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Chapter 1

Introduction

Problem 1

Consider an “afocal”arrangement where two lenses are separated by a distance f0 + f1

a) Calculate the ABCD transfer matrix between plane 0 located a distance s0 in front of
lens 0, and plane 1 located a distance s1 behind lens 1.
b) Calculate the ABCD transfer matrix when s0 = f0 and s1 = f1 ? This is called a 4f,

or telecentric, imaging system. What is the resultant magnification?
c) Calculate the ABCD transfer matrix when s0 = f0 and s1 = f1 + δz ? What happens

to magnification for a beam parallel to the optical axis?

Problem 2

Consider a 4f imaging arrangement of the type described in Problem 1. That is, two lenses
of focal lengths f0 and f1 are separated by distances f0 + f1. The object plane is located
a distance f0 in front of the lens 0. The corresponding image plane is located a distance
f1 behind lens 1. Consider a slight error such that lens 1 is displaced a distance ε from its
nominal 4f position (where ε� f0 < f1).
a) Derive the imaging transfer matrix for the case where the object plane remains at it’s

initial position? What is the magnification? Why is this magnification not well defined?
b) Where should the imaging plane be for the magnification to be well defined?

Problem 3

Consider a 4f imaging arrangement of the type described in Problem 1. That is, two lenses
of focal lengths f0 and f1 are separated by distances f0 + f1. The object plane is located a
distance f0 in front of the lens 0. The corresponding image plane is located a distance f1

behind lens 1. Insert an intermediate lens of focal length f a distance f0 behind lens f0.
a) Where is the new image plane?
b) What is the magnification at this new image plane?
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CHAPTER 1. INTRODUCTION 4

Problem 4

Consider two single-lens imaging systems with lenses f0 and f1 and magnificationsM0 andM1

respectively. Place these two imaging systems in tandem (i.e. 3 conjugate planes).
a) Calculate the ABCD transfer matrix from the first conjugate plane to the last conju-

gate plane. What is the net magnification? Is the imaging perfect (i.e. telecentric)?
b) Now place a lens f exactly at the middle conjugate plane (this is called a field lens).

Re-calculate the above ABCD matrix. Has the net magnification changed?
c) At what value of f is there no cross-talk between ray position and angle?
d) A field lens is also useful for increasing the field of view. That is, given that lenses

have finite diameters, a field lens can allow the imaging of bigger objects. Can you explain
why (qualitatively)?

Problem 5

In the thin lens formula, distances s0 and s1 are measured relative to the lens. Consider
instead measuring distances relative to the lens front and back focal planes. That is, write
z0 = s0− f , and z1 = s1− f . Show that the thin lens formula can be expressed equivalently
by the so-called Newtonian lens formula z0z1 = f 2.
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Chapter 2

Monochromatic wave propagation

Problem 1

a) Derive Eq. 2.24 from Eqs. 2.13 and 2.23.
b) Derive Eq. 2.25 from Eqs. 2.14 and 2.23.

Problem 2

A paraxial wave propagating in the z direction may be written as

E(~r) = A(~r)ei2πκz

where the envelope function A(~r) is slowly varying. The conditions for A(~r) to be slowly
varying are

λ
∂A(~r)

∂z
� A(~r)

λ
∂2A(~r)

∂z2
� ∂A(~r)

∂z
.

a) Show that in free space (no sources), the envelope function of a paraxial wave satisfies
a simplified version of the Helmholtz equation given by(

∇2
⊥ + i4πκ

∂

∂z

)
A(~r) = 0.

This equation is called the paraxial Helmholtz equation.
b) The Fresnel free-space propagator may be written as a paraxial wave, such that

H(~ρ, z) = HA(~ρ, z)ei2πκz

where HA(~ρ, z) = −iκ
z
eiπ

κ
z
ρ2 is the associated envelope function. Show that HA(~ρ, z) satisfies

the paraxial Helmholtz equation.
c) The radiant field associated with a paraxial wave may be written as
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CHAPTER 2. MONOCHROMATIC WAVE PROPAGATION 6

0w

0z = 0z

n1

E(~κ⊥; z) = A(~κ⊥; z)ei2πκz.

Show that A(~κ⊥; z) satisfies a mixed-representation version of the paraxial Helmholtz
equation given by (

πκ2
⊥ − iκ

∂

∂z

)
A(~κ⊥; z) = 0. (2.1)

d) Finally, show that a field that satisfies the Fresnel diffraction integral also satisfies
the paraxial Helmholtz equation (hint: this is much easier to demonstrate in the frequency
domain).

Problem 3

Let A(~r) be the envelope function of a paraxial wave, as defined in Problem 1. That is, A(~r)
satisfies the paraxial Helmholtz equation. In general, A(~r) is complex and can be written as

A(~r) =
√
I(~r)eiφ(~r)

where I(~r) is the wave intensity and φ(~r) is a phase, both real-valued.
Show that I(~r) and φ(~r) satisfy the equation

2πκ
∂I(~r)

∂z
= −~∇⊥ · I(~r) ~∇⊥φ(~r).

This is called the transport of intensity equation.

Problem 4

When a field is focused into a glass slab, the refraction at the slab interface produces aber-
rations in the field that cause the focus to distort. These aberrations are commonly char-
acterized by their effect on the phase of the radiant field. Specifically, consider focusing a
Gaussian field into a glass slab of index of refraction n, where the slab interface is located
at z = 0 (see figure). When no slab is present (n = 1), the Gaussian field produces a focus
of beam waist w0 (see Eq. 2.59) at a distance z0. When the slab is present, the focus is both
distorted and axially displaced.
a) Start by calculating the radiant field incident on the slab interface at z = 0, bearing

in mind that, by symmetry, transverse momentum ~κ⊥ must be conserved. That is, ~κ⊥ must

c©Jerome Mertz/Cambridge University Press, all rights reserved. Please do not re-transmit, print,
or photocopy the materials for re-distribution in any medium without written permission.



CHAPTER 2. MONOCHROMATIC WAVE PROPAGATION 7

be the same on both sides of the interface. (Hint: use the Rayleigh-Sommerfeld transfer
function).
b) Next, calculate the radiant field inside the slab. You should find that the phase of the

radiant field is given by

φ (~κ⊥; z) = 2π

(
z
√
n2κ2 − κ2

⊥ − z0

√
κ2 − κ2

⊥

)
.

c) While there are different ways to define the location of the new beam focus, one way
is where φ (~κ⊥; z) is as flat as possible about ~κ⊥ = 0. Find the axial displacement of the new
focus. (Hint: expand φ (~κ⊥; z) in orders of κ⊥/κ).

Problem 5

Consider two point sources located on the x0 axis at x0 = d
2
and x0 = −d

2
. Use the Fres-

nel and Fraunhofer diffraction integrals to calculate the resultant fields EFresnel(x, 0, z) and
EFraunhofer(x, 0, z) obtained after propagation a large distance z. Derive the corresponding
intensities IFresnel(x, 0, z) and IFraunhofer(x, 0, z) (note: these are observed to form fringes).
a) Derive the fringe envelope functions of IFresnel(x, 0, z) and IFraunhofer(x, 0, z). In partic-

ular, what is the ratio of these envelope functions at the location x = z ?
b) Derive the fringe periods of IFresnel(x, 0, z) and IFraunhofer(x, 0, z). In particular, what

is the ratio of these periods at the location x = z ? (note: the periods may vary locally)
c) Which approximation, Fresnel or Fraunhofer, is better off axis?
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Chapter 3

Monochromatic field propagation
through lens

Problem 1

Consider a 4f imaging system of unit magnification (i.e. both lenses of focal length f), with
an unobstructed circular aperture of radius a.
a) Derive H(ρ) in the case where an obstructing disk of radius b < a is inserted into the

aperture.
b) Derive H(ρ) in the case where the disk is transmitting but produces a phase shift of

90◦.
c) Derive H(ρ) in the case where the disk is transmitting but produces a phase shift of

180◦.
d) Consider imaging an on-axis point source of light with either of the above systems.

Compared to the unobstructed aperture system, is it possible to obtain an increase in the
image intensity on axis? If so, under what conditions? Is it possible to obtain a null in the
image intensity on axis? If so, under what conditions?

Problem 2

Consider inserting a thin wedge into an otherwise unobstructed circular pupil of radius a of
a 4f imaging system (both lenses of focal length f). The wedge induces a phase shift that
varies linearly from 0 at the far left to 2φ at the far right of the aperture. Derive H for this
imaging system. (Hint: use the Fourier shift theorem).

