ex
post preferences are expected-utility, we can pin down the subjective state space.

This approach also enables us to identify the aggregator in a sense not
possible in Kreps’ framework. As mentioned above, additivity of the aggregator
is not a restriction in Kreps’ model.

Example 2: To see this more concretely, consider the state space S and
state-dependent preferences U in Example 1, but with the nonadditive aggrega-

Ž .tor u a , a , a �a �a �a . This aggregator is inherently nonadditive since1 2 3 1 2 3
there is no monotone transformations that makes it additive. Nevertheless, the

Ž .preferences given by S, U, and u using 2 do have an additive representation
Ž .with U b, s given by

s s s1 2 3

b 3 0 41

b 0 3 42

b 1 1 53

In this sense, Kreps’ model is unable to determine whether or not the aggrega-
tor is additive.

When we extend Kreps’ model to allow the agent to prefer commitment in
some ex post circumstances, the lack of identification is still more troubling. A
preference for commitment is represented by allowing the agent’s ex ante view
to differ from her ex post view. More specifically, even though the agent will
maximize her ex post utility in each state, ex ante the agent prefers lower utility
in some states, so the aggregator is decreasing in some ex post utilities. If we
modify Kreps’ framework to allow such ex ante preferences, the nonuniqueness
of the aggregator implies that we cannot identify which ex post states are the
ones where the agent wants commitment.

Example 3: For a concrete example, consider two state spaces, S �1
� 4 � 4s , s , s , s and S � s , s , s where the state-dependent utilities are given by1 2 3 4 2 1 2 5

s s s s s1 2 3 4 5

b 0 1 0 1 01

b 1 0 0 2 22

b 2 0 1 0 13

Ž .Consider the preferences generated by the aggregator u a , a , a , a �2 a �1 1 2 3 4 1
5a 
3a �a with state space S . It is not hard to show that any additive2 3 4 1
representation of this preference on S must have coefficients with these signs.1
However, we also obtain an additive representation of this preference on S2

Ž .with aggregator u a , a , a �
a �6a �3a and, again, any additive repre-2 1 2 5 1 2 5
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sentation on this state space must have coefficients with these signs. Note that
state s must enter with a strictly positive coefficient in a representation using1
S , but must enter with a strictly negative coefficient in a representation using1
S . In this sense, we cannot identify the agent’s ex ante view of the ex post2
preference in state s .1

Note that in both examples, the properties of the aggregator are not pinned
down because we can change the state space in a way that requires the
aggregator to change. Clearly, then, our identification of the subjective state
space can potentially eliminate these problems.

Turning to a more concrete statement of our results, we define a weak EU
representation of an ex ante preference, which takes the form of Kreps’ ordinal

Ž . Ž .representation in 2 abo�e with two modifications. First, each U �, s is required
Ž . Ž .to be an expected-utility affine function hence the EU in the name . Second,

the conditions on the aggregator u are very weak, weaker than those used by
Kreps, even in the case where we assume monotonicity. This class of aggregators
includes, e.g., the case where the agent evaluates a menu by the worst possible
ex post utility it could yield, a potentially interesting model which is excluded by
Kreps’ requirements.

We show that the subjecti�e state space and the aggregator for a weak EU
representation are essentially unique. This result should make applications of this
approach easier as it makes it possible to relate the structure of the state space
to intuitive properties of preferences. For example, Theorem 2 shows that if one
ex ante preference is more ‘‘uncertain’’ than another, then it must ha�e a larger
subjecti�e state space for its weak EU representation. Also, if one preference exhibits

Ž .a stronger desire for flexibility commitment than another, then the aggregator is
Ž .increasing decreasing in more states.

The significance of these results is highlighted by showing that weak EU
representations exist if and only if preferences satisfy a mild set of conditions. Other
than requiring that � be a nontrivial and continuous weak order, the only
condition we need is that adding the ability to randomize across menu items
does not alter the evaluation of a menu. Hence we conclude that the subjecti�e
state space and aggregator are identified under the expected-utility restriction for a
�ery broad class of ex ante preferences.

Aside from the pragmatic consideration of the results it yields, there is
another reason for restricting attention to ex post preferences that satisfy the
expected-utility axioms. If we are willing to restrict attention to strictly increasing
aggregators u, then the expected-utility subjecti�e state space is the smallest possible
subjecti�e state space for any representation. That is, we consider ordinal EU

Ž .representations, like Kreps’ ordinal representation 2 , but where the ex post
preferences are required to be expected-utility preferences. We show that given
any ordinal EU representation and any other ordinal representation of the same
ex ante preference, the ordinal EU representation’s subjective state space has
smaller cardinality, strictly so in the finite state-space case. We show that such
ordinal EU representations exist if and only if preferences satisfy monotonicity and a
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weak �ersion of a natural adaptation of the independence axiom in addition to
weak order, nontriviality, and continuity.

Ž .We also show that if ex ante preferences satisfy an appropriate unweakened
�ersion of the standard independence axiom, but not monotonicity, then there is a

Ž .weak EU representation with an additi�e aggregator, similar to 1 . Thus we
characterize when preferences have a more ‘‘standard’’ representation. More-
over, in contrast to Examples 2 and 3 above, our identification of the aggregator
implies that when there exists an additive EU representation every aggregator

Ž .must be additive up to a monotone transformation and the signs of the
coefficients are unique. This result does not directly enable us to identify
probabilities, but opens the door to doing so as we explain in Section 3.1.

1.4. Outline and Related Literature

In the remainder of the introduction, we summarize the relevant literature. In
Section 2, we set out the model, definitions, and axioms. In Section 3.1, we
demonstrate the uniqueness of the weak EU representation and characterize
the preferences that have such a representation. In Section 3.2, we turn to
ordinal EU representations and show that the subjective state space identified
under the expected-utility restriction is the smallest possible subjective state
space. We also identify the preferences that have an ordinal EU representation.
In Section 3.3, we characterize the preferences for which an additive EU
representation exists, and as a corollary to the uniqueness results, show that
additivity and the signs of the coefficient are unique. A sketch of the proofs for
the characterization results is in Section 4. Complete proofs, where not con-
tained in the text, are in the Appendix. Some concluding remarks are contained
in Section 5.

Our survey of the literature includes only the related decision-theoretic work.
For a discussion of epistemic approaches to unforeseen contingencies,9 see

Ž .Dekel, Lipman, and Rustichini 1998 . Aside from the aforementioned work of
Kreps, the only papers we know of that take decision-theoretic approaches to

Ž . Ž .unforeseen contingencies are Ghirardato 1996 , Skiadas 1997 , and Nehring
Ž .1999 . All three share our view that with unforeseen contingencies, the agent
cannot specify the state space precisely and so can only think in terms of events
in the true state space. Ghirardato models this by assuming that the agent views
an act as yielding a set of consequences in each event, rather than a single
consequence. Thus he gives a generalization of subjective expected utility to acts
that are correspondences rather than functions. The representation he derives is
a generalization of nonadditive probability models.

Both of the other two papers, like ours, do not assume that there is a given set
of consequences, instead deriving what can be interpreted as consequences.
Skiadas studies preferences over actions conditional on events and derives a

9 Ž .Other approaches are also possible�see, for example, MacLeod 1996 or Al-Najjar, et al.
Ž .1999 .
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representation where the agent has a subjective utility for each action condi-
tional on each event. Intuitively, this represents the agent’s ‘‘expectation’’ of the
utility consequences over the unforeseen aspects of a situation. The Kreps
approach is similar to Skiadas’ approach in that both use the agent’s preferences
to identify the utility consequences of acts as a function of the state. While
Nehring, like us, follows Kreps’ approach, he analyzes preferences over acts over
menus. That is, like Ghirardato, his acts are functions from events to sets, but
unlike Ghirardato and like us, his representation involves an implicit ex post
stage at which the agent chooses from the appropriate set. Instead of an
expected-utility restriction on the ex post preferences, Nehring restricts atten-

Ž .tion to ex post preferences in which there are only two thick indifference
curves�that is, his ex post preferences are represented by a utility function that
takes only two values. He gives a uniqueness result given this restriction and,
hence, his additivity is meaningful in the same sense as ours. He does not have a
minimality result�his subjective state space is typically not minimal.

Ž .Another related paper is Gul and Pesendorfer 1999 . Motivated by the study
of temptation and commitment, they also analyze the sets-of-lotteries model,
using the same independence axiom and, for some of their results, the same
continuity axiom we use. One of their main results is to characterize what in our
terms is an additive EU representation. They replace Kreps’ monotonicity axiom
with the assumption that a union of two sets is always ranked between the two.
In our terminology, this axiom effectively requires the subjective state space to

Ž .be either a singleton that is, standard expected utility or a pair of states where
commitment is valued in one of two.10 We do not require any such axiom and so
can have many subjective states, including several in which the agent prefers
commitment.

2. PREFERENCES: REPRESENTATIONS AND AXIOMS

Ž .Let B be a finite set of K prizes and let � B denote the set of probability
Ž .distributions on B. A typical subset of � B will be termed a menu and denoted

Ž . Ž .x or x, x�, x, y, etc. , while a typical element of � B , a lottery, will be denoted˜
by �. The agent has a preference relation � on the set of nonempty subsets of
Ž .� B . We endow this collection with the Hausdorff topology; see Appendix A.1

for precise definitions.
We have in mind an environment where the individual first chooses a menu

and at a later stage will choose among the elements of this set, but we do not
explicitly model this second choice. To clarify, we refer to the preference �
over menus as the ex ante preference. As discussed above, the representations

Ž .we consider include sets of preferences over � B , interpreted as the possible ex

10 To see this, let A be a set consisting of a healthy snack and a sweet unhealthy snack and let B
contain the healthy snack plus a salty unhealthy snack. If the agent considers two different negative
circumstances, namely one in which she would be tempted by a sweet snack and one in which she
would be tempted by a salty one, then A�B may be strictly worse ex ante than both A and B.
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post preferences that will govern the agent’s later choice from the menu. We use
Ž .�* to denote a typical ex post preference over � B .

2.1. Representations

We consider three different notions of a representation of such an ex ante
Ž .preference. Each of the representations is a triple, consisting of a nonempty

Ž .state space S, a state-dependent utility function U : � B �S�R, and an aggrega-
tor u : RS �R. As explained in the introduction, the idea is that the agent’s view

Ž .of her possible ex post preferences over � B are summarized by S and U. The
aggregator translates the various possible ex post utility levels from a menu into
an ex ante comparison. That is, the preference is represented by

Ž . Ž . Ž .3 V x �u sup U � , s ,ž /ž /
��x s�S

the natural generalization of Kreps’ ordinal representation.
While we refer to S as the state space, it is just an index set, providing a way

Ž .to refer to the different ex post preferences over � B that are summarized by
Ž .U �, � . We refer to the collection of these ex post preferences as the subjecti�e

state space. Formally, given S, U, and s�S, we define �� to be the ex posts
Ž . Ž .preference relation over � B represented by the utility function U �, s . That is,

� Ž .� and the subjective state space, P S, U , are defined bys

� Ž . Ž .�� ���U � , s �U ��, s ands

Ž . � � 4P S, U � � �s�S .s

Ž .We focus on EU representations in which each U �, s is an expected-
Ž .utility�more precisely, affine�function; that is, for all s�S and all ��� B ,

Ž . Ž . Ž .U � , s �Ý U b, s � b .b� B

When S is infinite, certain technical issues arise. These are presented in a smaller font
and can be skipped without loss of continuity. In particular, for infinite S, we require a
topology on the set of all expected-utility preferences that is discussed in Appendix A.2. In
the text, we simply take this topology as given.

Ž .Our first objective is to characterize representations of the form 3 for which
the subjective state space is unique. Clearly, if we allow the aggregator u to
ignore certain states we could never obtain such a uniqueness result since one
could add or delete such states freely. Hence we restrict attention to ‘‘relevant’’
subjective states.11 It is easier to define the relevance of a subjective state�that
is, an ex post preference�in terms of the state s in the state space S to which it
corresponds, rather than in terms of the ex post preference �� directly. In thes

11 Alternatively, we could define a weak EU representation without this requirement and then
focus on representations with a minimal state space�that is, a space such that we could not
eliminate any states and still have a representation on the remainder. It is not hard to use our
arguments to show that the results also hold under this approach.
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finite case, a state s is relevant in state space S if there is some comparison of
menus for which it is key. That is, there are two menus between which the agent
is not indifferent, even though they yield the same ex post utility for every
subjective state other than s.12 More precisely, we use the following definition.

Ž . Ž .DEFINITION 1: Given a representation of the form 3 with P S, U finite, a
state s�S is rele�ant if there exist menus x and x� such that x�x� and for any

� � Ž . Ž .s��S with � �� , sup U � , s� �sup U � , s� .s s� � � x � � x �

Ž .If P S, U is infinite, then state s is relevant if for every neighborhood N of s, there exists
Ž . Ž .x and x� with x�x� and such that for all s��S�N, sup U � , s� �sup U � , s� .� � x � � x �

The weakest of the three representations we consider is a weak EU representa-
tion.

DEFINITION 2: A weak EU representation of � is a nonempty set S, a
Ž . Sstate-dependent utility function U : � B �S�R, and an aggregator u : R �R

Ž . Ž . Ž . Ž .such that i V as defined in 3 is continuous and represents � , ii each U �, s
Ž . Ž .is an expected-utility function, iii every s�S is relevant, and iv if s, s��S,

s�s�, then �� ��� .s s�

Ž .Part iv of the definition is for convenience. It enables us to uniquely refer to
a state or ‘‘index’’ s in terms of the corresponding subjective state or ex post
preference ��.s

Also, while for notational convenience we define the aggregator as a function
on RS, it is meaningful only on the subspace

Ž . Ž . Ž .UU* S, U � sup U � , s �x�� B .Ž .½ 5� � x s�S

Henceforth, we omit the S and U arguments from UU* when it is unlikely to
cause confusion.