Problem 3

Consider imparting a spiral phase onto an otherwise azimuthally symmetric pupil. That is,
if the pupil coordinates are ~ξ = (ξ cosϕ, ξ sinϕ), then the pupil function is given by P

(
~ξ
)

=

P (ξ) eimϕ, where m is a positive integer. Assume unit-magnification 4f imaging, with lenses
of focal length f . Derive a general expression for the amplitude point spread function H (~ρ)
associated with this spiral-phase pupil. (Hint: make use of the Fourier transform properties
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CHAPTER 3. MONOCHROMATIC FIELD PROPAGATION THROUGH LENS 10

of separable functions in cylindrical coordinates found in Appendix A. Your result should be
in the form of a simple integral containing Jm.)

Problem 4

Derive Eqs. 3.16 and 3.17 from Eq. 3.6.

Problem 5

a) Show that if P (~ξ) is binary (i.e. P (~ξ) = 0 or 1), then∫
d2~ρcH(~ρc + 1

2
~ρd)H

∗(~ρc − 1
2
~ρd) = H(~ρd).

b) What is the implication of the above relation? In particular, what does it say about
the imaging properties of two identical, unit-magnification, binary aperture imaging systems
arranged in series?
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Chapter 4

Intensity propagation

Problem 1

Derive the variable change identity given by Eq. 4.6. (Hint: use a Jacobian).

Problem 2

For a circular pupil imaging system, an alternative definition of resolution is given by what is
known as the Rayleigh criterion. This criterion states that two point objects are resolvable if
they are separated by a minimum distance δρRayleigh such that the maximum of the PSF(ρ)
of one point lies at the first zero of the PSF(ρ) of the other point. That is, δρRayleigh is
defined as the minimum distance such that PSF(δρRayleigh) = 0.
a) Derive δρRayleigh in terms of λ and NA (you will have to do this numerically).
b) Consider a circular pupil imaging system where the pupil is partially obstructed by a

circular opaque disk (centered) whose radius is η times smaller than the pupil radius (η < 1).
Derive the PSF for this annular pupil system. What is the ratio PSFannular(0)/PSFcircular(0)?
c) Provide a numerical plot of PSFannular(∆κ⊥ρ) and PSFcircular(∆κ⊥ρ) for η = 0.9 (nor-

malize both plots to unit maximum). What does the Rayleigh resolution criterion say about
the resolution of the annular pupil system compared to that of the circular pupil system?
Would you say the annular system has better or worse resolution?

Problem 3

The 3D coherence function of Köhler illumination is given by Eq. 4.63. Sketch the range
of 3D spatial frequencies {~κ⊥, κs} spanned by this coherence function. This is called the
frequency support associated with Köhler illumination.

Problem 4

Consider the specific example where the intensity distribution of the incoherent source is
given by

I0(~ρ0) = 1
2
I0 (1 + cos(2πρ2

0/a
2))

11



CHAPTER 4. INTENSITY PROPAGATION 12

{ }1 1, zρr

{ }1 1, zρ′ ′r

0 0( )I ρ
r

0 0( )I ρ
r

( )0 0I ρ
r

( )1 1I ρ
r

0s 1s

as illustrated in the figure.
a) You will find that µ1(~ρ1d, z1d) (Eq. 4.63) is peaked when {ρ1d, |z1d|} → {0, 0}, as

expected; but it is also peaked for another value of {ρ1d, |z1d|}. What is this value?
b) Draw a sketch for what happens to the coherence peaks when the pattern in I (~ρ0) is

shifted upward.

Problem 5

Consider a pinhole camera, as shown in the figure. A 2D incoherent intensity distribution
I0 (~ρ0) is projected through a pinhole of pupil function P

(
~ξ
)
and creates an image I1 (~ρ1).

The object and image planes are distances s0 and s1, respectively, from the pinhole plane.
Show that, under the Fresnel approximation,

I1

(
1

M
~κ⊥

)
=

1

s2
0

I0 (~κ⊥)

∫
d2~ξc P

(
~ξc +

s0

2κ
~κ⊥

)
P ∗
(
~ξc −

s0

2κ
~κ⊥

)
ei2π(1−1/M)~ξc·~κ⊥

with magnificationM = − s1
s0
. Note that the OTF here is not simply the pupil autocorrelation

function, as it is for a 4f system. (Hint: one can proceed by making use of Eq. 2.50 to
propagate E0 (~ρ0) to E1 (~ρ1), and then calculate I1 (~ρ1). The replacement 〈E0 (~ρ0)E∗0 (~ρ′0)〉 →
κ−2I0 (~ρ0) δ2 (~ρ0 − ~ρ′0) from Eq. 4.43 then leads to the above result).
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Chapter 5

3D Imaging

Problem 1

a) Derive Eq. 5.24.
b) What is the implication of the above relation? In particular, what does it say about

the imaging properties of two identical, unit-magnification, binary-aperture imaging systems
arranged in series?

Problem 2

Consider a unit-magnification 4f imaging system (all lenses of focal length f) with a square
aperture defined by

P (ξx, ξy) =

{
1 |ξx| < a and |ξy| < a
0 elsewhere.

Based on the Fresnel approximation, derive analytically:
a) H+(κx, 0; 0) and H+(0, 0; z)
b) H+(x, 0, 0) and H+(0, 0, z)
c) PSF(x, 0, 0) and PSF(0, 0, z)
d) OTF(κx, 0; 0) and OTF(0, 0; z).
Note, it will be convenient to define a spatial bandwidth ∆κ⊥ = 2κ a

f
.

Note also, H+ and OTF are in mixed representations. You will run into special functions
such as sinc(...) and erf(...). As such, this problem is best solved with the aid of integral
tables or symbolic computing software such as Mathematica. Be careful with units and
prefactors. For example, make sure the limits x→ 0 and z → 0 converge to the same values!

Problem 3

Consider a unit-magnification 4f imaging system (of spatial frequency bandwidth ∆κ⊥) with
a circular aperture. A planar object at a defocus position zs emits a periodic, incoherent
intensity distribution (per unit depth) given by

I0z(x0, y0, z0) = I0 (1 + cos (2πqxx0)) δ(z0 − zs)

13



CHAPTER 5. 3D IMAGING 14

where I0 is a constant.
a) Based on Eq. 5.42, derive an expression for the imaged intensity distribution. This

expression should look like

I1(x1, y1) ∝ (1 +M(qx, zs) cos (2πqxx1)) .

In other words, the imaged intensity is also periodic, but with a modulation contrast
given by M(qx, zs). What is M(qx, zs)?
b) In the specific case where qx = 1

2
∆κ⊥, what is the modulation contrast when the

object is in focus? At what defocus value does the modulation contrast fade to zero (express
your result in terms of λ, n and NA)? What happens to the modulation contrast just beyond
this defocus? (Hint: use the Stokseth approximation).

Problem 4

a) Verify that the second moment of an arbitrary function F (~ρ) is given by∫
d2~ρ ρ2F (~ρ) = − 1

4π2
∇2F (0)

where F (~κ⊥)is the 2D Fourier transform of F (~ρ).
b) For a cylindrically symmetric imaging system whose OTF has a cusp at the origin,

what does the above result tell you about the dependence of PSF on |~ρ| for large |~ρ|? Verify
this dependence for the case of an unobstructed circular pupil.

Problem 5

a) Derive Eq. 5.8 from 5.7.
b) Use this to re-express the amplitude point spread function H+ (0, z) for a Gaussian

pupil (Eq. 5.23) in a similar form as Eq. 5.21 for a circular pupil. For equal ∆κ⊥, which has
the more rapidly varying carrier frequency? Which has the first zero-crossing?

c©Jerome Mertz/Cambridge University Press, all rights reserved. Please do not re-transmit, print,
or photocopy the materials for re-distribution in any medium without written permission.



Chapter 6

Radiometry

Problem 1

a) Derive Eq. 6.11 (i.e. I∞ (~r) =
(

1
r

)2R0

(
κ
r
~ρ
)
) using the Fraunhofer approximation given

by Eq. 2.62.
b) Verify Eq. 6.16, using the paraxial approximation.