The next representation we consider, an ordinal EU representation, strength-
ens the weak EU representation by requiring the aggregator u to be strictly
increasing. This corresponds to strengthening the requirement that every state
be relevant in two ways. First, it gives us the ‘‘direction’’ in which a state must be
relevant. More specifically, an increase in ex post utility in any state cannot
decrease ex ante utility. Second, it requires that every state always be relevant in
that a change in the utility in that state always ‘‘counts.’’13 We will also have
occasion to consider ordinal representations that do not impose the EU require-
ment.

12 Note that a state in which the agent is completely indifferent among all lotteries could never be
Ž .relevant in this sense. Hence this trivial ex post preference can never be part of a subjective state

space.
13 For an example of an aggregator that satisfies our requirements for a weak EU representation

Ž .and is weakly but not strictly increasing, let u � be the minimum operator. Clearly, if we increase a
vector of ex post utilities without changing the minimum of these utilities, this aggregator does not

Ž .increase. However, every state that can achieve the minimum for some menu is relevant in our
sense.
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DEFINITION 3: An ordinal EU representation is a weak EU representation with
Ž .an aggregator that is strictly increasing on UU* S, U . An ordinal representation is

Ž .a triple S, U, u that satisfies all the requirements to be an ordinal EU
representation except that U need not be an expected-utility function.14

Finally, the last kind of representation we consider is an additi�e EU represen-
tation in which u is additive across the vector of maximal ex post utilities. Unlike
the ordinal EU case, here we do not require monotonicity so we do not restrict
the weights on the different states to be positive. Thus the additive EU
representation is stronger than the weak EU in a different way than the ordinal
EU.

DEFINITION 4: An additi�e EU representation is a weak EU representation15

such that there exists a finitely additive measure � on S such that, for all
Ž .x�� B ,

Ž . Ž . Ž .u sup U � , s � sup U � , s � ds .Hž /ž / S��x ��xs�S

2.2. Axioms

The axioms that we consider on the ex ante preference relation are the
following. The first three we assume throughout.

Ž .AXIOM 1 Weak Order : � is asymmetric and negati�ely transiti�e.

Ž . � Ž .AXIOM 2 Continuity : The strict upper and lower contour sets, x��� B �x��
4 � Ž . 4 Ž . 16x and x��� B �x�x� , are open in the Hausdorff topology .

Ž .AXIOM 3 Nontriviality : There is some x and x� such that x�x�.

Our three representations differ primarily in terms of the independence-type
condition they require. The condition we use for a weak EU representation says
that if we enlarge a menu by allowing the agent to randomize over items on the
menu, this expansion has no value or cost to her. This axiom has very little of
independence to it, though it clearly is related. Formally, for a menu x, let

Ž .conv x denote its convex hull.

14 This definition is not complete as we do not give a topology for the set of all preferences.
Hence the notion of a weak representation without the EU restriction is not fully defined. However,
the only ordinal representations we will need to consider are either ordinal EU or have finite
subjective state spaces where topological considerations play no role.

15 To be more precise, we must expand the definition of a weak EU representation to make S a
measure space and require U to be measurable with respect to this space. Since we make no explicit
use of such measurability considerations, we avoid a discussion of the details.

16 The Hausdorff topology is reviewed in Appendix A.1.
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Ž Ž .. Ž .AXIOM 4 Indifference to Randomization IR : For e�ery menu x�� B ,
Ž .x�conv x .

The axioms we require for ordinal EU and additive EU representations are
much more akin to standard independence axioms. To state these, we first need
to define convex combinations. We do this by defining the convex combination

� of two sets to be the set of pointwise convex combinations. That is, for �� 0, 1 ,
Ž . Ž . Ž .define � x� 1
� x��� B to be the set of �	 �� B such that �	 ����

Ž . Ž .1
� �� for some ��x and ���x� where, as usual, ��� 1
� �� is the
Ž . Ž . Ž .probability distribution over B giving b probability �� b � 1
� �� b .

We first give the stronger axiom since the weaker is more easily understood as
a relaxation of it.

Ž . Ž AXIOM 5 Independence : If x�x�, then for all �� 0, 1 and all x,

Ž . Ž .� x� 1
� x�� x�� 1
� x .

This is the usual independence axiom, using the definition above for taking
convex combinations.

We now explain the normative appeal of this condition. It is easiest to
understand the axiom by breaking it into two parts. To understand the first part,

Ž .suppose we think of � x� 1
� x not as a convex combination of sets as we
have defined it, but instead as a randomization over these menus where the

Žagent gets menu x with probability � and menu x otherwise. We will justify this
.interpretation momentarily. Given this, our axiom is precisely the usual inde-

pendence axiom and is interpreted in precisely the usual way: the difference
Ž . Ž .between � x� 1
� x and � x�� 1
� x is only in the ‘‘�’’ event, so the

preference between these should be the same as the preference between x
and x�.17

The key, then, is understanding why a rational agent should view this kind of
lottery over sets as equivalent to the convex combination of sets we defined. This
interpretation can be thought of as a kind of reduction of compound lotteries
together with an assumption that the agent is certain she will satisfy the
independence axiom ex post, both normatively appealing notions.

� 4 � 4To see this most easily, suppose x� � , � and x� � and consider how1 2
the individual should view the gamble giving x with probability � and x
otherwise. The individual knows that whatever menu the gamble gives her ex
ante, she will choose her preferred element from that set at the ex post stage.
There are two sets of circumstances at the ex post stage: those in which she
would choose � over � and those in which she would choose � over � . In1 2 2 1

17 Ž .Nehring 1999 can be thought of as assuming this form of independence in considering
Žlotteries over sets. This is not entirely accurate since he considers Savage acts over sets, but he uses

.the standard Savage axioms to reduce such an act to a lottery over sets. However, he does not
follow our next step of identifying lotteries over sets with our definition of convex combinations of
sets, an identification that is at the heart of our independence axiom.
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Ž .the first case, the randomization over menus effectively gives her �� � 1
� � ,1
Ž .while in the second, she effectively receives �� � 1
� �.2

Compare this situation to the one where we simply give her the menu
� Ž . Ž . 4�� � 1
� � , �� � 1
� � �that is, in place of the lottery, we give her1 2
the convex combination of menus. Again, there are clearly two sets of relevant

Ž .circumstances ex post: those in which she would choose �� � 1
� � from1
Ž .this menu and those in which she would choose �� � 1
� �. Now suppose2

that she is sure of one thing: her ex post preference will satisfy the indepen-
dence axiom. In this case, she knows that the circumstances in which she prefers

Ž . Ž� to � are exactly those in which she prefers �� � 1
� � to �� � 1
1 2 1 2
.� �. In other words, both the lottery over menus and the convex combination of

Ž .menus then effectively give her �� � 1
� � in those circumstances in which1
Ž .she prefers � to � and �� � 1
� � in all other circumstances. Hence she1 2 2

should be indifferent between the lottery over menus and the convex combina-
tion of the menus.

We emphasize that this is a normati�e argument, relying on the idea that the
agent is fully rational except that she does not necessarily know the set of states
of the world.18 None of the argument above requires the agent to understand
anything about the circumstances in which she would prefer � to � , only to1 2
imagine that such circumstances could exist and that her ex post preference in
such a situation would satisfy the independence axiom.

Our weaker version of independence requires this implication only for certain
menus.

Ž . Ž AXIOM 6 Weak Independence : If x��x and x�x�, then for all �� 0, 1 and
all x,

Ž . Ž .� x� 1
� x�� x�� 1
� x .

In words, if the addition of x�x� to the menu x� strictly improves it, then
Ž . Ž . Ž .adding � x�x� � 1
� x to � x�� 1
� x must also be a strict improvement.

A natural question to ask is why we do not also require a strict preference
implication when x�x�. The reason is that our only use of this axiom will be in
conjunction with monotonicity:

Ž .AXIOM 7 Monotonicity : If x�x�, then x��x.�

In other words, bigger sets are weakly preferred�that is, commitment is
never valuable. Obviously, monotonicity implies that both of the preferences to
which we refer in Axiom 6 must hold weakly.

The following lemma characterizes the relationships among IR, indepen-
dence, and weak independence.

18 In particular, she is indifferent to the timing of the resolution of the objective uncertainty.
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LEMMA 1: If � satisfies independence, then it satisfies weak independence. If
� satisfies weak order, continuity, and weak independence, then it satisfies IR.

3. IDENTIFYING AND CHARACTERIZING THE REPRESENTATION

3.1. Uniqueness of the Subjecti�e State Space and Aggregator

In this subsection, we show that if a weak EU representation with a finite
state space exists, then e�ery weak EU representation of this ex ante preference
has the same subjective state space; that is, the subjective state space is uniquely
identified. We also show that such representations exist for a very broad class of
preferences; in particular, monotonicity is not required.

The uniqueness of the subjective state space in turn implies a form of
uniqueness of the aggregator. Because the formal definition is notationally
cumbersome, we state the idea here and give the details in Appendix B. Recall
that the aggregator is a function from vectors of ex post utilities to an ex ante
evaluation. A trivial way to alter the aggregator then is to ‘‘relabel’’ the
subjective states�that is, to put the ex post utilities into a vector in a different
order and change the aggregator accordingly. Naturally, we will say that two
aggregators related in this fashion are essentially the same. A second trivial way
to alter the aggregator is to rescale some of the ex post utility functions and to
alter the aggregator accordingly. That is, we might replace the state s utility
function with twice the original function and then change the aggregator by
having it divide this component in half before aggregating it with the other ex
post utilities as before. Again, we will say that two aggregators related in this
fashion are the same. Finally, the aggregator is only meaningful on those vectors
in RS that can be generated by some menu. That is, we cannot expect to pin

Ž .down the aggregator at points outside of UU* S, U . When the aggregators for all
weak EU representations of a given ex ante preference can be related in this
fashion, we say that the aggregator is essentially unique.

If the subjective state space is infinite, it is unique but only up to closure. See Appendix
A.2 for details. As a result, uniqueness of the aggregator is further complicated in this
case by the fact that we could change the state space in a way that does not change the
closure and change the aggregator correspondingly. Again, we view this as an essentially
irrelevant change.

THEOREM 1: A. The ex ante preference � has a weak EU representation if and
only if it satisfies weak order, continuity, nontri�iality, and IR.

B. If an ex ante preference has a weak EU representation with a finite state space,
then all weak EU representations of that preference ha�e the same subjecti�e state
spaces. Furthermore, the aggregator is essentially unique.

Ž .C. More generally, the closures of P S, U for all weak EU representations of � coincide.

PROOF SKETCH: The proof of Theorem 1.A is discussed in Section 4. For the
intuition behind Theorem 1.B, suppose we have two weak EU representations
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Ž . Ž .S, U, u and S�, U�, u� , both with finite subjective state spaces, such that
Ž . Ž .P�P S, U �P S�, U� �P�. If these subjective state spaces are not the same,

then there is some ex post preference, �� , contained in, say, P� and not in P.s0

For each s�S�S�, let LL denote a lower contour set for the preference ��
s s

and let U denote the associated level of utility. That is, LL is the set of pointss s
�on and ‘‘below’’ the indifference curve associated with utility U for � . Let xs s

denote the intersection of these lower contour sets. Because all of these ex post
preferences are expected-utility preferences, we know that these indifference
curves are linear. As a consequence, we can always choose the lower contour

Ž . Žsets so each coincides with a nontrivial part of the boundary of x. See Figure
.1 for example. Let x� denote the intersection of all these lower contour sets

except for LL . Because this lower contour set formed part of the boundary of x,s0
Ž .x� must be strictly larger than x as shown in Figure 1. In the figure, x��x�y.

Ž .For any s�S, consider the value of sup U � , s . It is easy to see that it� � x
cannot exceed U since every point in x is contained in LL and so gives utilitys s
less than or equal to U . Also, it cannot be less than U since we have ensureds s
that the indifference curve for state s associated with this level of utility
intersects the boundary of x. Hence for all s�S, this supremum must exactly
equal U . Note that exactly the same argument applies to the value ofs

Ž .sup U� � , s for any s�S�. Also, exactly the same argument applies to x�� � x
for any s�s . On the other hand, the argument does not apply to x� for state0
s . Note that x� must contain some points outside LL and, by definition, all0 s0

such points give utility in state s strictly greater than U . Hence0 s0

Ž . Ž .sup U � , s � sup U � , s , 
s�S,
��x ��x �

Ž . Ž .sup U� � , s � sup U� � , s , 
s�S�, s�s ,0
��x ��x �

and

Ž . Ž .sup U� � , s � sup U� � , s .0 0
��x ��x �

FIGURE 1
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Ž .Because s �S, the fact that S, U, u represents the ex ante preference �0
Ž .implies that x�x�. Hence in representation S�, U�, u� , the aggregator must be

ignoring the state s utility difference between x and x�. Roughly, the proof of0
Theorem 1.B shows that essentially e�ery comparison of sets that have utility
differing only in state s can be written as a comparison of such an x and x�.0
Therefore, the aggregator u� must always ignore the state s utility difference0
when it is the only state where a utility difference exists. But this implies that s0

Ž .is not relevant to the representation S�, U�, u� , a contradiction.

As noted in the introduction, one reason the lack of identification of the
subjective state space in Kreps’ framework is problematic is that it makes it
difficult to relate the structure of the subjective state space to intuitive proper-
ties of the underlying ex ante preferences. For example, a natural intuition is
that larger subjective state spaces correspond to a greater concern about
subjective contingencies. We also want to give a similar characterization of
greater preference for flexibility or commitment using the way subjective states
enter the representation. Examples 1 and 3 in the introduction showed that such
comparisons cannot be made in the Kreps framework: alternative representa-

Ž . Ž .tions of the same preference can have i nested subjective state spaces or ii
identical subjective states with oppositely signed coefficients. Since we pin down

Ž .the subjective state space given the EU restriction , we can make such compar-
isons.

Ž .To do so, given a weak EU representation S, U, u with a finite subjective
state space, say that s�S is positi�e if there are vectors U*, U*�UU* that differ

� � Ž . Ž .only in coordinate s and have U �U such that u U* �u U* . Define s�Ss s
Ž . Ž . Žto be negati�e if the same is true except that u U* �u U* . Note that some

.states may be both negative and positive. Let PP denote the set of ex post
preferences corresponding to the positive states�that is,

� � 4PP� �*��*�� for some positive s .s

Define NN similarly for the negative states. Intuitively, the size of PP measures
the agent’s desire for flexibility, while the size of NN measures his desire for
commitment.

When the subjective state space is infinite, say that s�S is positi�e if for every
Ž .neighborhood N of s, there are menus x and x� with x�x�, x��x, and sup U � , s�� � x

Ž .�sup U � , s� for all s��S�N. The definition of a negative state is analogous. Let� � x �

PP denote the closure of the set of ex post preferences corresponding to positive states and
define NN analogously for the negative states.

To relate these attributes of the representation to the preferences, say that
agent 2 desires more flexibility than agent 1 if x�x�� x implies x�x�� x1 2
and that agent 2 desires more restrictions than agent 1 if x�x�� x implies1
x�x�� x. Finally, say that agent 2 is more uncertain than agent 1 if x�x�� x2 1
implies x�x�� x. Focusing on the intuition of the last condition, x�x�� x2 1
says that agent 1 conceives of a circumstance in which having the options in

Žx��x would be relevant to her in some fashion. For instance, in the monotonic
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case, this would mean that she would value the flexibility of having the
.additional options in x��x. The implication says that agent 2 must also

consider a circumstance in which x��x is important. In this sense, 2 has more
uncertainty than 1. Note that in contrast to the desires for flexibility and
commitment, in this last condition there is no requirement that 1 and 2 give the
same value to adding x��that is, we allow x�x�� x and x�x�� x.1 2

Ž .THEOREM 2: Let S , U , u be weak EU representations of preferences � , fori i i i
i�1, 2.

1. If � desires more flexibility than � , then PP � PP .2 1 1 2
2. If � desires more restrictions than � , then NN � NN .2 1 1 2

Ž . Ž .3. If � is more uncertain than � and if S is finite, then P S , U �P S , U .2 1 2 1 1 2 2

Ž .4. If � is more uncertain than � and S is infinite, then the closure of P S , U must2 1 2 2 2
Ž .contain the closure of P S , U .1 1

This result implies that if � �� , then PP �PP and NN �NN .19 Thus we1 2 1 2 1 2
uniquely identify which states are positive and which are negative.

Hence we see that our identification of the subjective state space and
aggregator enables us to relate the representation to intuitive, economically
meaningful properties of the underlying preferences.

3.2. Minimality of the EU Subjecti�e State Space

In this subsection, we give a different reason for focusing on subjective state
spaces consisting only of expected-utility preferences: such state spaces are the
smallest possible, if we restrict attention to ordinal EU representations.20 It is
easy to see that ordinal EU representations require monotonicity, so, unlike the
previous subsection, we do assume monotonicity here.

THEOREM 3: A. � has an ordinal EU representation if and only if it satisfies
weak order, continuity, nontri�iality, weak independence, and monotonicity.21

19 This is also an implication of Theorem 1.
20 This result is not true for weak representations, even in the monotonic case. If one assumes

that ex ante preferences over menus are generated by having one ex post preference that is not
expected-utility but does have convex lower contour sets, the induced preference over menus will

Ž .have a monotonic weak EU representation. This follows from Theorem 1.A. However, this
representation will require more than one ex post preference in its subjective state space, while the
‘‘correct,’’ non-EU subjective state space is a singleton.

21 The conditions Kreps uses to prove existence of an ordinal representation are weak order,
monotonicity, and x�x�x��x�x	 �x�x��x	. It is not difficult to show that this last condition
is also necessary for an ordinal EU representation in our model, so it must be an implication of our
axioms. A direct proof of this fact is not difficult. First, note that x�x��x�x��x	, so monotonic-

1 1 1� ity implies that the latter is weakly preferred. By weak independence, then, x� x�x��x	 � x2 2 2�1 � � x�x	 , strictly so if x�x��x	 �x�x�. Suppose that x�x�x�. Then weak independence2
1 1 1 1 1 1 1 1�  �  �  �  �  � implies x� x�x	 � x�x� � x�x	 , so x� x�x��x	 � x�x� � x�x	 . How-2 2 2 2 2 2 2 2�

ever, the left-hand side is a subset of the right-hand side. Hence by monotonicity, we must have
indifference. But then this requires x�x��x	 �x�x�. We thank Klaus Nehring for showing us a
critical step in this argument.
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B. If there is an ordinal EU representation with a finite subjecti�e state space,
then any ordinal representation of the same ex ante preference that has a different
subjecti�e state space must ha�e a strictly larger one.

C. If there is an ordinal EU representation with an infinite subjecti�e state space, then e�ery
ordinal representation of the same ex ante preference has an infinite subjecti�e state space. In
addition, there must be an ordinal EU representation with a countable subjecti�e state space so
e�ery ordinal representation has a subjecti�e state space with weakly larger cardinality.

PROOF SKETCH: We describe the intuition for part B of Theorem 3. Fix any ex
post preference, say �*, in the subjective state space of an ordinal EU

Ž .representation, say representation 1, and any interior lower contour set, say x,
for that preference. Fix any set of lotteries y that is disjoint from x. If the
agent’s preferences are given by �*, then she is strictly better off choosing
from x�y than from x alone. Since x is the set of lotteries yielding utility less
than some amount according to �*, everything in y must yield higher utility.

Ž . Ž .Since sup U � , s �sup U � , s for all s, the fact that the aggregator� � x � � x � y
is strictly increasing implies that x�y�x. Hence if we have another representa-
tion of these preferences, say representation 2, this property must be preserved.

How can it be preserved? One way to do so is to ensure that representation 2
contains a preference for which x is a lower contour set. It turns out that if
representation 2 also has a finite state space, this is the only way to ensure this

Žproperty. If 2 has an infinite subjective state space, then our minimality
.property holds, so we are done in this case.

In light of this, fix any interior �. For each ex post preference �� in thes�

subjective state space for representation 1, let LL denote the lower contour sets
� � 4in which � is maximal, i.e., LL � �� : �� �� . Since these are all expected-util-s s�

ity preferences, each different ex post preference must be associated with a
different LL . But, by the preceding paragraph, each of these lower contour setss
must be associated with a different ex post preference in representation 2.
Hence representation 2 must have at least as many possible ex post preferences
as representation 1. In fact, the proof of Theorem 3.B shows that this compari-
son must be strict unless the subjective state spaces are the same.

In short, an ordinal EU representation exists if and only if preferences satisfy
monotonicity and a weak independence axiom. Such a representation has the
minimum possible cardinality over all ordinal representations, EU or otherwise.
In this sense, the EU representations have the ‘‘simplest’’ possible subjective
state space.

3.3. Additi�e Representations

It is natural to explore when an additive representation exists, as that would
be more similar to standard representations of preferences under uncertainty.
The next theorem shows that strengthening IR to independence characterizes
additivity. Moreover, in contrast to Example 2, the aggregator in any weak EU
representation of such preferences must be a monotone transformation of an
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affine function, pinning down additivity.22 Finally, in contrast to Example 3, the
uniqueness result of Theorem 1 immediately implies that the signs of the
coefficients are uniquely identified.

There is also a novel behavioral implication of independence in this context:
in contrast to the general case discussed earlier, if u is affine, then PP�NN is
empty. That is, any given subjective state either leads to a desire for flexibility or
for commitment, but not sometimes one and sometimes the other, depending on
the sets being compared.

THEOREM 4: A. The ex ante preference � has an additi�e EU representation if
and only if it satisfies weak order, continuity, nontri�iality, and independence. If �
also satisfies monotonicity, then the measure � is always positi�e.

B. When an additi�e EU representation exists, e�ery weak EU representation has
Ž .an affine aggregator up to a monotone transformation. That is, if S, U, u is a weak

EU representation of a preference satisfying these axioms, then there exists a finitely
Ž .additi�e measure � on S such that for any x�� B ,

Ž . Ž . Ž .u sup U � , s � sup U � , s � dsHž /ž / S��x ��xs�S

up to a monotone transformation.23

Given that we have identified additivity, a natural hope is that we can identify
the agent’s probabilities over the subjective state space. Unfortunately, this is
not straightforward even in the monotonic case. The key to the preference for
flexibility is the fact that the agent does not know what his ex post preferences
will be. Hence it is critical that ex post preferences vary with the ‘‘state of the
world.’’ But in the usual Savage or Anscombe-Aumann setting, it is precisely the
state independence of preferences that allows identification of probabilities.24

To identify probabilities, we must introduce some form of separability in the
ex post preferences in such a way that some aspect of state independence is
introduced. Since this is a significant deviation from the rest of our work, we

22 This suggests that a distinction between ordinal and additive representations might be obtained
in Kreps’ model by means of a restriction on the ex post preferences, analogous to the way we
require ex post preferences to be expected-utility. This cannot be done within the class of
preferences Kreps studies: we can show by example that there is no restriction on ex post

Ž .preferences in Kreps’ framework that a allows an additive representation of every ex ante
Ž .preference he considers and b does not allow any intrinsically nonadditive ordinal representation.

23 This result does not just say that given any weak EU representation of preferences that have
an additive EU representation, there is an additive EU representation that is a monotone transfor-
mation of the weak EU representation. Since any two functions representing the same preferences
must be monotone transformations of one another, this would be trivially true. Instead, the result
says that this is true without essentially changing the subjective state space.

24 With state dependent utility, one can always rescale the utility functions to change the
probabilities, so the probabilities are meaningless. This does not contradict our result on the
essential uniqueness of the aggregator as essential uniqueness allows such affine changes.
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only sketch a particularly simple version of the idea here. Returning to the
meal-planning example of the introduction, suppose the agent cares about food

Ž . Ž .items what he has for dinner and money how much it costs him . In particular,
suppose that while he is uncertain about what he will feel like eating on the
night in question, he knows how he will value his money. That is, the agent’s
utility for money�his degree of risk aversion�is independent of any subjective
contingencies. Formally, we rewrite the set B as the product of two finite sets,
say Z and M. The elements of Z are interpreted as those choices that are

Ž .affected by subjective contingencies food items , while the elements of M
Ž . Ž .amounts of money are not. Given a distribution ��� Z�M , let � be theZ
marginal on Z and � the marginal on M. Focusing on the case where S isM
finite for simplicity, we could consider a representation of the form

� Ž . Ž . Ž .max U � , s �U � � sÝ Z Z M M
��xs�S

Ž .where U and each U �, s is an expected-utility function. If such a representa-M Z
tion exists, all the results above would apply to identifying the subjective state
space and the additivity of the representation. In addition, the fact that s does
not appear as an argument in the U function enables one to use a straightfor-M
ward variation of standard results to show that the probability distribution � is
also uniquely identified.

While a representation like this has nice properties, it is not a trivial matter to
determine the axioms on preferences that generate it or similar representations.
We leave this as a topic for future research.

4. PROOF SKETCH OF THE REPRESENTATION RESULTS

The necessity of the axioms is easily shown in each case.25 This section is
devoted to sketching the sufficiency proofs. Before doing so, we state a useful

Ž . Ž Ž ..lemma. Let cl x denote the closure of x in the Euclidean topology on � B .

Ž .LEMMA 2: If � satisfies weak order and continuity, then for all x�� B ,
Ž .cl x �x.

Intuitively, the Hausdorff distance between a set and its closure is zero, so
continuity in the Hausdorff topology requires the agent to be indifferent
between these menus.

25 The only demonstration that is not completely straightforward is showing that weak indepen-
dence is necessary for an ordinal EU representation. To see this, assume we have such a

Ž representation. Suppose x�x� and x��x. Fix any �� 0, 1 and any x. Because x�x�, we know that
Ž . Ž .sup U � , s �sup U � , s for all s. Because x��x, we know that we must have at least� � x � � x �

one s for which this inequality is strict. Since U is an expected-utility function, we have
Ž . Ž . Ž . Ž .sup U � , s �� sup U � , s � 1
� sup U � , s and likewise for x�. Hence� � � x�Ž1
�. x � � x � � x
Ž . Ž . Ž . Ž .sup U � , s �sup U � , s iff sup U � , s �sup U � , s . Hence we� � � x�Ž1
�. x � � � x ��Ž1
�. x � � x � � x �

see that the inequality before last holds for all s and strictly for some s. Since the representation is
Ž . Ž .an ordinal EU, u is strictly increasing, so this implies � x� 1
� x�� x�� 1
� x.
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For the rest of this section, we assume that � satisfies the axioms in
Theorem 1.A. In light of IR and Lemma 2, we henceforth restrict ourselves to

Ž .the set of closed, convex, nonempty subsets of � B , denoted by X.
We begin by establishing the existence of a representation of preferences on

X using standard results. We then describe how we transform this into the
desired representation.