Problem 2

Assume that light emanating from an intensity distribution I (~ρ0, 0) obeys a paraxial angular
distribution χ (θ) everywhere (see figure). Based on purely geometrical arguments, one may
write the convolutions

I (~ρ, z) =
1

z2

∫
d2~ρ0 χ (|~ρ− ~ρ0| /z) I (~ρ0, 0)

~Θ⊥ (~ρ, z) =
1

z3I (~ρ, z)

∫
d2~ρ0 (~ρ− ~ρ0)χ (|~ρ− ~ρ0| /z) I (~ρ0, 0) .

Show that I (~ρ, z) and ~Θ⊥ (~ρ, z) constructed in this manner obey the transport of intensity
equation (Eq. 6.21).

( )χ θ

( ),I zρ
r

( )0 ,0I ρ
r

θ

z
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CHAPTER 6. RADIOMETRY 16

Plane a Plane b

lampA
z f

Output
plane

Input
plane

Lamp

objA objA

Objective

f

f

Problem 3

Consider the single-lens imaging system of arbitrary magnification M (see figure), which
obeys the thin-lens formula. Assume the lens is large and A0 ≈ A1.
a) Calculate the throughput of this system using the recipe outlined in Section 6.5.1,

treating plane a as the output plane. Identify the aperture and field stops.
b) Now do the same, but this time treating plane b as the output plane. Are the aperture

and field stops the same?
Note: you should find that the throughput is independent of which plane a or b is treated

as the output plane.

Problem 4

A lamp in a housing emits incoherent light through an aperture of area Alamp (see figure).
The emitted light power is Φlamp. This light illuminates an objective comprising a lens and
an aperture at the back focal plane, both of area Aobj (assume Aobj . Alamp). The lens has
focal length fobj. A variable distance z separates the lamp and the objective.
a) In the case where the lamp touches the objective (i.e. z = 0), estimate the number

of modes (coherence areas) that enter the objective at the input plane. What is maximum
power of the beam at the output plane (i.e. the objective “front”focal plane)? What is the
coherence area of the beam at the output plane? Estimate the beam spot size (total beam
area) at the output plane.
b) In the case where the lamp separated a large distance z from the objective, estimate
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CHAPTER 6. RADIOMETRY 17

the number of modes that enter the objective at the input plane. What is the maximum
power of the beam at the output plane? What is the coherence area of the beam at the
output plane? Estimate the beam spot size at the output plane.
c) At what value of z does the beam at the output plane become a diffraction-limited

spot (i.e. single mode)? At this value, what is the number of modes that enter the objective
at the input plane?
Note: perform rough estimates only —that is, angular spreads of 2π steradians can be

approximated as angular spreads of 1 steradian.

Problem 5

Consider a more general Gaussian-Schell beam whose mutual intensity is given by

J0(~ρ0c, ~ρ0d) =
(
I0e
−2ρ20c/w

2
c

)(
e−ρ

2
0d/2w

2
d

)
.

(Note: this differs from the single-mode Gaussian beam described by Eq. 6.34 in that
wc > wd).
a) Calculate the number of modes in this beam.
b) Calculate the area and coherence area of this beam upon propagation a large distance

z. Show explicitly that the number of modes is conserved.
c) Consider using a lens of numerical aperture NAi to focus this beam. If the beam just

fills the lens (roughly speaking), estimate the size the the resultant focal spot.
d) If instead the beam overfills the lens such that only 1% of the beam power is focused,

estimate the size of the resultant focal spot.
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Chapter 7

Intensity fluctuations

Problem 1

Non-monochromatic fields can be described by explicitly taking into account their time
dependence. It can be shown that when the time dependence of a field is made explicit, the
radiative Rayleigh-Sommerfeld diffraction integral (Eq. 2.45 and 2.47) can be re-written in
the form

E(~ρ, z, t) = −iκ̄
∫

d2~ρ0
cos θ

r
E(~ρ0, 0, t− r/c)

which is valid for narrowband fields whose wavenumber is centered around κ̄ (assuming
propagation in vacuum). This expression can be simplified using the Fresnel approximation
(Section 2.4.1). Based on this expression, evaluate the intensity distribution I(~ρ, z) a distance
z from two pinholes irradiated by a beam I0(~ρ0, 0) that is partially coherent both in space
and time. In particular, assume that the irradiating beam is both quasi-homogeneous and
quasi-stationary, with a separable mutual coherence function given by

Γ(~ρ, ~ρ ′; t, t+ τ) = 〈I0〉µ(ρd)γ(τ)

where ρd = |~ρ− ~ρ ′|, and µ(ρd) and γ(τ) are Gaussian. That is, we have

µ(ρd) = e−ρ
2
d/2ρ

2
µ

γ(τ) = e−i2πν̄τe−πτ
2/2τ2γ

where ν̄ = κ̄c.
The pinholes are separated by a distance a along the x direction (see figure).
a) Consider only the x direction and derive an expression for I(x, z). Your expression

should look something like

I(x, z) ∝ 1

z2
〈I0〉 (1 +M(x) cos 2πx/p)

representing a fringe pattern of modulation M(x) and period p.
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CHAPTER 7. INTENSITY FLUCTUATIONS 20

0 0( , 0)I ρ
r

( , )I zρ
r

z

a

b)What is the maximum modulation strengthM(x)max? What happens to this strength
as ρµ or τγ tends toward infinity? Does this strength depend on z?
c) What is the period p of the fringes? Express your answer in terms of λ0 and θ = a

z
,

corresponding to the angle subtended by the pinholes.
d)How far do the fringes extend in x? Specifically, at what value x1/e does the modulation

strength decrease by a factor of 1/e relative to its maximum? Express your answer in terms
of θ and the coherence length lγ = τγc. Does x1/e depend on ρµ?

Problem 2

Consider a light beam that randomly switches between two states of intensities IA and IB.
Let PA (t) and PB (t) be the probabilities that the beam is in states A or B respectively,
such that

d

dt
PA (t) = −λPA (t) + µPB (t)

where λ and µ are switching rate constants. Such a beam is called a random telegraph wave.
a) Show that the mean intensity of the beam is given by

〈I〉 =
µIA + λIB
µ+ λ

.

b) Show that the intensity variance of the beam is given by

σ2
I =

µλ (IA − IB)2

(µ+ λ)2 .

Problem 3

A technique of laser speckle contrast analysis can be used to assess blood flow within tissue.
In this technique, laser light is back-scattered from tissue, and a camera is used to record the
resultant speckle pattern (assumed to obey circular Gaussian field statistics). Any motion
in the tissue causes the speckle pattern to fluctuate in time. By measuring the contrast of
these fluctuations as a function of the camera exposure time T one can deduce a temporal
coherence time τγ. The local blood flow velocity can then be inferred from τγ, provided one
is equipped with a theoretical model relating the two.
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CHAPTER 7. INTENSITY FLUCTUATIONS 21

a) The coherence function of light scattered from randomly flowing particles is often
assumed to obey the statistics of a phase-interrupted source (see Eq. 7.11). Derive the
expected contrast of the measured speckle fluctuations as a function of τγ and T .
b) Verify that when τγ � T the contrast obeys the relation given by Eq. 7.50.

Problem 4

Consider the intensity distribution I(~ρ) at the image plane of a unit-magnification imaging
system whose point spread function is written PSF(~ρ). This intensity distribution is detected
by a camera, which consists of a 2D array of detectors (pixels), each of area A = L× L. As
a result, I(~ρ) becomes integrated upon detection, and then sampled. The detected power,
prior to sampling, can thus be written as

ΦA(~ρ) = A

∫
d2~ρ ′RA(~ρ− ~ρ ′)I(~ρ ′).

a) Provide expressions for RA(~ρ) and its Fourier transform RA(~κ⊥).
b) Let the intensity distribution at the object plane I0(~ρ0) be a “fully developed”speckle

pattern produced by incoherent light. It can be shown (e.g. see Eq. 4.62) that the coherence
function of a such a speckle pattern is given by

|µ0(~ρ0d)|2 =
PSFs(~ρ0d)

PSFs(0)

where PSFs is the point spread function associated with the speckle generation (not neces-
sarily the same as PSF).
Express the spatial contrast of the imaged speckle pattern recorded by the camera in

terms of RA(~κ⊥), OTF(~κ⊥) and OTFs(~κ⊥).
c) What happens to the above contrast as the size of the camera pixels becomes much

larger than the spans of both PSF(~ρ) and PSFs(~ρ)?

Problem 5

Derive Eqs. 7.35 and 7.36 from Fig. 7.10.
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Chapter 8

Detector Noise

Problem 1

For photoelectron arrival times governed by Poissonian statistics, it can be shown that the
wait time τ between successive photoelectrons is governed by the probability distribution
(see Eq. 7.10):

p (τ) =
1

τ̄
e−τ/τ̄

where τ̄ is the average wait time. It can also be shown that, starting at an arbitrary time,
the wait time for the next photoelectron is given by the same probability distribution with
the same τ̄ . The same is true for the “wait time”(going backward in time) for the previous
photoelectron. But from these last two statements, it appears that the average wait time
between successive photoelectrons should be 2τ̄ and not τ̄ . How can one reconcile all these
statements? This is a classic problem in probability theory. (Hint: the arbitrary start time
is more likely to fall within photoelectron intervals that are large.)

Problem 2

a) Show that if the instantaneous power Φ of a light beam obeys a negative-exponential prob-
ability density, then, upon detection, the number of photoelectron conversions per detector
integration time T obeys a probability distribution given by

PK(K) =
1

1 + 〈K〉

(
〈K〉

1 + 〈K〉

)K
where 〈K〉 = η

hν
〈Φ〉T .

This is called a Bose-Einstein probability distribution (in probability theory it is called
a geometric distribution).
b) Based on the above result, verify that the variance in the detected number of photo-

electron conversions is

σ2
K = 〈K〉+ 〈K〉2 .
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Note: for part (b), you will find the following identity to be useful:

∞∑
k=0

knγk =


1

1−γ (n = 0)

γn(n+1)!

(1−γ)n+1

n−1∑
m=0

m+1∑
j=0

(−1)j (m−j+1)n

j!(n−j+1)!
γ−m (n ≥ 1)

Problem 3

Derive Eq. 8.26 from Eq. 8.23.

Problem 4

Consider a detector voltage measured through an impedance R = 105 Ω (this is a typical
value). Assume that the detector is at room temperature, but that dark current is negligible.
The charge of a single electron is 1.6× 10−19C.
a) Let’s say a single photoelectron is generated at the detector cathode (i.e. input). What

is the minimum detector bandwidth B required for the measurement of this photoelectron
to be shot-noise limited?
b) The bandwidth derived above is found to be unrealistic. In fact, the detector band-

width is known to be 10 MHz (also a typical value). What is the minimum current preampli-
ficationM required for the measurement of the single photoelectron to be shot-noise limited?
(assuming this preamplification to be noiseless).

Problem 5

Consider a camera with a 12-bit dynamic range and a pixel well capacity of 10,000e−. Assume
that the camera gain G is properly set to accommodate these ranges. The camera amplifier
produces a readout noise of 10e− (i.e. σr = 10; note that the readout noise is in units of
number of electrons as opposed to electron charge). Assume the illumination light is stable
(i.e. exhibits no classical fluctuations). Dark noise and Johnson noise are negligible.
a) What is the minimum average readout value 〈N〉 for the measured signal to be shot-

noise limited?
b) This is not good enough. Let us say we want to measure a signal as low as 〈N〉 = 1. To

do this, we will incorporate an electron multiplication stage in our camera. What electron
multiplication gain M is required to guarantee that the measurement will be shot-noise
limited even at this low signal? (consider the electron multiplication stage to be noiseless).
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Chapter 9

Absorption and scattering

Problem 1

We have seen that when a plane wave is sent through a thin transmitting sample, the
scattered field far from the sample (Eqs. 9.7 or 9.16) is not quite a perfect Fourier transform
of the sample transmittance function (absorption or phase). The problem is that there
remains a residual, spatially-dependent phase prefactor eiπ

κ
z
ρ2 in the scattered field.

Show that by using point-source illumination and a single lens, this residual phase pref-
actor can be eliminated for a particular sample location zs (see figure). That is, the field
at the image plane of the source is given by the perfect Fourier transform of the sample
transmission function t(~ρs). What is this sample location zs and what is the resulting field
at the image plane? Use the Fresnel approximation and assume that s0 and s1 obey the
thin-lens formula.

Note: There are several ways to solve this problem. Use the fact that a forward projection
of the field from the sample plane to the image plane is equivalent to a backward projection
of this field to the source plane (without the sample), followed by a forward projection to
the image plane. This last projection is given by Eq. 3.17.

Plane 1Plane 0
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Problem 2

Show that if a sample δn is so weak that multiple scattering can be neglected, and the
fields are mostly forward directed (i.e. paraxial), then the beam propagation method yields
identical results as the Born approximation.

Problem 3

Consider illuminating a sample with a plane wave directed along ẑ, and recording the re-
sultant scattered far field in the transmission direction within a cone of angle θmax. Based
on the information provided by this scattered far field, how well can a sample δε be axially
resolved if the sample is
a) a thin, uniform plane?
b) a point?
Use the Fourier diffraction theorem and provide an estimate as a function of θmax.

Problem 4

A wave traveling through a slowly spatially varying index of refraction n (~r) can be written
as

E (~r) = A (~r) ei2πκ̄W (~r)

where κ̄ is the average wavenumber associated with n̄. This expression is similar to the Rytov
approximation except that A (~r) does not represent the incident field, but rather represents
a slowly varying amplitude (real). Surfaces of constant W (~r) are called wavefronts of the
field.
Show that when the above expression is inserted into the Helmholtz equation (Eq. 9.20),

and in the geometric-optics limit where the light wavelength λ̄ becomes vanishingly small,
one arrives at the so-called Eikonal equation:∣∣∣~∇W (~r)

∣∣∣2 = |n (~r)|2 .

This equation serves to define ~∇W (~r), which can be interpreted as a light ray direction
in geometrical optics.

Problem 5

Derive Eqs. 9.71 and 9.73.
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Chapter 10

Widefield microscopy

Problem 1

Consider a thin sample that induces both phase shifts ϕ(~ρ0) and attenuation α(~ρ0). The local
sample transmittance can then be written as t(~ρ0) = eiφ(~ρ0), where φ(~ρ0) = ϕ(~ρ0) + iα(~ρ0)
is a generalized complex phase function (ϕ(~ρ0) and α(~ρ0) are real). Show that this complex
phase function can be effectively imaged with a modified Zernike phase microscope.
Specifically, consider a Zernike phase contrast microscope whose pupil function can be

controlled so that

P (ξ) =


eiψ ξ ≤ ε
1 ε < ξ ≤ a
0 ξ > a

where ψ is an adjustable phase shift that is user-defined (assume ε� a).
The sample is illuminated with an on-axis plane wave of amplitude Ei. The resultant

intensity recorded at the image plane, for a given ψ, is written as I(ψ)(~ρ).
a) Show that by acquiring a sequence of four images with ψ =

{
0, π

2
, π, 3π

2

}
, and by

processing these four images using the algorithm

Ĩ(~ρ) = 1
4

[(
I(0)(~ρ)− I(π)(~ρ)

)
+ i
(
I(π/2)(~ρ)− I(3π/2)(~ρ)

)]
we obtain

Ĩ(~ρ) = iIi

∫
d2~ρ0 H(~ρ− ~ρ0)φ(~ρ0)

where Ii = |Ei|2.
That is, the constructed complex “intensity” Ĩ(~ρ) is effectively an image of the complex

phase function of the sample, from which we can infer both ϕ(~ρ0) and α(~ρ0). The imaging
response function is given by the microscope amplitude point spread function. Use the weak
phase approximation and assume unit magnification.
b) Derive a similar algorithm that achieves the same result but with a sequence of only

three images.
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Problem 2

Consider a modified Schlieren microscope where the knife edge, instead of blocking light,
produces a π phase shift. Compare this modified Schlieren microscope with the standard
Schlieren microscope described in Section 10.1.3 (all other imaging conditions being equal).
a)Which microscope is more sensitive to samples that are purely phase shifting? (Assume

weak phase shifts.)
b) Which microscope is more sensitive to samples that are purely absorbing? (Assume

weak attenuation.)

Problem 3

a) Derive Eq. 10.30 from Eqs. 10.28 and 10.29.
b) Rewrite Eq. 10.30 in terms of local tilt angles Θi (~ρ0c) and Θ0 (~ρ0c) going into and

out of the sample (see Eq. 6.20 for definition of tilt angles). Express ~∇φ (~ρ0c) in terms of
∆Θ (~ρ0c) = Θ0 (~ρ0c)−Θi (~ρ0c).