PROPOSITION 1: If � satisfies weak order and continuity, then there is a
V : X�R that represents � , that is,

Ž . Ž .x�x� iff V x �V x� .

ŽV is unique up to monotone transformations and continuous with respect to the
.Hausdorff topology .

Ž .PROOF: Since � B is connected, compact, and metric, the space X is
Ž Ž ..separable see Theorem 4.5.5, page 51, of Klein and Thompson 1984 and
Ž .connected see Theorem 2.4.6, page 20, of Klein and Thompson . Hence all the

Ž Žconditions of Debreu’s theorem see, for instance, Fishburn 1970, Lemma 5.1,
..page 62 are satisfied, giving the desired representation. Q.E.D.

Ž . Ž .We now characterize V x for closed and convex x�� B , showing that we
can write

Ž . Ž .V x �u max U � , sž /ž /��x s�S

for some S and expected utility functions U. It is easy to extend this characteri-
Ž . Ž .zation to all nonempty subsets of � B as follows. Fix any x�� B such that

Ž .x�X. Since each U �, s is an expected utility function,

Ž . Ž .sup U � , s � max U � , s .
Ž Ž ..��conv cl x��x

Ž . Ž Ž ..By IR and Lemma 2, for every x�� B , x�conv cl x , so we can define

Ž . Ž Ž Ž ... Ž .V x �V conv cl x �u max U � , sž /ž /Ž Ž ..��conv cl x s�S

Ž .�u sup U � , s ,ž /ž /
��x s�S

completing the extension.
Ž .To characterize V x for x�X, we first show that we can uniquely identify

each element x in X with a function � defined on a subset of RK , denotedx
S K ,26 formally defined below. The function is the support function�see Rock-

Ž . Ž . Ž .afellar 1972, page 28 . These functions have the form of � s �max U � , sx � � x

26 Recall that K is the number of elements of B.
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K Ž . Ž . Ž .for s�S , where U is linear in � , i.e., U � , s �Ý U b, s � b . In short, web� B
can uniquely identify each menu in X with a function giving the maximum
expected utility from that menu over a certain artificial ‘‘state space.’’ This will
enable us to rewrite V in terms of these functions and then identify a subset of
this artificial state space that is the ‘‘real’’ state space. This construction will
generate our weak EU representation. After sketching this construction, we
explain how strengthening the axioms enables us to further refine the construc-
tion to yield an ordinal or additive EU representation.

� 4 K � K � �For convenience, we write B� b , . . . , b . Let S � s�R �Ý s �0,Ý s �1 K i i
4 Ž K . K1 , and let C S denote the set of continuous real-valued functions on S . For

intuition, think of an element of S K as a possible specification of the von
Neumann-Morgenstern utilities for each of the K elements of B. Because such
utilities are only identified up to affine transformations, we have two ‘‘degrees of
freedom’’ in setting a normalization. For essentially technical reasons, it is
convenient to normalize by requiring these utilities to sum to zero and requiring

Ž K .their absolute values to sum to one. We order the functions in C S pointwise
Ž . Ž . Kas usual�that is, ��� � means � s �� � s for all s�S . We now map X

Ž K . Ž . Kinto C S , denoting the image of x by � , where for any s� s , . . . , s �S ,x 1 K

K

Ž . Ž . Ž .� s � max U � , s � max � b s .Ýx i i
��x ��x i�1

Ž K . �Let C denote the subset of C S that � maps X onto; that is, C� � �x
Ž K . 4C S �x�X . Finally we define the inverse that maps elements of C into X by

Ž . Ž . Ž .x � ��� B � b s �� s .� Ý� i i½ 5
K is�S

The following lemma gives two useful properties of the mapping of X to C.
ŽFirst, it is a bijection. Second, it is monotonic in the sense that larger sets in

. Ž .terms of set inclusion correspond to larger functions in the pointwise order .

LEMMA 3: 1. For all x�X and ��C, x �x and � �� . Hence � is aŽ� . Ž x .x �

bijection from X to C.
2. For all x, x��X, x�x��� �� .x x �

PROOF: This is a standard result that follows immediately from the defini-
Ž . Ž .tions. See, e.g., Clark 1983 , Castaing and Valadier 1977 , and Rockafellar

Ž .1972 . Q.E.D.

By the first part of this lemma, we can define a function W : C�R by
Ž . Ž .W � �V x . That is, because each ��C is associated with a unique x�X,�

we can define the ‘‘utility’’ of � to be the utility of the corresponding menu x.



E. DEKEL, B. L. LIPMAN, AND A. RUSTICHINI916

This almost completes the proof. To see why, suppose, for the moment, that
we try defining a weak EU representation by setting S�S K , defining

K

Ž . Ž Ž .. Ž .U � , s �U � , s , . . . , s � � b s ,Ý1 K i i
i�1

Ž . Ž .and letting u � �W � . This last step is not complete since W is only defined on
C, that is, on a certain subset of RS, while u is supposed to be defined on all of
RS. However, we can define u to equal W on C and extend it any way we like to
the rest of RS.

Ž .The S, U, u so defined satisfies all but one of the properties for a weak EU
�Ž Ž ..  Ž .representation. It is not hard to see that u sup U � , s �V x for all� � x s� S

x�X. Hence Proposition 1 implies that this function is appropriately continuous
Ž .and represents the ex ante preference as required. Each U �, s is an expected-

utility function as it is affine in �.
The only remaining requirement, which will not hold in general, is that each

s�S be relevant. Intuitively, S K includes every ex post preference that we
might need, but a weak EU representation cannot include ex post preferences
that aren’t actually needed. Hence we cannot simply set S�S K but must
identify the ‘‘relevant’’ subset of S K and set S equal to this subset. The proof in
the Appendix shows how this can be done.

Let S denote the remaining set of ‘‘relevant’’ points in S K. Now we can
restrict the support functions to this smaller space. The fact that the excluded
point was ‘‘irrelevant’’ means that the essence of the construction still works.
We lose the bijection property, but if two menus x and x� are associated with
the same support function, then we must have x�x�, so that the utility of the
associated support funtion is still well defined. For the rest of this proof sketch,
we will continue to use � to denote a support function but now defined on S
instead of all of S K.

The proof of Theorem 3.A picks up from here, adding the assumptions that
� satisfies monotonicity and weak independence. We now sketch the proof that
these properties imply that the u function constructed above will be strictly
increasing on UU*.

This step uses another property of support functions.

Ž .LEMMA 4: For all x, x��X, � ��� � 1
� � .� x�Ž1
�. x � x x �

PROOF: This is another standard result. See the same references as for
Lemma 3. Q.E.D.

We sketch the proof for the case where the weak EU representation identi-
fied at the previous step has finitely many states. Recall that one property of
weak EU representations is that every state s is relevant. In the finite case, this
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requirement is that for every state s, there is an x and x with x �x but1 2 1 2

Ž . Ž .sup U � , s� � sup U � , s�
��x ��x1 2

for all s��s. So fix any s and such an x and x . Without loss of generality,1 2
assume x �x . To see why this is without loss of generality, note that if it does2 1
not hold, then we can replace x with x �x . By monotonicity, x �x �x �x ,1 1 2 1 2 1 2�
so we have x �x �x . Also, it is easy to see that for all s��s,1 2 2

Ž . Ž . Ž .sup U � , s� �max sup U � , s� , sup U � , s�½ 5
��x �x ��x ��x1 2 1 2

Ž .� sup U � , s� .
��x2

Thus if x does not satisfy these properties, x �x will, so we can assume that1 1 2
x does.1

Let � be the support function of x , i�1, 2. Since x �x , we know thati i 2 1
Ž . Ž . Ž . Ž .� s �� s . By hypothesis, � s� �� s� for all s��s. Let � denote the1 2 1 2 
s

vector of values of � and � for s��s. We know that x �x , so1 2 1 2
Ž Ž . . Ž Ž . .W � s , � �W � s , � .1 
s 2 
s

Ž By weak independence, for any x and �� 0, 1 , we must have

Ž . Ž .� x � 1
� x�� x � 1
� x ,1 2

Ž . Ž .so W � �W � . By Lemma 4, this implies� x �Ž1
�. x � x �Ž1
�. x1 2

Ž Ž . . Ž Ž . .W �� � 1
� � �W �� � 1
� �1 2

where � is the support function of x. In particular, we could take � to be either
Ž . Ž Ž . . Ž .� or � , in which case we see that W � �W �� � 1
� � �W � . It is1 2 1 1 2 2

Ž Ž . .not hard to strengthen this to show that W �� � 1
� � is strictly increas-1 2
Ž . � Ž . Ž .ing in �. That is, W � , � is strictly increasing in � for � � � s , � s .s 
s s s 2 1

What we want to show is that it is strictly increasing in this coordinate
everywhere.

Figure 2 describes the situation in two dimensions. We know that W is
increasing moving up from the point labeled � to the point labeled � . It is not2 1
hard to show that this requires W to be increasing all along the line through
these two points. So consider another possible value for � , say � 	 . This value
s 
s
corresponds to the vertical line in Figure 2. The argument needed for the
boundary points is a little more complex, so let’s focus on the case where this
line is in the interior. It is easy to see that we can then identify a point like �
shown in Figure 2 with the property that there is an appropriate convex
combination of points on the line through � and � that lies on this line,1 2
giving the points labeled � and � in the figure. By weak independence, �ˆ ˆ ˆ1 2 1
and � must be ordered the same way as � and � . That is, we know that Wˆ2 1 2
must be strictly increasing between these two points and hence, just as claimed
above, it is strictly increasing as we move up this line as well. Since � 	 was
s
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FIGURE 2

Ž .essentially arbitrary, this implies that W is strictly increasing in the s coordi-
nate everywhere. Since s was arbitrary, this implies that W and hence u is
strictly increasing on all of UU*.

Finally, we explain how to develop this construction further in the case when
� satisfies independence but not necessarily monotonicity to obtain an additive
EU representation. First, we amend the very first step of the analysis to
strengthen the properties of the V function shown to exist in Proposition 1. The

Žfollowing result, a simple implication of the Herstein and Milnor theorem see,
Ž . Ž ..e.g., Fishburn 1970, Theorem 8.4, page 113 , or Kreps 1988, page 54 , is

Ž .proved in the Appendix see Section C.5 .

PROPOSITION 2: If � satisfies weak order, continuity, and independence, then
there is an affine V : X�R that represents preferences. That is, the V identified in
Proposition 1 can be assumed to satisfy

Ž Ž . . Ž . Ž . Ž .V � x� 1
� x� ��V x � 1
� V x� .

V is unique up to affine transformations.

Now that we have added this affinity property of V, it is not hard to see that
the W we have constructed will inherit this property. To see why, simply note
that by Lemma 4,

Ž .� ��� � 1
� � .� x�Ž1
�. x � x x �

From the way we constructed W, we have

Ž Ž . . Ž . Ž Ž . .V � x� 1
� x� �W � �W �� � 1
� � .� x�Ž1
�. x � x x �

Ž . Ž . Ž .By the affinity of V, we know that this equals �V x � 1
� V x� . But using
the construction of W again, we see that

Ž Ž . . Ž . Ž . Ž .W �� � 1
� � ��W � � 1
� W � .x x � x x �
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Hence we know that W is continuous and affine. We verify in the Appendix that
the structure of C then implies that W can be extended to a continuous linear
function on the set of all continuous functions on S. The Riesz representation
theorem then implies that W, hence V, can be represented as integrating the

Ž .value of the function against a measure. Thus there exists � such that W � �x
Ž . Ž . Ž . Ž . Ž . Ž . Ž .K K KH � s � ds , or V x �H � s � ds �H max U � , s � ds , yieldingS x S x S � � x

the desired representation.

5. CONCLUSION

Ž .To summarize, we have extended Kreps 1979 in several ways. By enriching
the structure of the model, we identified an essentially unique subjective state
space given a restriction to ex post preferences that are expected-utility prefer-
ences. This demonstration is more general than the class of representations
Kreps considered, holding for essentially any representation that uses a subjec-
tive state space, and is characterized by the property that the agent is indifferent
to having the extra option of randomizing over the lotteries in a chosen set. This
identification implies that the aggregator is essentially unique as well. In
particular, if an additive EU representation exists, then all weak EU representa-
tions are additive. As one might expect, additivity is characterized using the
independence axiom. None of these results require monotonicity, so we can
allow for contingencies in which flexibility is costly. Finally, we showed that in
the monotonic case, there is another reason to focus on an EU subjective state
space: it is the smallest subjective state space for any ordinal representation. We
also showed that ordinal EU representations correspond to preferences satisfy-
ing monotonicity and a weak independence axiom.

As illustrated in Theorem 2, pinning down the subjective state space opens up
the possibility of giving concrete economic meaning to the properties of the
objects in the representation. Our hope is that this paves the way to applications
of this model.

In addition to such applications, there are other possible directions for future
research. As discussed in Section 3.1, it would be of interest to explore how
separability can be used to identify probabilities on the subjective state space.
Also, while we have characterized the case where the aggregator is affine, other
aggregators might be interesting. For example, perhaps there is an interesting
subclass of preferences with a weak EU representation that can be represented
using the minimum function as the aggregator.