Problem 4

Write Eq. 10.31 in terms of fields rather than radiant fields, and use this to derive Eq. 10.40
more directly (at least, for thin samples that are in focus).

Problem 5

In DIC microscopy, a bias is used to adjust the relative phase between the cross-polarized
fields. Such a bias can be obtained by introducing a quarter wave plate (QWP) between the
Nomarski prism and the polarizer in the DIC detection optics. When the fast axis of the
QWP is set to 45◦ from vertical (or horizontal), then the bias phase ∆θ can be adjusted by
rotating the polarizer angle φ. The Jones matrix for a QWP whose fast axis is aligned in
the vertical direction is given by

M(0◦)
QWP = eiπ/4

(
1 0
0 −i

)
.

Show that the relation between ∆θ and φ is given by ∆θ = 2φ+ π
2
.
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Chapter 11

Interference microscopy

Problem 1

Equations 11.23 and 11.27 are idealized in that they consider the integration over ~ρ to be
infinite. In practice, the integration can only be performed over the area of the camera,
which has a finite size Lx × Ly. Derive the effect of this finite size on the transverse spatial
resolution of the reconstructed sample δε(~ρ0). In particular...
a) Show that in the case of lensless Fourier holography (Fig. 11.3), this resolution is

given by δx0 = λ
2nθx

and δy0 = λ
2nθy

, where θx = Lx
2z
and θy = Ly

2z
. (Assume δx0 and δy0 are

small).
b) Show that in the case of Fourier holography with a lens (Fig. 11.4), this resolution is

given by δx0 = λ
2nθx

and δy0 = λ
2nθy

, where θx = Lx
2f
and θy = Ly

2f
.

Note the analogy of these results with the standard resolution criterion given by Eq. 3.36.
In performing these calculations, you will run into sinc functions. Define the width of sinc(ax)
to be δx = 1

a
.

Problem 2

Consider the three lensless digital holographic microscopy configurations shown in Figs. 2,3
and 9, and assume all parameters in these configurations are the same, and that the camera
has sensor size L and pixel size p (both square).
a) What camera parameter defines the transverse spatial resolution δx0 and δy0 of the

reconstructed sample in all three configurations?
b) What camera parameter defines the transverse field of view ∆x0 and ∆y0 of the

reconstructed sample in all three configurations? (where field of view corresponds to the
maximum transverse extent of the sample, assumed centered on axis).
c) Provide estimates for ∆x0 and ∆y0 in all three configurations, assuming these are

smaller than L and much smaller than z (roughly as depicted in the the figures), and assuming
the reference-beam tilt angle θ in the case of off-axis Fresnel holography is in the x direction
only.
Hint: the sample and reference beams interfere at the camera, and produce fringes. These

must be properly sampled according the Nyquist sampling criterion.
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Problem 3

a) On-axis digital holography is performed with circular phase stepping. Consider an ar-
bitrary camera pixel and assume a camera gain of 1 (i.e. the camera directly reports the
number of detected photoelectrons). The phase stepping algorithm applied to this pixel may
be written as

Ñ =
1

K

K−1∑
k=0

eiφkN (φk)

where N (φk) is the pixel value recorded at reference phase φk (for a given integration time).
Neglect all noise contributions except shot noise. Show that the variances of the real and
imaginary components of Ñ are given by

Var
[
ÑRe

]
= Var

[
ÑIm

]
=

1

2K2
〈Ntotal〉

where 〈Ntotal〉 it the total number of pixel values accumulated over all phase steps.
Hint: Start by writing N (φk) = 〈N〉 + δN (φk), where δN (φk) corresponds to shot noise

variations in the number of detected photoelectrons. Use your knowledge of the statistics of
these variations.
b) What happens to the above result if the camera gain is G?

Problem 4

Consider the technique of phase-stepping, as described in Section ???.
a) Why are a minimum of three phase steps required to determine Ĩsr(~ρ)?
b) The phase steps need not be circular. For example, show how one can recover the

amplitude and phase of Ĩsr(~ρ) using the phase sequence φk =
{

0, π
2
, π
}
.

c) Consider a reference beam that is frequency shifted (as opposed to phase shifted)
relative to the sample beam, such that Er(~ρ)→ Er(~ρ)ei2πδν t. Assume that the camera frame
rate is 3δν, and the camera exposure time is (3δν)−1. Write an algorithm to recover Ĩsr(~ρ)
from a sequence of three camera exposures.

Problem 5

Most widefield microscopes are based on 4f configurations. Here we consider a 6f configu-
ration. In particular, a 2f system projects an in-focus sample field E0 (~ρ0) onto a Fourier

plane, where it is denoted by Eξ
(
~ξ
)
. The Fourier field is then re-imaged with a unit magni-

fication 4f system that separates and re-combines the field through two paths, one on which
is inverting, as shown in the figure. That is, the output field is given by

E(φk) (~ρ) =
1

2

(
Eξ (~ρ) + Eξ (−~ρ) eiφk

)
where φk is a controllable phase shift that can be applied to the inverting path. Phase-
stepping interferometry then allows one to synthesize the complex intensity
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kφ

( )0 0E ρ
r ( )Eξ ξ

r

( )( )kE φ ρ
r

Inverter
Camera

Sample

Ĩ (~ρ) =
〈
Eξ (~ρ)E∗ξ (−~ρ)

〉
.

a) Derive an expression for Ĩ (~ρ) in terms of the radiant mutual intensity at the sample
plane (adopting the usual coordinate transformation of Eq. 4.17). Hint: use results from
Chapter 4
b) Assume that the intensity distribution at the sample plane is spatially incoherent,

meaning that the mutual intensity at this plane can be expressed in the form of Eq. 4.43.
Derive an expression for the sample intensity I0 (~ρ0) in terms of the above radiant mutual
intensity.
c) Show that even if the sample is displaced away from the focal plane by a distance z0,

the sample intensity Iz0 (~ρ0) remains equal to I0 (~ρ0), independently of z0. That is, the 6f
system described here provides extended-depth-of-field imaging, where the recovered image
remains in focus independently of the axial location of the (spatially incoherent) sample.
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Chapter 12

Optical Coherence Tomography

Problem 1

Derive Eq. 12.15.

Problem 2

Figure 12.6 provides a plot of Ĩsr (zr; νn) as a function of νn for a given value of zr. What
does this plot look like if the sample consists of a single reflecting plane located at depth zs?
What happens when zs = zr? When zs > zr? When zs < zr?

Problem 3

Show that the axial range of swept-source OCT scales inversely with δν. Specifically, con-
sider a swept-source laser that produces a spectrum S (νn) e−(ν−νn)2/δν2 , where S (νn) is the
envelope of the frequency scan. As in the text, treat νn as a continuous variable and assume
that S (νn) is slowly varying on the scale of δν. Show that Ĩsr (zr − zn), as defined by
Eq. 12.29, is confined to within a range of zn’s defined by a Gaussian envelope. What is the
extent ∆zn of this axial range? That is, what is the width (waist) of this Gaussian envelope?

Problem 4

Our goal in this problem is to compare direct versus multiplexed signal acquisition, under
conditions of constant illumination intensity Ii and equal total measurement time ∆t. Con-
sider objects of reflectance strength Rn distributed along a line at positions indexed by n,
where n = 1...N (as shown in figure), such that the power reflected from each object is
given by Φn = RnIi. These objects may be imaged directly, by illuminating each position
one after the other in sequence, and recording the reflected power from each position with
a single detector. Alternatively, the objects may be imaged in a multiplexed manner by
illuminating the objects in parallel with a sequence of quasi-uniform intensity patterns (of
average intensity Ii), and detecting the total reflected power for every illumination pattern
with the same single detector. In both cases, N measurements are made, each of duration
δt = ∆t/N . In the case of multiplexed acquisition, the final image must be reconstructed
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1      … …     N

4R
8R

14R

15R

numerically based on some kind of demultiplexing algorithm. Assume that each object signal
adds “coherently”upon reconstruction (i.e. scales with the number of measurementsN), and
is given by NRnIiδt. Assume also that the noise adds “incoherently”upon reconstruction
(i.e. scales as

√
N times the noise associated with each measurement).

a) Consider a sparse distribution of objects, namely a single object of reflectance strength
R located at arbitrary position m. Assume a noiseless detector of unity gain and take into
account only shot noise. Compare the SNR’s associated with this object for direct versus
multiplexed acquisition. Which is best? Specifically, derive SNRdir/SNRmul.

b) Consider a dense distribution of objects, each of equal reflectance strength R, such
that an object is located at every position n. Derive SNRdir/SNRmul for any given object.
You should find that the multiplex (or Fellgett) advantage has disappeared.

c) Consider the same dense distribution of objects, except that one object located at
arbitrary position m has reflectance strength 1

10
R. Derive SNRdir/SNRmul for this weaker

object. You should find that you are better off using direct acquisition. This diffi culty with
multiplexed acquisition is generally referred to as the multiplex disadvantage.

d) Repeat calculations (a)-(c) taking into account a detector readout noise of standard
deviation σr. Assume that σr is so large that shot noise can be neglected. Does the sample
sparsity matter in this case? Note that this scenario is similar to the scenario of FD-OCT.

e) Consider now the condition of constant illumination power Φi rather than constant
illumination intensity. In other words, in the case of direct acquisition, the illumination
intensity sequentially delivered to each location n is given by Ii = Φi/δA, where δA is
the focused illumination area. In the case of multiplexed acquisition, the illumination is
spread over an area ∆A = NδA spanning all N locations, and delivers instead an average
illumination intensity given by Ii = Φi/∆A. Are there any cases where multiplexing is
advantageous?

Problem 5

Widefield phase-sensitive OCT is performed with circular phase stepping (4 steps). Consider
an arbitrary camera pixel and assume a camera gain of unity (i.e. the camera directly reports
the number of detected photoelectrons). The phase stepping algorithm applied to this pixel
may be written as
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Ñ = 1
4

3∑
k=0

eiφkN (φk)

where N (φk) is the pixel value recorded at reference phase φk = 2πk
4
(for a given integration

time T ). Our goal is to determine the phase of rz recorded by this pixel. To do this, we
must determine the phase of Ñ , which we denote here by ϕN .
a) Derive an expression for ϕN in terms of the four measured pixel values N (φk).
b) Consider two noise sources: shot noise and dark noise. The latter is modeled as

producing background photoelectron counts obeying Poisson statistics. Let 〈NS〉, 〈NR〉, and
〈ND〉 be the average pixel values obtained from separate measurements of the sample beam,
the reference beam, and the dark current respectively, using a total integration time required
for all four steps (i.e. 4T ).
Show that the error in the determination of ϕN has a standard deviation given by

σϕN =

√
1

2 〈NS〉

(
1 +
〈NS〉
〈NR〉

+
〈ND〉
〈NR〉

)
.

(Without loss of generality, you may set the actual ϕN to be any arbitrary value —in par-
ticular, you may assign it to be equal to zero.)
Hint: Start by writing N = 〈N〉 + δN , where δN corresponds to shot noise variations

in the number of detected photoelectrons. Use your knowledge of the statistics of these
variations.
Observe that when the reference beam power is increased to such a point that 〈NR〉 �

〈NS〉 and 〈NR〉 � 〈ND〉, then σϕN →
√

1
2〈NS〉 , meaning that the phase measurement accuracy

becomes limited by sample-beam shot noise alone (i.e. dark noise becomes negligible). This
is one of the main advantages of interferometric detection with a reference beam.
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Chapter 13

Fluorescence

Problem 1

Consider a solution of two-level fluorescent molecules such as the one depicted in Fig. 13.1(b).
The fluorescence from this solution is decreased by the addition of a quencher Q. The effect
of this quencher is to induce an additional non-radiative decay of the excited state such that

|e〉+Q
kq−→ |g〉

where kq is the quenching rate constant, in units s−1M−1 (M = molar concentration).
a) Show that

τe

τ
(Q)
e

= 1 + τekq[Q]

where τ (Q)
e and τe are the excited state lifetimes with and without the presence of the

quencher, and [Q] is the molar concentration of the quencher.
Such quenching is said to obey a Stern-Volmer relationship.
b) Show that, based on our simple model,

Φf

Φ
(Q)
f

≤ τe

τ
(Q)
e

where the equality holds only in a particular limit. What is this limit?

Problem 2

Molecules in solution undergo both translational and rotational diffusion. A method for
characterizing rotational diffusion is by measuring fluorescence anisotropy. This can be done
using the standard configuration shown below.
An illumination beam of intensity Ii is vertically polarized (x direction). The resultant

fluorescence emission power is measured in the y direction within a small solid angle Ω. A
polarizer is used to distinguish the measured vertical and horizontal powers, denoted by Φ‖
and Φ⊥ respectively. It can be shown that these powers are given by
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ẑ

ŷ

P

iI

Ω

⊥Φ

Φ
P

Fluorescent
solution

Φ‖(t) = Ωσf

∫
K‖(t− t′)Ii(t′)dt′

Φ⊥(t) = Ωσf

∫
K⊥(t− t′)Ii(t′)dt′

where

K‖(t) = 1
3

(1 + 2R(t))K(t)

K⊥(t) = 1
3

(1−R(t))K(t)

where σf is the fluorescence cross section, K(t) is given by Eq. 13.26 (assume a single
two-level fluorescent species), and R(t) comes from rotational diffusion. In particular, if the
rotational diffusion is isotropic, then

R(t) = r0e
−6Dθt = r0e

−t/τθ

where Dθ is a rotational diffusion constant and, concomitantly, τθ is a rotational diffusion
time.
The measured fluorescence anisotropy is defined by

r(t) =
Φ‖(t)− Φ⊥(t)

Φ‖(t) + 2Φ⊥(t)

a) Show that if the illumination intensity is constant, then the steady-state fluorescence
anisotropy is given by

〈r〉 =
r0

1 + τe/τθ
.

This is known as the Perrin relationship. In deriving this relationship, bear in mind that
the denominator of r(t) remains constant over time.
b) Denote Φf as the total emitted fluorescence power in all solid angles. Derive an

expression for the total measured fluorescence power Φ‖(t) + Φ⊥(t) when τe/τθ → 0 (i.e. the
rotation is slow compared to the excited state lifetime). When is this measured fluorescence
power equal to ΩΦf?
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c) Derive an expression for the total measured fluorescence power when τe/τθ → ∞
(i.e. the rotation is fast compared to the excited state lifetime). In the case, the molecule
orientation is essentially randomized before fluorescence emission can occur. Explain why
the measured fluorescence power in this case is smaller than ΩΦf .

Problem 3

Consider using a microscope to image a sample containing N different fluorescent species of
unknown concentrations C1, ..., CN . Each of these species emits fluorescence with a different
spectrum. Accordingly, the microscope is equipped with N different spectral channels. The
microscope has been pre-calibrated so that a unit concentration of species j is known to
produce a signalMij in channel i. When the unknown sample is measured, signals S1, ..., SN
are obtained in each channel.
a) Derive a general “spectral unmixing”formula to deduce C1, ..., CN from the measured

signals. Hint: your formula should be in terms of the matrix of cofactors ofM.
b) Consider using a two-channel microscope to look at a fluorescent molecule [1]. The

introduction of a non-fluorescent binding agent [x] leads to an interaction [1] + [x] → [2],
where the species [2] produces fluorescence that is spectrally different from [1]. The effi ciency
of the interaction is defined by

qint = 1− C
′
1

C1

where C1 and C ′1 are concentrations of species [1] before and after the response.
Show that

qint =
−M22∆S1 +M21∆S2

M22S1 −M21S2

where ∆S = S ′ − S andM is assumed to be non-singular.

Problem 4

Frequency-domain FLIM provides a measurement of R(ν), as defined by Eq. 13.27, for a
given modulation frequency ν.
a) Consider a solution containing only a single fluorescent species. Draw a plot of R(ν)

in the complex plane as a function of increasing ν. This is called a “polar”or “phasor”plot
of the fluorescence response, where Re[R(ν)] and Im[R(ν)] are the in-phase and quadrature
components respectively. At what value of ν is the quadrature component peaked? For any
given ν, where does a small fluorescence lifetime placeR(ν)? Where does a large fluorescence
lifetime place R(ν)?
b) Consider two fluorescent species of known cross-sections and lifetimes. Arbitrarily

choose locations for R(1)(ν) and R(2((ν) on the plot you have drawn above (for a given
modulation frequency). Now consider making a measurement of R(ν) for a mixture of these
two species of unknown concentration fractions. Where must R(ν) be located relative to
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R(1)(ν) and R(2((ν)? From a single measurement, can you infer the concentration fractions
of the two species?
c) Consider a solution containing an unknown number of fluorescent species of responses

characterized by Eq. 13.25. What can you say about the resulting R(ν)? Specifically, where
must R(ν) be located for low, high, and mid-range modulation frequencies?