Finally, as discussed in our introduction, one interpretation of our representa-
tion results is that we are determining where an alternative approach must look
to find behavior that can be distinguished from this model. If the subjective state
space approach misses some interesting aspects of behavior under unforeseen

Žcontingencies, it must be true that some axiom either an explicit one or an
.implicit assumption built into the structure of the model precludes this behav-

ior. If there is such an omission, then, just as Ellsberg identified the role of the
sure-thing principle in precluding uncertainty-averse behavior, we believe that
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one must first find a concrete example of behavior that is a sensible response to
unforeseen contingencies but that is precluded by our axioms. An important
direction for further research is to see if there is such an Ellsbergian example
for this setting and, if so, to explore relaxations of our axioms. We believe that
the most interesting possibility is to relax the assumption that the agent knows
all the feasible actions. Realistically, part of the problem of unforeseen contin-
gencies is failing to recognize what actions are possible, not just which ones
might be useful.

Dept. of Economics, Northwestern Uni�ersity, E�anston, IL 60208, U.S.A., and
Tel A�i� Uni�ersity, Tel A�i�, Israel; dekel@northwestern.edu,

Dept. of Economics, Uni�ersity of Wisconsin, 1180 Obser�atory Dr., Madison, WI
53706, U.S.A.; blipman@ssc.wisc.edu,

and
Dept. of Economics, Uni�ersity of Minnesota, 1035 Heller Hall, 271 19th A�e. S.,

Minneapolis, MN 55455, U.S.A., and Boston Uni�ersity, Boston, MA, U.S.A.;
raldo@bu.edu

Manuscript recei�ed No�ember, 1997; final re�ision recei�ed December, 1999.

APPENDIX

A. Topologies

A.1. A Re�iew of the Hausdorff Topology and a Lemma

Ž . Ž . Ž .Let d denote any distance on � B . For any pair x, x��� B , we define as usual d � , x� �
Ž . Ž . Ž .inf d � , � and e x, x� �sup d � , x� . The ball in the hemimetric topology is the set� � x � � � x
Ž .defined in 4 below. The topology whose basis is these balls is the Hausdorff hemimetric topology.

Ž . Ž . � Ž . � Ž . Ž .4 44 BB x ,  � x��� B �max e x�, x , e x , x� � .

� 4 Ž .LEMMA 5: Let x be an increasing sequence of subsets of � B , x �x � ��� , and let x*�n 1 2
� Ž .� x . Then x �cl x* in the Hausdorff topology.n� 1 n n

Ž .PROOF OF LEMMA: Fix any �0. Since x�cl x* is compact, there is a finite cover of x by open
balls of radius 	3 and center a , m�1, . . . , M. For n* large enough, x must contains at leastm n*

Ž . Ž .one element of each of the M balls, so that sup inf d a, b � 2 	3 . Hencea� x b� x n*
Ž .lim sup inf d a, b �0, so x �x. Q.E.D.n�� a� x b� x nn

Ž .A.2. The Topology on P S, U

Let P EU denote the set of all nontrivial27 expected-utility preferences. The topology we use on
EU Ž .P was also used by Dhillon and Mertens 1996 . We define it by specifying which sequences

Žconverge. That this generates a well-defined topology is easily shown using, say, Theorem 2.9 in
Ž . .Kelley 1955 .

27 Ž .That is, ��*�� for some � , ���� B .
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� �4 Ž .DEFINITION 5: Given a sequence � of expected-utility preferences over � B , we say that �*n
is a limit of the sequence if it is a nontrivial expected-utility preference such that

��*�� implies �N such that ��� ��, 
n�N.n

� KEquivalently, we can treat an expected-utility preference as a point in 0, 1 giving the von
Neumann-Morgenstern payoff to each of the K points in B with the normalization that the worst
point gets payoff 0 and the best gets payoff 1. The topology above is equivalent to the usual
Ž .Euclidean topology on this space.

Given a subspace P�P EU, we define the relative topology on P in the usual way�that is, P�P
EU Ž .is open if it is the intersection of P with an open set in P . Given a pair S, U , we define an

ˆ ˆŽ . Ž .induced relative topology on S by defining S�S to be open if P S, U is open in the relative
Ž .topology on P S, U .

B. Uniqueness of the Aggregator

Ž .DEFINITION 6: Let R � S , U , u , i�1, 2, be weak EU representations of some preferences. Ifi i i i
the subjective state spaces of these representations are finite, then R and R are essentially1 2
equi�alent if the following hold.

Ž . Ž . Ž .i The subjective state spaces are the same. That is, P S , U �P S , U .1 1 2 2
Ž .ii There is a bijection � : S �S and functions � : S �R and � : S �R such that for any2 1 2 � 2

� Ž . Ž � .U �UU* S , U , the vector g U defined by1 1 1 1

Ž � .Ž . Ž . � Ž Ž .. Ž .g U s �� s U � s �� s1 2 2 1 2 2

Ž . Ž . Ž .is contained in UU* S , U . The function g : UU* S , U �UU* S , U is a bijection.2 2 1 1 2 2
Ž . Ž � . Ž Ž � .. Ž .iii Up to a monotonic transformation, u U �u g U for all U*�UU* S , U .1 1 2 1 1 1
If the subjective state spaces are infinite, then all of the above holds up to closure. That is, the

Ž . Ž . Ž . Ž .closures of P S , U and P S , U are the same. Also, all references to S and S in ii and iii are1 1 2 2 1 2
changed to the closures of the set in question.

We can now restate Theorem 1.B: all weak EU representations of a given ex ante preference are
essentially equivalent. This follows almost immediately from the uniqueness of the subjective state
space, which implies that for every s �S , we can find an s �S with �� ��� and vice versa.1 1 2 2 s s1 2

Ž . Ž .Given this, it is clear that U �, s must be an affine transformation of U �, s for the correspond-1 1 2 2
ing s . The g function in the definition simply translates the U* vectors by rescaling appropriately.2

Ž .The result then follows from the fact that the V x generated from representation 1 must be a1
Ž .monotone transformation of the V x generated from representation 2.2

C. Proofs

For convenience, the order of proofs varies from the order of the results in the text.

C.1. Proof of Lemma 2

Ž . Ž Ž . . Ž . Ž .By definition of BB x,  see equation 4 in Appendix A.1 , for every �0, cl x �BB x,  .
Ž . Ž .Recall that L x is the strict lower contour set for x. Suppose x��x, so that x�L x� . By

Ž . Ž . Ž . Ž .continuity, L x� is open, so by the above, it must be true that cl x �L x� . That is, x��cl x .
Ž . Ž . Ž . Ž .Similarly, if x��x, then x��cl x . So suppose x�cl x . Then cl x �cl x , contradicting the

Ž . Ž . Ž .hypothesis that � is a weak order. Similarly, if cl x �x, we again obtain cl x �cl x . Hence
Ž . 28x�cl x . Q.E.D.

28 We thank a referee for suggesting this proof, simplifying a proof in a previous draft.
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C.2. Proof of Lemma 1

The first statement of the lemma is trivially true, so we turn to the second. We show the second
Ž .by first demonstrating that weak order and weak independence imply that x�conv x for every

finite x. We then use continuity to complete the argument.
ŽFix any finite x, let k denote the number of elements of x, and consider the set � x� 1


. Ž . Ž  Ž .� conv x for �� 0, 1	k . We now show that this set is conv x . To see this, note first that
Ž . Ž . Ž . Ž  Ž .� x� 1
� conv x �conv x for any �. For the converse, fix any �� 0, 1	k and any ��conv x .

By definition, there are nonnegative numbers t , i�1, . . . , k, such that Ý t �1 and Ý t � ��.i i i i i i
ˆClearly, there must be some j such that t �1	k. Define t for i�1, . . . , k byj i

t 
�j
t̂ �j 1
�

and for i� j,

ti
t̂ � .i 1
�

ˆ ˆObviously, t �0 for all i� j. Also, t �1	k�� implies t �0. Finally,i j j

1 1
� t̂ � t 
�� t � 1
� �1.Ý Ýi j i1
� 1
�i i� j

ˆ ˆ Ž .ˆLet ��Ý t � . Clearly, ��conv x . Hencei i i

ˆŽ . Ž . Ž .�� � 1
� ��� x� 1
� conv x .j

ˆ 	 	Ž .Clearly, we can write �� � 1
� ��Ý t � for some coefficients t . It is easy to see thatj i i i i
	 	 ˆŽ . Ž . Ž .ˆ ˆt � 1
� t � t for i� j and t ��� 1
� t � t . Hence �� � 1
� ���. Hence � x�i i i j j j j
Ž . Ž . Ž .1
� conv x �conv x .

Ž . Ž .Of course, x�conv x . Hence weak independence implies that if x�conv x , then there is no
� . Ž . Ž . Ž . Ž . Ž . Ž .�� 0, 1 with � conv x � 1
� conv x �� x� 1
� conv x . The left-hand side is conv x and,

Ž . Ž .by the above, there are values of � for which the right-hand side is conv x . Hence x�conv x for
every finite x.

We now turn to infinite x. By Lemma 2, we can restrict attention to the case where x is closed.
� 4 n � 4Hence x is compact and so has a countable dense subset, say E� e , e , . . . . Let e � e , . . . , e ,1 2 1 n

n Ž n. n Ž .n�1, 2, . . . . By the above result, e �conv e for all n. By Lemma 5, e �cl E �x and
Ž n. Ž Ž .. Ž . nconv e �cl conv E �conv x in the Hausdorff topology. We now show that this plus e �
Ž n. Ž .conv e for all n implies x�conv x by continuity. To see this, suppose to the contrary that

Ž . Ž n. n Ž .x�conv x . Then by continuity, we know that for n sufficiently large, x�conv e and e �conv x .
m Ž n.Fix such an n. By continuity, then, we see that for m sufficiently large, e �conv e and

n Ž m. Ž n. n m Ž m.e �conv e . But since conv e �e , this implies e �conv e , a contradiction. The case where
Ž . Ž .conv x �x yields a similar contradiction. Hence x�conv x . Q.E.D.

C.3. Proof of Theorem 1. A

K K Ž . K K S K
In the text, we gave S , U : � B �S �R, and u : R �R satisfying all the requirements of

a weak EU representation except that each s�S K be relevant. Recall that s is relevant in state
Ž .space S if for every neighborhood N in the relative topology on S of s, there are menus x and x�

Ž . Ž . Kwith x�x� such that for every s��N, � s� �� s� . In general, not every s�S will satisfy thisx x �

requirement.
To construct an appropriate subset, first we define s�S K to be strongly rele�ant if for every

Ž K .neighborhood N in the topology on S , not the relative topology of s, there are menus x and x� in
Ž . Ž . KX with � s� �� s� for all s��S �N and x�x�. Let S* denote the set of all strongly relevantx x �

s�S K.
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ˆ K ˆŽ . Ž .Say that S�S is sufficient if for all x and x� such that � s �� s for all s�S, we havex x �

x�x�. Clearly, the subjective state space must be sufficient or else it cannot represent the ex ante
preference. We will show that S* is the smallest closed sufficient set. This will be used to show that
we can use it for our subjective state space.

Ž .First, it is not hard to see that S* is closed. If s�cl S* , then every open set containing s
intersects S*. But then each such open set is a neighborhood of some point in S* so there must be a
pair of menus whose support functions differ only on the neighborhood and which are not
indifferent. Hence s is also strongly relevant.

ˆWe now show that S* is smaller than every closed sufficient set. Suppose S is a closed sufficient
ˆ ˆ ˆset, but S*�S. Then there is some s�S* with s�S. Because S is closed, there is a neighborhood

ˆ Ž . Ž .N of s with N�S��. By definition of S*, then, there is an x and x� in X with � s� �� s� forx x �
K ˆ ˆ KŽ . Ž .all s��S �N and x�x�. Hence � s� �� s� for all s��S as S�S �N. Since x�x�, thisx x �

ˆcontradicts S being sufficient.
In light of the above, we see that if S* is sufficient, then it is the smallest closed sufficient set.

The sufficiency of S* is an implication of the following lemma. For later use, we prove a result that
is more general than is needed here. Let S� be the set of s�S K such that for every neighborhood�

Ž . Ž . KN of s, there are menus x and x� with x�x�, x��x, and � s� �� s� for all s��S �N.x x �

Intuitively, S� is the set of positive states�those where flexibility is desirable. Define S�
� 


analogously but where x�x�. Note that S��S��S*. Given any x, x��X, let� 


Ž . � K Ž . Ž .4D x , x� � s�S �� s �� s .x x �

Ž . Ž . �LEMMA 6: If x�x�, then D x, x� �S*��. If x�x� and x��x, then D x, x� �S ��. If x�x��
Ž . �and x�x�, then D x, x� �S ��.


Ž .PROOF OF LEMMA: First, note that if we have menus x and x� with x�x� and D x, x� �S*��,
then without loss of generality, we can assume these sets are nested. To see this, suppose that
neither set is contained in the other. Because x�x�, at least one of these sets is not indifferent to

Ž . Ž . Ž .conv x�x� . Hence we may as well assume that x�x�x�. Note that if � s �� s , thenx x �

Ž . � Ž . Ž .4 Ž . Ž . Ž . Ž .� s �max � s , � s �� s . Hence D x, x�x� �D x, x� . So since D x, x� �S*�x x x � conv Ž x � x �.
Ž .�, the same is true of D x, x�x� . Therefore, we may as well assume x�x�.

Hence it is sufficient to prove the results claimed for S� and S� as this will imply the claim� 

about S*. We give the proof for S� ; the argument for S� is analogous.� 


Ž . �So suppose we have x and x� with x�x�, x��x, and D x, x� �S ��. Without loss of�
generality, we can assume that both x and x� have nonempty interiors. To see this, suppose that one

Ž . Ž . Ž . Ž . Ž .or both have empty interiors. For �� 0, 1 , define x � �� x� 1
� � B and define x� �
Ž . Ž .analogously using x�. It is easy to see that x � and x� � have nonempty interiors for all ��0.

Ž . Ž Ž . Ž ..Also, by Lemma 4, it is easy to see that D x, x� �D x � , x� � for all ��0. By continuity of � ,
Ž . Ž .there exists ��0 such that x � �x� � . Hence if one or both of x and x� have empty interiors, we

Ž . Ž .can replace them with x � and x� � for � sufficiently small. So we may as well assume they have
nonempty interiors.

Consider the family of sets x�X such that the following three conditions hold. First, x�x�x�.ˆ ˆ
Ž . Ž .Second, x�x. Finally, D x, x� �D x, x� . It is easy to see that this collection of sets is nonempty asˆ ˆ�

x itself satisfies these conditions. Suppose we have an increasing chain of sets in this family
x �x � ��� . Let x
 denote the closure of the limit of this sequence. We claim that x
 also satisfies1 2
the three properties and is in X. To see this, note that the first property is trivially satisfied. By

� 4continuity of preferences, the second holds as well: if we have a sequence x with x �x for all n,n n �
� Ž .then continuity of � , the fact that x �� x in the Hausdorff topology see Lemma 5 , andn k�1 k

Lemma 2 imply that x
�x. To see that the third property is satisfied, first note that if x�x�, thenˆ ˆ�
Ž .D x, x� is the set of s such thatˆ ˆ

Ž .��s�� s , 
��x .̂x �ˆ
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Ž . Ž .So consider any s�D x
, x� . Since x
�x�, we have ��s�� s for all ��x
. Since x�x
, thex �

Ž . Ž . Ž .same is true of all ��x, so s�D x, x� . Hence D x
, x� �D x, x� . Since x
 is closed and
convex, we have x
�X.

Hence any increasing chain of sets in this collection has an upper bound that is also in this
collection. Therefore, by Zorn’s lemma, this collection of sets has at least one maximal element. Let
x* denote any such maximal element. That is, x* satisfies the above three properties and there is no
x strictly containing x* that does so. We now derive a contradiction by showing that such an x must
exist.

ŽRecall that x and hence x* have a nonempty interior and that x* is closed and convex since it is
. Ž .an element of X . Hence by Theorem V.9.8 of Dunford and Schwartz 1958 , there is a dense subset

of the boundary of x* such that x* has a unique tangent at each point in this set. Let � denote such
a dense set. Because x*�x�x�, we have x*�x�. Hence x*�x�, implying that there exists a � *��

�
such that � * is in the interior of x�.29 Fix any such � *. Because � *�� , we know that there is a

K Ž .unique s�S such that � s �� * �s. Let s* denote this s. Because � * is in the interior of x�, wex*
Ž . Ž . Ž .know that � s* �� * �s*�� s* . Hence s*�D x*, x� . Another implication of � * being in thex* x �

� 4interior of x� is that there is a sequence � such that � �x��x*, � �s*�� * �s*, and lim �n n n n�� n
Ž � 4.�� *. Fix such a sequence and let x �conv x*� � . It is not hard to see that x �X andn n n

Ž . � K Ž .4D x*, x � s�S �� is unique ��x such that ��s�� s .n n n x n

Ž . Ž .To see why this holds, note that x*�x implies D x*, x is the set of s such that ��s�� s forn n x n
Ž .all ��x*. Clearly, � �x* implies that if � is the unique ��x such that ��s�� s , thenn n n x n

Ž . Ž . Ž . Ž . Ž . Ž .� s �� s , so s�D x*, x . If � �s�� s , then ��s�� s for all ��x �x*, so � s �x* x n n x x n x*n n n
Ž . Ž .� s . Finally, suppose � �s�� s but there is a ���� , ���x , such that ���s�� �s.x n x n n nn n

Ž . Ž . Ž .Obviously, if ���x*, then � s �� s . If ���x*, then there must be some ��x* and �� 0, 1x* x n
Ž . Ž .such that ����� � 1
� �. But then ���s��� �s� 1
� ��s, so ���s�� �s implies thatn n n

Ž . Ž .there is a ��x* with ��s�� �s. Hence, again, � s �� s .n x* x n
Ž . Ž .By � �s*�� * �s*�� s* , we see that s*�D x*, x for all n. On the other hand, considern x* n

Ž . Ž .any s�s*. For such an s, � * �s�� s since s* is the only s with � * �s�� s . Hence for nx* x*
Ž . Ž .sufficiently large, � will be close enough to � * that � �s�� s , implying that s�D x*, x .n n x* n

Hence

�

Ž . � 4D x*, x � s* .� n
n�1

Ž .So for n large enough, we can make D x*, x an arbitrarily small set containing s*.n
Ž . � Ž . Ž . �Recall that D x, x� �S ��. Hence since s*�D x*, x� �D x, x� , s*�S . Therefore, there� �

Ž .is a neighborhood N of s* with the property that for every x and x� with x�x� and D x, x� �N,ˆ ˆ ˆ ˆ ˆ ˆ
x�x�. Note that if this is true for N, it is also true for any open subset of N that contains s*. Henceˆ ˆ�

Ž .without loss of generality, we can assume N�D x*, x� . Also, by the above, for n sufficiently large,
Ž .D x*, x must be an open subset of N containing s*. Fix such an n.n

Ž .By construction, x�x*�x �x�. Because D x*, x �N, x �x*�x so x �x. By construction,n n n n� � �
Ž . Ž . Ž . Ž . Ž . Ž . Ž .D x*, x �N�D x*, x� �D x, x� . Hence for all s�D x, x� , � s �� s �� s . Hencen x � x* x n
Ž . Ž .D x , x� �D x, x� . Therefore, we see that x satisfies the same properties as x* and is strictlyn n

larger than x*. Since x* was the maximal set satisfying these conditions, we have a contradiction.
Q.E.D.

29 To see this, note that the denseness of � implies that we only need to verify that there is a
point in the boundary of x* and the interior of x�. Because a closed convex set equals the convex
hull of its boundary, the boundary of x* cannot equal the boundary of x�. Hence there is some �� in
the boundary of x� that is not in x*. Fix any �	 in the interior of x*. Because x* is closed, there is a

Ž .largest � such that ���� 1
� �	 �x*. The point so defined must be in the boundary of x* and
the interior of x�.
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Ž .This implies S* is sufficient. If not, there is some x and x� with x�x� and S*�D x, x� ��,
contradicting Lemma 6. Given the facts shown above, then, S* is the smallest closed sufficient set.

To complete the construction of the weak EU representation, then, let S�S*. By nontriviality
and Lemma 6, we know that S��. For each x, let � denote the restriction of � to S. Let Cx x
denote the set of these restricted support functions. By the definition of sufficiency, if � �� , thenx x �

Ž . Ž .we must have x�x�. Hence there is no ambiguity in defining W : C�R by W � �W � . Definex x
K SŽ . Ž . Ž . Ž .U � , s by restricting U to � B �S. Finally, let u � �W � on C and extend to the rest of R in

any fashion. This is a weak EU representation as long as every s�S is relevant.
To show that every s�S is relevant, suppose s�S is not relevant. That is, there is a set N that is

Ž . Ž .open in the relative topology and contains s such that for every x and x� with � s� �� s� for allx x �

s��S�N, we have x�x�. But then S�N is sufficient. Recall that S is closed. Since N is open in
the relative topology, it equals S�N� for some open N�. Hence S�N�S�N� is closed. Hence
S�N is a closed sufficient set strictly contained in S, contradicting the minimality of S. Q.E.D.

C.4. Proof of Theorem 3. A

Ž . Ž . S Ž .Ž .Given a representation S, U, u and a set x, let U* x �R be defined by U* x s �
Ž .sup U � , s .� � x

Ž .LEMMA 7: Suppose � has a weak EU representation S, U, u . For any U*�UU*, define

Ž . � Ž . Ž . � 4x U* � ��� B �U � , s �U .� s
s�S

Ž Ž ..Then U* x U* �U*.

Ž Ž ..PROOF: Since U*�UU*, there must be some x�X with max U � , s �U*. Fix any� � x s� S
Ž . Ž . � Ž . Ž .��x. Clearly, U � , s �max U ��, s �U for all s. Hence ��x U* . So x�x U* . There-��� x s

fore, for every s,

Ž . Ž .max U � , s � max U � , s .
��x Ž .��x U *

Ž . Ž . � Ž . �But we cannot have max U � , s �max U � , s �U since no � with U � , s �U� � xŽU *. � � x s s
Ž . Ž . �can be contained in x U* by definition. Hence max U � , s �U for all s. Q.E.D.� � xŽU *. s

We now add the assumption that � satisfies weak independence and monotonicity and show that
this implies that the u constructed in the proof of Theorem 1.A is strictly increasing on the
appropriate subset of RS, so that this representation is an ordinal EU representation. Because we
are entirely concerned with properties of u on UU*, it is convenient to begin by translating two key
facts into statements about u.

First, fix any s�S. Since s must be relevant, we know that for every neighborhood N of s, there
are menus x and x� such that x�x� and

Ž . Ž .sup U � , s� � sup U � , s� 
s��S�N.
��x ��x �

Without loss of generality, we can assume x��x. If this is not true, we can replace x with x�x�. To
see this, note that by monotonicity, x�x��x�x�, so x�x��x�. Also,

�

Ž . Ž . Ž . Ž .sup U � , s� �max sup U � , s� , sup U � , s� � sup U � , s� 
s��S�N.½ 5
��x�x � ��x ��x � ��x �

Hence x�x� satisfies the same properties as x, so we can use it instead if x��x. So we have x��x,
Ž . Ž . Ž Ž .. Ž Ž ..implying U* x �U* x� , and we have u U* x �u U* x� . Because every open subset of S is a

neighborhood of each of its points, this implies that for every open N, there exists30 U, U��UU* with
Ž . Ž . Ž . Ž .U�U�, U s �U� s for every s�N, and u U �u U� .

30 In what follows, we abuse notation slightly by using U to denote a vector of utilities in UU*
instead of the utility function.
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Ž . Ž .Next, in the notation of Lemma 7, if U�U�, then x U� �x U . Hence Lemma 7 and weak
Ž . Ž .independence imply that if U�U� and u U �u U� , then for any menu x,̂

Ž . Ž . Ž . Ž .� x U � 1
� x�� x U� � 1
� xˆ ˆ

or, by Lemma 4,

Ž Ž . Ž .. Ž Ž . Ž ..u �U� 1
� U* x �u �U� 1
� U* x .ˆ ˆ
ˆŽ . Ž . Ž Since x is arbitrary, if U�U� and u U �u U� , then for all �� 0, 1 and all U�UU*,ˆ

ˆ ˆŽ . Ž Ž . . Ž Ž . .5 u �U� 1
� U �u �U�� 1
� U .

˜To complete the proof, we show that for any U , U �UU* with U �U , there is a U�UU* such1 2 1 2
˜ ˜ ˜ ˜Ž . Ž . Ž . Ž .that either U �U and u U �u U or u U �u U and U�U . By monotonicity, this will1 2 1 2

Ž . Ž .establish that whenever U �U , we must have u U �u U .1 2 1 2
So fix any U , U �UU* with U �U . First, suppose U is in the interior of UU*. Consider the set1 2 1 2 2

� Ž . Ž . 4s�S�U s 
U s �1 2

for �0. Clearly, there must be an �0 sufficiently small that this set is nonempty. Fix such an 
ˆ ˆand let N denote the set above. It is easy to see that N must be open. Hence there are U , U �UU*1 2

ˆ ˆ ˆ ˆŽ . Ž .differing only on N such that U �U and u U �u U .1 2 1 2
Ž .Because U is in the interior of UU* and because UU* is convex, there must be a �� 0, 1 and2

ˆ Ž .U�U such that �U � 1
� U�U . Furthermore, we can choose ��0 arbitrarily small and still2 2 2
ˆ Ž .find a U�U satisfying �U � 1
� U�U .2 2 2

In light of this, choose any � strictly between 0 and the smaller of 1 and


.ˆ ˆ� Ž . Ž .sup U s 
U ss� N 1 2

˜ ˆ ˜Ž . Ž . Ž . Ž .Fix the associated U and define U��U � 1
� U. By 5 , u U �u U . Hence we are done with1 2
˜ ˜Ž . Ž .this case if U �U. For any s, U s �U s iff1 1

ˆŽ . Ž . Ž . Ž . Ž . Ž .U s 
U s ��U s � 1
� U s 
U s or1 2 1 2

ˆ ˆŽ . Ž . � Ž . Ž .U s 
U s �� U s 
U s .1 2 1 2

For s�N, the right-hand side is zero, so U �U implies this. For s�N, we have1 2

ˆ ˆŽ . Ž .U s 
U s1 2 ˆ ˆŽ . Ž . � Ž . Ž .U s 
U s �� �� U s 
U s ,1 2 1 2ˆ ˆ� Ž . Ž .sup U s� 
U s�s�� N 1 2

˜so U �U.1
The case where U is in the interior of UU* is completely analogous and so is omitted. Hence we1

are done if we can show the result for the case where both U and U are in the boundary of UU*. To1 2
Ž . Ž .handle this case, note that monotonicity already implies u U �u U , so if the result does not hold,1 2

Ž . Ž . Ž .we must have u U �u U . So suppose this is true. Fix any interior U and �� 0, 1 and define1 2
	 	 	Ž .U ��U � 1
� U, i�1, 2. Clearly, U �U implies U �U and both points are in the interior ofi i 1 2 1 2

31 Ž . Ž . Ž 	 . Ž 	 .UU*. By weak independence, u U �u U implies u U �u U . But the argument above applied1 2 1 2
	 	 Ž 	 . Ž 	 .to U and U shows that we must have u U �u U , a contradiction. Q.E.D.1 2 1 2

31 Ž Ž . ŽThe usual proof that the ‘‘strict form’’ of independence p�q implies � p� 1
� r��q� 1
. . Ž Ž . Ž . .
� r implies the same for indifference that is, p�q implies � p� 1
� r��q� 1
� r is

Ž .easily used to show this. Because U corresponds to a superset of U , �U � 1
� U will correspond1 2 1
Ž .to a superset of �U � 1
� U for any � and U. Hence one can use weak independence exactly the2

way independence is used in the usual proof.
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C.5. Proof of Theorem 4. A

We now assume that � satisfies independence and drop the assumption that it satisfies
monotonicity. Instead of continuing with the construction above, it is more convenient to demon-
strate additivity on all of S K before removing the ‘‘irrelevant’’ states.