Problem 5

Consider performing FCS with a solution of freely diffusing fluorescent molecules and a 3D
Gaussian probe volume defined by Ψ(~r) = exp (−r2/w2

0). The average concentration of
molecules is 〈C〉. Their diffusion constant is D.
a) Define a corresponding probe volume Vψ.

b) Show that Γf (τ) = 1
〈N〉

(
1 + 2Dτ

w20

)−3/2

, where 〈N〉 is the average number of molecules
in the probe volume.
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Chapter 14

Confocal microscopy

Problem 1

From the result in Eq. 14.5 it is clear that a purely phase-shifting point object produces
no discernible change in detected intensity in a transmission confocal microscope. That is,
if δε is real then I(~ρs, zs) is independent of δε to first order. This result is based on the
assumption that the microscope is well aligned.
Consider now a transmission confocal microscope that is misaligned. In particular, con-

sider displacing the pinhole out of focus by a distance ∆zp. Show that this misaligned
transmission confocal microscope now becomes sensitive to a phase-shifting point object.
For simplicity, assume that the illumination and detection amplitude-PSFs are identical and
Gaussian (Eq. 5.21). Follow these steps:
a) Calculate Eb.
b) Calculate Es(~ρs, zs). For simplicity, neglect scanning and set ~ρs and zs to zero.
c) From the resulting E(0, 0) = Eb + Es(0, 0), derive the detected intensity I(0, 0) and

show that this depends on (real) δε to first order (neglect any higher order dependence on
δε).

Problem 2

Consider a fluorescence confocal microscope equipped with a reflecting pinhole, that is a
pinhole of radius a surrounded by a reflecting annulus of outer radius b and inner radius
a (assume that the beam is blocked beyond the annulus). A transmission detector records
the power ΦT transmitted through the pinhole. A reflection detector records the power
ΦR reflected from the annulus. The confocal signal is then given by the difference of these
recorded powers, namely ∆Φ = ΦT − ΦR.
a) Calculate ∆Φ(zs) if the sample is a thin uniform fluorescent plane located at a defocus

position zs. For simplicity, assume that PSF= PSFi (and hence OTF= OTFi). Express your
result in terms of OTF and omit extraneous prefactors.
b) Show that for a particular ratio b/a, the optical sectioning strength of this microscope

is greater than that of a standard confocal microscope. In particular, show that ∆Φ(zs) ∝
|zs|−3 when |zs| is large, for a particular ratio b/a. What is this ratio?
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Hint: to solve this problem recall that OTF(~κ⊥; zs) scales as |zs|−3/2 when κ⊥ 6= 0 and
|zs| is large.

Problem 3

Consider a fluorescence confocal microscope where the illumination and detection PSF’s are
the same and Gaussian, as defined by Eq.5.34, and the pinhole is small.
a) Imagine dithering the pinhole of this microscope in the transverse direction by small

amounts ±1
2
δ~ρp, and demodulating the acquired image at the dither frequency. This is

essentially equivalent to acquiring two images I+ and I− with the pinhole located at +1
2
δ~ρp

and−1
2
δ~ρp, respectively, and then subtracting, obtaining a final image given by∆I = I+−I−.

Derive the effective confocal PSF, or ∆PSFconf (~ρ, z), of this instrument to first order in δ~ρp.
Express your answer in terms of the conventional (undithered) PSF, or PSFconf (~ρ, z). Discuss
some features of∆PSFconf (~ρ, z), such as its axial profile and its response to a laterally uniform
sample.
b) Now consider acquiring a conventional image with this instrument, and simply calcu-

lating the gradient of this image along the direction δ~ρp (or, more precisely, the difference
image using the same transverse shift δ~ρp) . Your answer should be the same to within a
scaling factor. What is this scaling factor?

Problem 4

Consider the same as Problem 3, except that now the pinhole is dithered by small amounts
±δzp in the axial direction. Derive the effective confocal PSF, or ∆PSFconf (~ρ, z), of this in-
strument to first order in δzp. Express your answer in terms of the conventional (undithered)
PSFconf (~ρ, z). Qualitatively describe what sample features this instrument is sensitive to.
Show that ∆PSFconf (0, z) decays more rapidly than PSFconf (~ρ, z) by a factor of |z|−1 for
large |z|.

Problem 5

Consider a fluorescence confocal microscope where the illumination and detection PSF’s
are the same and Gaussian, as defined by Eq.5.34 (though re-expressed in terms of their
field waists w0 —see Eq. 5.23). Let the pinhole also be a Gaussian, defined by Ap (~ρ) =

e−ρ
2/w2p . Derive an expression for the normalized axial profile of the confocal PSF, namely

PSFconf (0, z) /PSFconf (0, 0). Qualitatively describe the zdependence of this profile. Plot this
profile for w0 = λ = 1µm, and for the different ratios wp/w0 ≈ 0, 1 and 2.
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Chapter 15

Structured illumination microscopy

Problem 1

Consider performing coherent structured illumination microscopy with a modulated field
source (as opposed to a modulated intensity source). That is, start with

EL(xl, yl) = EL (1 + cos(2πqxxl + φ)) .

Such a field can be obtained, for example, by sending a plane wave through a sinusoidal
amplitude grating. This field is imaged into the sample using an unobstructed circular
aperture of suffi ciently large bandwidth to transmit qx.
a) Derive an expression for the resulting intensity distribution Ii(x0, y0, z0) in the sample

You will note that this distribution exhibits different modulation frequencies at different
defocus values z0.
b) At what values of z0 does Ii(x0, y0, z0) correspond to an exact image of the source

intensity IL(xl, yl)? These images are called Talbot images.
c) At what values of z0 does Ii(x0, y0, z0) correspond to the source intensity image, but

with an inverted contrast? These images are called contrast-inverted Talbot images.
d) At defocus planes situated halfway between the Talbot and the contrast-inverted

Talbot images, Ii(x0, y0, z0) exhibits a new modulation frequency. What is this modulation
frequency? What is the associated modulation contrast?
e) Your solution for Ii(x0, y0, z0) should also exhibit a modulation in the z0 direction.

What is the spatial frequency of this modulation? Note: there is no control of the phase of
the z0-direction modulation (i.e. there is no equivalent of φ in the z0 direction). Devise an
experimental strategy to gain phase control in the z0 direction.

Problem 2

Show that the absolute value of the complex intensity Ĩ = 1
K

∑K−1
k=0 e

iφkIk obtained from
phase stepping can be rewritten as∣∣∣Ĩ∣∣∣ = 1

3
√

2

√
(I0 − I1)2 + (I1 − I2)2 + (I2 − I0)2

when K = 3.

43



CHAPTER 15. STRUCTURED ILLUMINATION MICROSCOPY 44

Problem 3

Consider performing SIM with a coherent fringe pattern of arbitrary spatial frequency ~q.
Calculate the resulting sectioning strength when the detection aperture is square (as opposed
to circular). That is, calculate how the signal from a uniform fluorescent plane decays as
a function of defocus zs (assumed to be large). Specifically, consider the fringe frequencies
~q = {qx, 0} and {qx, qy}. Are the sectioning strengths for these two frequencies the same?

Problem 4

SIM strategies involving random illumination patterns, such as DSI, generally require the
calculation of signal means and variances, defined respectively by

µ =
1

N

N∑
i=1

xi

σ2 =
1

N

N∑
i=1

(xi − µ)2

where xi are independent signal realizations.

a) Show that σ2 can be written equivalently as σ2 = 1
N

N∑
i=1

x2
i − µ2

b) ...and again as σ2 = 1
2N2

N∑
i,j=1

(xi − xj)2

c) ...and yet again as σ2 = 1
2(N−1)

N−1∑
i=1

(xi+1 − xi)2. This last representation is particularly

insensitive to slow signal fluctuations that may be due to extraneous instrumentation noise.