We first state another useful property of support functions, the proof of which can be found in
the same references as given for the proof of Lemma 3.

Ž . Ž .LEMMA 8: For all x, x��X, d x, x� �d � , � .Hausdorff supnorm x x �

ŽNext we prove Proposition 2. We do so by verifying that the mixture space axioms see Kreps
Ž ..1988, page 52 hold for X. The only mixture space condition that is not trivial to verify is the
Herstein-Milnor continuity condition. We now show that our continuity condition implies that if

Ž . Ž . Ž .x, x�, x	 �X and x�x��x	, then there is a � � 0, 1 and � � 0, 1 such that � x� 1
� x	 �1 2 1 1
Ž . Ž . Ž . � x��� x� 1
� x	. To see this, let � x� 1
� x	 �x � . Then for any �, �� 0, 1 ,2 2

Ž Ž . Ž .. Ž .d x � , x � �d � 
�Hausdorff supnorm xŽ�. xŽ � .

� � Ž .� �
� d � 
�supnorm x x 	

where the first equality is Lemma 8, and the second follows from Lemma 4. Hence the function from
�  Ž .0, 1 to X with the Hausdorff topology defined by x � is continuous. Now the result follows from
continuity of � .

� ŽREMARK 1: The restriction to X is needed for the mixture space axioms because � ��x� 1

.  Ž . Ž .�� x� � 1
� x� might not equal ���x� 1
��� x� if x and x� are not convex.

So by the Herstein-Milnor theorem, there is an affine V that represents the preferences and is
unique up to an affine transformation. By this uniqueness and Lemma 1, V is continuous in the
Hausdorff topology, completing the proof of Proposition 2.

LEMMA 9: 1. C is con�ex.
Ž .2. The zero function is in C, in particular � s �0 for all s.�Ž1	 K , . . . , 1	 K .4

3. There exists c�0 such that the constant function equal to c is in C. That is, � c �C, where
cŽ .� s �c for all s.
4. The supremum of any two elements in C is in C : ��C and � ��C���� ��C, where

Ž .Ž . � Ž . Ž .4��� � s �max � s , � � s .

PROOF: 1. Given � and � in C, using Lemma 4 and the convexity of X, any convexx x �

combination of � and � is in C.x x �
K Ž . Ž .2. For any s�S , we have Ý s �0 so by definition � s �Ý 1	K s �0.i i �Ž1	 K , . . . , 1	 K .4 i i

Ž . � 4 Ž .3. First note that � s �max s �1	 2 K . The equality follows from the definition of the�ŽB . i i
K Ž � 4 Ž .support functions. The inequality follows from the definition of S . If max s �1	 2 K , theni i

� � � �Ý s �1	2. Then, since Ý s �0, also Ý s �1	2. But then, Ý s �1, which contra-�i� s � 04 i i i �i� s � 04 i i ii i
K . � Ž . K 4dicts the definition of S . Now consider x� ��Ý � b s �c for all s�S , where 0�c�i i i

Ž . K1	 2 K . Clearly x is a closed, convex, and nonempty subset of R . It is easy to see that we could
Ž K .have defined our mapping from X into C S to have as its domain all convex, closed nonempty

subsets of RK without affecting any of our lemmas on support functions. With this definition,
Ž .clearly, � is the constant function c. It remains to show that x�X. By part 2 of Lemma 3, sincex

Ž .� �� we know that x�� B , so x�X.x �ŽB .
4. Given � and � in C, it is easy to see that � �� �� is in C. Q.E.D.x x � conv Ž x � x �. x x �

Recall that V is unique up to affine transformations, so we can normalize V by setting
Ž� 4. Ž . Ž . Ž .cV 1	K , . . . , 1	K �0 and V x �c. Now let W : C�R be defined by W � �V x .� �
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Ž . Ž . Ž .LEMMA 10: 1. W is linear on C, i.e., W ���� � �W � ��W � � , if � , � �, and ���� � are all
in C.

2. W is continuous on C with respect to the sup norm topology.

Ž Ž . . Ž . Ž . Ž .PROOF: 1. That W satisfies affinity, i.e., W ��� 1
� � � ��W � � 1
� W � � follows
Ž . Žimmediately from Lemma 4. Our choice of normalization implies that W is linear: W �� �W ��

Ž . . Ž . Ž . Ž . Ž .� 1
� 0 ��W � � 1
� W 0 ��W � . Finally, then,

1 1
Ž . Ž . Ž .W ��� � �2W �� � � �W � �W � � .ž /2 2

ŽUsually we would not think of V as linear in this sense, since x�X�� x�X. But if we ‘‘define’’
� 4 Ž .� 41	K , . . . , 1	K as 0 and so define � x to be � x� 1
� 1	K , . . . , 1	K , then V is linear in this

.fashion as well.
2. This follows from continuity of V and Lemma 8. Q.E.D.

Ž K .In this part of the proof, we extend W to C S in a series of steps. First, we restrict W to
� Ž . 4C � ��C�� s �0 for all s . Note that all the properties of C described in Lemma 9 hold for�

C . Next, define rC to be the set of functions equal to r times some function in C and let� � �
H�� rC . Finally, letr � 0 �

� Ž K . 1 2 1 2 4H*�H
H� ��C S ���� 
� , for some � , � �H .

Ž .Now extend W to H* by linearity. Specifically, for any ��H, there is an r such that 1	r ��C ,�
Ž . ŽŽ . . 1 2 iso define W � � rW 1	r � . Similarly, for any ��H*, there are � and � such that � �H,

Ž . Ž 1. Ž 2 .for i�1, 2, so let W � �W � 
W � . That these definitions do not depend on the precise r
i Ž . Ž K .and � chosen follows from the linearity of W see Lemma 10 . To extend W to C S , we show

Ž K . Ž K .that H* is dense in C S , so we can extend W by continuity since all points in C S that are not
in H* are limits of points in H*.

Ž K .LEMMA 11: H* is dense in C S .

Ž ŽPROOF OF LEMMA: By the Stone-Weierstrass theorem see, e.g., Meyer-Nieberg 1991, Theorem
.. Ž K .2.1.1, page 51 , we only need to show that: 1. H* is a vector sublattice of C S ; 2. H* separates

the points of S K ; 3. H* contains the constant function 1 K.S

ŽStep 1: First note that H is a convex cone i.e., a convex set that is closed under positive scalar
. 32multiplication , since it equals � rC and C is convex and contains the zero function.r � 0 � �

Ž K .Lemma 9 implies that H contains the supremum of any two of its elements. Next, note that C S
Žis a vector lattice, i.e., an ordered vector space that is a lattice that is, contains the supremum and

Ž K .. 33infimum for any two elements of C S .

32 The details are as follows. If f�H, and t�R then clearly tf�H. If f �H, i�1, 2, then� i
� f � r g , g �C , i�1, 2; say r � r . So if �� 0, 1 theni i i i � 2 1

r r2 2Ž . Ž . Ž .� f � 1
� f ��r g � 1
� r g � r �g � 1
� g .1 2 1 1 1 2 1 1 2r r1 1

Ž .But the function in square brackets is in C because r 	r g �C . This last statement follows in� 2 1 2 �
Ž . Ž .turn because r 	r � 0, 1 , and C is a convex set that contains the zero.2 1 �

33 Ž .We defined the supremum, ��� �, in part 4 of Lemma 9; the infinimum, denoted ��� �, is
Ž K .defined similarly. For � , � ��C S , and for r�R, addition, ��� �, and scalar multiplication, r� ,

Ž K .are both defined in the usual way, under which C S is obviously a vector space. It is ordered in
the usual way and for that order it is an ordered vector space. Moreover, it also obviously contains
the sup and inf of any two of its elements.
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Now we show that since H*�H
H, where H is a convex cone that includes the supremum of
its elements, and H* is a subset of a vector lattice, we can conclude that H* is a vector sublattice.
That H* is an ordered vector space is trivial. That it includes the supremum of any two of its

Ž . Ž 	 	 . �Želements follows from the fact that H does. To see this, first note that � 
� � � 
� � �1 2 1 2 1
	 . Ž 	 . Ž 	 . Ž . Ž .�� � � �� 
 � �� , because � 
� ��� � ���� 
� for any ��H*. Using2 1 2 2 2 1 2 1 2 2

Ž . Ž 	 	 . 	 	 	this we prove that � 
� � � 
� �H*. The elements � �� , � �� , and � �� are all1 2 1 2 1 2 1 2 2 2
Ž 	 . Ž 	 .in H; therefore � �� � � �� �H since it is closed under taking supremums. Therefore1 2 1 2

Ž . Ž 	 	 .� 
� � � 
� �H* from the preceding argument and the definition of H*. Finally we1 2 1 2
prove that it includes the infimum of two of its elements. While H is not closed under taking
infimums, this follows for H*�H
H by taking negatives. Specifically,

Ž . Ž 	 	 . �Ž . Ž 	 	 .� 
� � � 
� �
 � 
� � � 
�1 2 1 2 2 1 2 1

�ŽŽ 	 . Ž 	 .. Ž 	 .�
 � �� � � �� 
 � ��1 2 1 2 2 2

Ž 	 . �Ž 	 . Ž 	 .� � �� 
 � �� � � �� .2 2 1 2 1 2

Now repeat the preceding argument. Q.E.D.

K Ž .Step 2: Let s, s��S , s�s�. Note first that for any x�X which contains 1	K , . . . , 1	K , one
Ž . Ž .has � �C . Now it is easy to construct a set with this property such that � s �� s� . Find anx � x x

B Ž . � Ž .4 Ž Ž .element ��R such that s, � �max 0, s�, � where s, � is the inner product�this can be
. idone, for instance, by appeal to the separation theorem , and Ý � �1. For � small enough,i� B

Ž .Ž . Ž . Ž .��� 1
� 1	K , . . . , 1	K �� � �� B , and if we let

� Ž . Ž .Ž . � 4x� �� � � 1
� 1	K , . . . , 1	K ��� 0, 1

Ž . Ž . Ž .then we have � s �� s, � �� s� as claimed. Q.E.D.x x

Step 3 follows from Lemma 9 and the definition of H. Q.E.D.

Ž . � � � �LEMMA 12: There exists a constant � such that for all f�H*, W f �� f where f is the
Ž K .supremum norm in C S .

PROOF OF LEMMA: By compactness of X and the continuity of V, we know that there are best
and worst sets in X. Let x denote a best set and y a worst set in X. By nontriviality, x�y. Let

Ž . Ž K .BB � denote the subset of C S within  of � . By continuity, there exists an �0 such that for y y
Ž . Ž . Ž .all f�H*�BB � , W f �W � . Because H* is closed under addition, this implies that for every y x

� � Ž . Ž . Ž . Ž . Ž . Ž . Ž .z�H* with z � , W z�� �W � . By linearity, W z �W � �W � or W z �W � 
y x y x x
Ž . � �W � . Equivalently, for all z�H* with z �1,y

Ž . Ž . Ž .W  z �W � 
W �x y

Ž . � Ž . Ž .or W z � W � 
W � 	�� . So for every f�H*,x y

f
Ž . � � � �W f � f W � f � . Q.E.D.ž /� �f

LEMMA 13: The functional W on H* has a unique extension to a continuous linear functional on
Ž K .C S .

Ž K .PROOF OF LEMMA: H* is a subspace of C S and W is a real linear functional on H*. Given
Žthe bound established by Lemma 12, we can apply the Hahn-Banach theorem see Theorem 4, page

Ž .. Ž K .187 of Royden 1968 to conclude W has an extension to a continuous linear functional on C S .
That this extension is unique follows from the fact that H* is dense in the supremum norm in
Ž K .C S , as shown in Lemma 11. Q.E.D.
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Ž Ž ..By the Riesz representation theorem see, e.g., Royden 1968 , every linear functional can be
represented as integration against a measure. Hence V can be so represented.

K Ž K .PROPOSITION 3: There is a measure � on the Borel subsets of S such that for all f�C S ,

Ž . Ž . Ž .W f � f s � ds .H
KS

Thus, letting S be the support of � on S K , we ha�e for all x�X,

Ž . Ž . Ž . Ž . Ž .V x � � s � ds � max U � , s � ds .H HxK ��xS S

This gives our additive EU representation. Q.E.D.

C.6. Proof of Theorems 1.C and 2

To show Theorem 1.C, recall that in the proof of Theorem 1.A, we showed that every closed
sufficient set contains the subjective state space we constructed, the set of strongly relevant ex post
preferences. Since the subjective state space for any weak EU representation must be sufficient, the
subjective state space we constructed is contained in the closure of the subjective state space of any
other weak EU representation. Because S K contains all possible EU preferences, it is convenient to
translate any alternative subjective state space to S K. So let S* denote the state space identified in
our construction and let S��S K be the set in S K corresponding to the subjective state space for any

Ž . Ž .other weak EU representation, so S*�cl S� . Suppose this containment is strict. Since cl S� �S* is
Ž Ž .open, there must be some s�S��S*. If not, there is an open set in cl S� that does not intersect

.S�, a contradiction. By the definition of S*, there is a neighborhood N of s such that for any
Ž . Ž . Kx, x��X with � s� �� s� for all s��S �N, we must have x�x�. Since any subset of N willx x �

also have this property, we can assume that N�S��S*. But then s is not relevant, contradicting its
inclusion in S�.

Given this, it is easy to prove Theorem 2. Starting with Part 3, for ex ante preference � , let S�
i i

be the set of s such that �� is strongly relevant for � . That is, it is the set of s such that for everys i
Ž . Ž .neighborhood N of s, there are menus x and x� such that x� x� and � s� �� s� for alli x x �

K Ž � .s��S �N. Let P �P S , U .i i i
Ž .The proof above of Theorem 1.C shows that P is the unique closure of the subjective statei

space for a weak EU representation of � . Hence what we need to show is that if � is morei 2
uncertain than � , then P �P , which is equivalent to showing S� �S�. So fix any s�S�. By1 1 2 1 2 1

Ž . Ž .definition, for every neighborhood N of s, there are menus x and x� with � s� �� s� for allx x �

s��S K �N with x� x�. Because x� x�, it must be true that either x�x�� x or x�x�� x�.1 1 1 1
Ž .Without loss of generality, suppose x� x�x�, so by Theorem 1.A and IR, conv x�x� � x�. Note1 1

that for all s��S K �N,

Ž . � Ž . Ž .4 Ž .� s� �max � s� , � s� �� s� .convŽ x � x �. x x � x

Ž .� is more uncertain than � implies that x� x�x�, so x� conv x�x� . By the above,2 1 2 2
Ž . Ž . K �� s� �� s� for all s��S �N. Since N is arbitrary, s�S .x conv Ž x � x �. 2

Ž .The proof of Theorem 2 Parts 1 and 2 is similar. Fix a representation S, U, u and let PP denote
the closure of its set of positive states. First, we claim that the set of ex post preferences
corresponding to S� must equal PP. As before, it is convenient to think of S and PP as subsets of�
S K. Recall that s�S� implies that for every open N, there are menus x and x� with x�x�, x��x,�

Ž . Ž . K Ž . Ž .and � s� �� s� for all s��S �N. Hence � s� �� s� for all s��S�N, implying s�PP.x x � x x �

Hence S��PP.�
Suppose this inclusion is strict. Then there is an s�PP�S� . Because S� is closed, there is a� �

neighborhood N of s such that N�PP�S� . By definition of PP, there must be x and x� with x�x�,�
Ž . Ž .x��x, and � s� �� s� for all s��S�N. By continuity of expected utility, then, the same is truex x �

Ž . �for all s��cl S �N. However, we know that S �S* and that S* must equal the closure of S, so�



SUBJECTIVE STATE SPACE 931

� Ž . Ž . �S �cl S �N. Hence we have x and x� with x�x�, x��x, and D x, x� �S ��, contradicting� �
Lemma 6. Hence PP�S� . The analogous argument shows that NN�S� .� 


So fix � and � , where � desires more flexibility than � , and any s�PP . The above1 2 2 1 1
Ž K .implies that for every neighborhood N of s in S , there are menus x and x� with x�x�, x�� x,1

Ž . Ž . Kand � s� �� s� for all s��S �N. Since � desires more flexibility, x�� x. Since this is truex x � 2 2
for every neighborhood N, we must have s�PP . Hence PP �PP . An analogous argument covers2 1 2
the negative states. Q.E.D.

C.7. Proof of Theorem 3, Parts B and C

Ž .This proof makes use of a proposition that is an adaptation and generalization of Kreps’ 1979
Theorem 2. This proposition, in turn, makes use of the following lemma. Given an ordinal

Ž . Ž . Ž . Ž .representation, R� S, U, u , let P �P S, U . For any preference �* over � B and any ��� B ,R
let

Ž . � Ž . 4LL � � ���� B ���*�� .� * �

Ž . Ž .That is, LL � is the weak lower contour set for �* at �. Let LL denote the collection of� * � *
these lower contour sets for �* and let

LL � LL .�R �*
�*�PR

� 4LEMMA 14: For any ordinal representation R of � and any x�LL , x�x� � for any ��x. Also,R
x is con�ex if � satisfies IR.

The proof is straightforward and so is omitted.

Ž .PROPOSITION 4: Let R � S , U , u , i�1, 2, denote ordinal representations of an ex ante preferencei i i i
� . Then for e�ery ex post preference in the state space of R and e�ery lower contour set x for that1
preference, x equals the intersection of some collection of lower contour sets in R . More precisely, for all2
�*�P , for all x�LL , there is an index set N, a nonrepeating sequence of states in representation 2,R � *1
� 4 � 4 �s �S , and a sequence of lower contour sets x such that x �LL andn n� N 2 n n� N n � sn

x� x .� n
n�N

PROOF OF PROPOSITION: Let x denote any element of LL . For each s�S , letR 21

Ž . Ž . Ž .x � ���� B U ��, s � sup U � , s .s 2 2½ 5
��x

Clearly, each x �LL . Lets R 2

x�� x .� s
s�S2

Clearly, x�x for all s�S , so x�x�. We now show that x�x�.s 2
The proof that x�x� is by contradiction, so suppose that x is a strict subset of x�. Let

� 4���x��x. Clearly, x�x� �� �x�. Because these are ordinal representations, � must satisfy
� 4monotonicity. Hence x�x� �� �x�. However, by the construction of x�, for every s�S ,2� �

ˆ ˆŽ . Ž .sup U � , s � sup U � , s ,2 2
ˆ ˆ��x � ��x

� 4so the fact that the aggregator is increasing implies x��x. Hence x�x� �� . But, by Lemma 14,
�

� 4x�LL implies x� �� �x, a contradiction. Hence x�x�. Q.E.D.R1
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We now prove Theorem 3.B and C.
Ž o o o.3.B: Fix an ordinal EU representation with finite subjective state space P. Let S , U , u be any

ordinal representation of the same ex ante preference and let P o be its subjective state space.
Clearly, the result holds if P o is infinite, so assume it is also finite.

Ž Ž .. o Ž Ž Ž .. Ž ..We construct a function f : P� int � B �P where int � B is the interior of � B . Fix any
Ž .Ž .�*�P and any �� int � B . Because � is interior and P is a collection of EU preferences,

Ž . Ž . � � Ž .� �LL � �LL � whenever � �� . Let x�LL � .� � 1 2 � *1 2

From the fact that all the preferences in P are expected-utility preferences, we see that x is a
half-space. By Proposition 4, x must be the intersection of some collection of lower contour sets in

Ž .oLL �� LL . One way this can happen is if x itself is in LL . If so, let f �*, � equal the2 � *� P � * 2
preference in P o that generates this lower contour set.

So suppose x�LL . Then there exists an index set N, a nonrepeating sequence of states s �So
2 n

for n�N, and lower contour sets x for ex post preference �� for n�N such thatn sn

Ž .x �LL � .� k � *
k�K

Without loss of generality, we can assume that if s and s� are distinct states in this sequence, then
�� ��� since effectively only the smaller lower contour set appears in the intersection. Hence Ns s�

must be smaller than the cardinality of P o and so is finite. Because � has an ordinal EU
representation, Theorem 1.A implies that it must satisfy IR. Hence Lemma 14 implies that each xn
must be convex. It is impossible for a finite intersection of convex sets to equal a half-plane unless

� o Ž . �one of the sets is the half-plane, so there is some � �P such that LL � �LL . As noted,o � * � o
Ž . �f �*, � is any such � .o

Ž . Ž Ž ..We claim that f �, � is one-to-one. To see this, recall that for any �� int � B , none of the
Ž .LL � sets is contained in any other. Hence there is no ex post preference relation, expected-util-� *

ity or otherwise, which has more than one of these as a lower contour set. Also, for every �*�P,
Ž . Ž . Ž � . Ž � . � � Ž .LL � is a lower contour set for f �*, � . Hence f � , � � f � , � iff � �� , so f �, � is� * 1 2 1 2

� o � � �one-to-one. Hence P � P .
o � o � � � o � o � � �We now show by contradiction that P �P or else P � P . So suppose P �P but that P � P .

Ž . Ž . Ž .Note that if f �*, � � f �* for every � , then �* has the same lower contour sets as f �* ,
�o 1 2Ž .implying �*� f �* . Hence P �P implies that there is some � �P and some � , � in the1

Ž . Ž � 1. Ž � 2 . � Ž � 1. � o � � �interior of � B such that f � , � � f � , � . Letting � � f � , � , the fact that P � P1 1 o 1
� � � Ž � 2 .implies that there must be some � �� such that � � f � , � . Furthermore, for every ��,2 1 o 2

Ž . �there must be some �*�P such that LL �� �LL . We now show that this cannot occur.� * � o

To see this, note that the ordinal EU representation has parallel indifference curves for each of
its ex post preferences so the indifference curve for ex post preference �� through � 1 has ao
different slope than the same preference’s indifference curve through � 2. Consider the line between
� 1 and � 2. For each point � on this line, the indifference curve through � for preference ��

o
must be the indifference curve through � for some preference �*�P. Since P is finite, the
indifference curve must have one of finitely many slopes. For any such � , then, there is a  �0�

such that for every �� that is a distance less than  away from � , the slope of the �� indifference� o
curve through � is the same as the slope of the �� indifference curve through �� to ensure thato
distinct indifference curves never intersect. Let d be the infimum of the distance from � 1 along this
line to a point �� where the slope of the �� indifference curve through �� differs from the slope ato
� 1. Since � 2 is such a point, d must be weakly less than the distance to � 2. By the argument above,
we see that d�0. Let �� be the point a distance d along the line from � 1. Suppose the slope of the
�� indifference curve through �� differs from the slope through � 1. Then moving an arbitrarilyo
small distance back toward � 1 must reach a point �	 where the slope of the indifference curve
through �	 differs from the slope through ��, a contradiction. So the slope at �� must be the same
as that through � 1. But then moving an arbitrarily small distance from �� toward � 2 must reach a
point �	 where the slope of the indifference curve through �	 differs from that through ��, again a
contradiction. Hence the slope through � 1 equals the slope through � 2, a contradiction.
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3.C: The proof of part B shows that if there is an ordinal representation with a finite subjective
state space, then the subjective state space for any ordinal EU representation must be of smaller
cardinality. Hence if there is no ordinal EU representation with a finite subjective state space, there
cannot be any ordinal representation with a finite subjective state space.

To show that an ordinal EU representation with a countable subjective state space must exist,
Ž .suppose S , U , u is an ordinal EU representation of � with uncountable subjective state space1 1 1

Ž .P . Let P denote a countable subset of P that is dense in cl P and let S denote the associated1 2 1 1 2
countable collection of states. Let U denote U restricted to S . Finally, define u on UU

� as follows.2 1 2 2 2
� � � Ž � . �Given U �UU , compute U U �UU by2 2 1 2 1

� Ž � .Ž . � Ž .U U s �U s if s�S1 2 2 2

and
� Ž � .Ž . � Ž 	 .U U s � lim U s1 2 2 n

n��

	 Ž �
	

� .for some sequence s �s where this refers to convergence of � to � . By the denseness of P ,n s s 2n
Ž � . Ž � Ž � ..such a sequence must exist. Then define u U �u U U . It is easy to see that for any set x,2 2 1 1 2

Ž � Ž .. Ž � Ž ..u u x �u U x , so this generates an ordinal EU representation of the same ex ante2 2 1 1
preference that has a countable state space. Q.E.D.

C.8. Proof of Theorem 4.B

Ž . Ž .Let S , U , u denote any weak EU representation of � and let S , U , u be the additive EU1 1 1 2 2 2
� Ž .representation that Theorem 4.A tells us must exist. By definition, for any U �UU* S , U ,2 2 2

Ž � . � Ž . Ž .u U � U s � ds .H2 2 2 2 2 2
S2

Ž .By Theorem 1.B see Definition 6 in Appendix B , this implies that, up to a monotone transforma-
tion, we have

Ž � . Ž � . Ž . � Ž . � Ž Ž .. Ž . Ž .u U � g U � ds � � s U � s �� s � dsH H1 1 1 2 2 2 1 2 2 2 2
S S2 2

� � Ž . Ž .for all U �UU . Dropping out H � s � ds constitutes another monotonic transformation, so up1 1 S 2 22

to a monotone transformation,

Ž � . � Ž Ž .. Ž .u U � U � s � dsˆH1 1 1 2 2 2
S2

Ž . Ž . Ž . Ž .where � ds �� s � ds . Now take the change of variables s �� s and let � be theˆ2 2 2 2 2 1 2 1
resulting measure. Then we obtain

Ž � . � Ž . Ž .u U � U s � ds ,H1 1 1 1 1 1
S1

completing the proof. Q.E.D.
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