Problem 5

In Section 15.5, it was stated that SIM can thought of in the context of pupil synthesis. The
basic idea of pupil synthesis is to construct an effective (synthesized) pupil from a sequence
of images obtained from multiple pupil configurations. For example, two-pupil synthesis can
be performed either in the illumination or detection paths of a generic widefield fluorescence
microscope, as shown in the figure. In either case, it is assumed that one pupil, Pb, is
phase-shifted relative to the other pupil Pa with a circular phase sequence φk.
a) Consider illumination synthesis (top). Light from any source point can equally travel

through both illumination pupils, producing a field incident on the sample given by the
coherent superposition

E
(k)
i (~ρ0, z0) = E

(a)
i (~ρ0, z0) + eiφkE

(b)
i (~ρ0, z0) .

Show that conventional phase stepping leads to the synthesis of a complex image given
by Eq. 15.6, with an effective complex illumination distribution given by Eq. 15.7.
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Source Sample Detector

Source Sample Detector

Illumination

Detection

b) Consider detection synthesis (bottom). Show that conventional phase-stepping leads
to the synthesis of a complex image with an effective complex PSF. Derive corresponding
expressions for Ĩ(~ρ) and P̃SF (~ρ, z), where the latter is in terms of amplitude point spread
functions. Assume that the source intensity is uniform.
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Chapter 16

Multiphoton microscopy

Problem 1

Consider a collimated beam that undergoes both one- and two-photon absorption as it
propagates within a sample. That is, the beam intensity obeys the relation

dI

dz
= −α1I − α2I

2.

a) Show that the resulting intensity is given by

I (z) =
α1I (0) e−α1z

α1 + α2 (1− e−α1z) I (0)
.

b) In the limit a2 → 0, the above result reduces to the familiar Lambert-Beer law. What
does it reduce to in the limit α1 → 0?

Problem 2

The fluorescence power emitted by a molecule under continuous two-photon excitation is
given by Eq. 13.9 (???). This equation is no longer valid in the case of pulsed illumination.
In particular, consider pulsed illumination with a pulse period τl and a pulse width τp.
Assume τp � τe such that, at most, only one excitation can occur per pulse. Define gp to
be the probability of finding the molecule in the ground state at the onset of every pulse (in
steady state). Moreover, define ξ to be the probability of excitation per pulse provided the
molecule is in the ground state.
a) Derive an expression for the average fluorescence power emitted by a molecule under

pulsed illumination, in terms of gp. (For simplicity, assume that the molecule is a simple
two-level system with a radiative quantum yield equal to 1).
b) Derive an expression for gp in steady state and show that

〈Φf〉
hνf

=
ξ

τl

(
1− e−τl/τe

1− e−τl/τe + ξe−τl/τe

)
where τe is the excited state lifetime. Hint: to solve this problem, start by deriving the
probability ep of finding the molecule in the excited state at the onset of a pulse. To achieve
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steady state, this probability must be in balance with the residual probability from the
previous pulse
c) Let α be the excitation rate (two-photon or otherwise) during each pulse, and assume

that the pulse width is so short that ατp � 1. Derive an expression for ep when the
repetition rate of the illumination becomes so high that the illumination becomes effectively
a continuous wave (i.e. when τl → τp). How does this expression compare with Eq. 13.8?

Problem 3

In the case of two-photon excitation, show that if the sample is a thin uniform plane at a de-
focus position zs, with concentration defined by C(~r) = Cρδ(z−zs), then the total generated
fluorescence power is inversely proportional to the illumination beam cross-sectional area
Ai(zs), independently of the shape of the illumination PSFi. Is this also true of three-photon
excitation?
Hint: define cross-sectional area in a similar manner as Eq. 6.22.

Problem 4

A Gaussian-Lorentzian focus is used to produce two- and three-photon excited fluorescence.
a) Show that the three-photon excitation volume is given by V3f = 32

105
π2w2

0zR and the
volume contrast is given by γ3f = 35

128
.

b) Show that if the sample is a volume of uniform concentration C, then the total gener-
ated fluorescence is independent of the beam waist w0 in the case of two-photon excitation,
and it scales as w−2

0 in the case of three-photon excitation.

Problem 5

Consider a laser whose average power is a constant 〈Φi〉 but whose repetition rate R = τ−1
l

can be varied. This laser is used to perform multiphoton excitation in a thick sample of
extinction coeffi cient µe. But there is a problem. The maximum peak intensity that the
sample can tolerate at the laser focus is Îmax. Derive a strategy of adjusting the repetition
rate to maximize the fluorescence produced at the beam focus, for arbitrary depth within
the sample. That is, find an expression for the optimal R (zs).
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Chapter 17

Multiharmonic microscopy

Problem 1

Consider a pulsed laser beam whose power is written as

Φl (t) = Ul

N∑
n=0

δ (t− nτl)

where Ul is the energy per pulse and τl is the pulse period. Now consider that each pulse is
subject to a temporal jitter δτl, which may be considered a random Gaussian variable. Show
that the Fourier transform of Φl (t), averaged over large N , can be written as〈

Φ̂l (ν)
〉

= Ule
−2π2ν2σ2τl

sin (πNτ̄lν)

sin (πτ̄lν)

where τ̄l is the mean pulse period, and σ2
τl
is the variance of the temporal jitter.

Hint: you may want to use a result from Appendix B.5.

Problem 2

The second harmonic tensorial product ~P = ε0~χ
(2) : ~E ~E (see Eq. 17.24) can be expanded

as

Pi = ε0

3∑
j=1

3∑
k=1

χ
(2)
ijkEjEk.

This product depends on the coordinate system in which it is evaluated. The two relevant
coordinate systems for this problem are the fixed laboratory system (denoted by L) and the
molecule system (denoted byM), which may be arbitrarily oriented relative to the laboratory
system.
Consider a uni-axial molecule oriented along r̂, illuminated by a field given by ~E(L) in

the laboratory system.
a) Defining R(θ, ϕ) to be the rotation matrix linking the molecule system to the labora-

tory system (see Eq. 17.14), show that
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P
(L)
l = ε0

3∑
m=1

3∑
n=1

χ
(L)
lmnE

(L)
m E(L)

n

where

χ
(2)(L)
lmn =

3∑
i=1

3∑
j=1

3∑
k=1

Ri,l(θ, ϕ)Rj,m(θ, ϕ)Rk,n(θ, ϕ)χ
(2)(M)
ijk .

Hint: recall that R(θ, ϕ) is orthogonal.
b) For simplicity, assume that all components of the molecule second-order susceptibility

χ
(2)(M)
ijk are zero, except for χ(2)(M)

111 ≡ χ
(2)
rrr. Show that, in this case,

~P (L) = ε0χ
(2)
rrr

(
r̂ · ~E(L)

)2

r̂.

Problem 3

It can be shown that the susceptibility tensor χ(3) responsible for third-harmonic generation
in a homogenous isotropic medium can be written as

χ
(3)
klmn = χ0 (δklδmn + δkmδln + δknδlm) .

Show that no THG can be produced in such a medium if the driving field is a circularly
polarized plane wave.

Problem 4

Consider generating SHG with a focused beam as in Fig. 17.4, but with two labeled mem-
branes separated by a distance∆x0. Each membrane exhibits identical, uniform second-order
susceptibility χ(2)

ρ , but their markers are oriented in opposite directions.
a) Use the 3D Gaussian approximation (Eq. 17.26) to derive the field E(2)

2νi
(~r) produced

by the two membranes. Express your answer in terms of E(1)
2νi

(~r), the field produced by a
single membrane (i.e. Eq. 17.36).
b) As in Fig. 17.4, the SHG is emitted in two off-axis lobes at cos θ ≈ 1 − δκi

κi
and

ϕ ≈ [0, π]. Plot the intensity ratio
I
(2)
2νi

(~r)

I
(1)
2νi

(~r)
in the lobe directions, as a function of ∆x0

w0
(hint:

use Eq. 17.22). At approximately what value of ∆x0
w0

is this intensity ratio peaked?

Problem 5

a) Calculate the third-harmonic intensity pattern produced from a localized 3D-Gaussian
susceptibility distribution given by

χ(3)(~r0) = χ(3)e−r
2
0/w

2
χ .
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Assume a focused illumination beam and use the 3D-Gaussian illumination profile given
by Eq. 17.26. Express your result in terms of r, θ and ϕ.
b) Derive an expression for the backward/forward ratio of THG intensities emitted along

the ẑ-axis. That is, derive an expression for

Ibackward
Iforward

=
I

(θ=π)
3νi

(~r)

I
(θ=0)
3νi

(~r)
.

What does this ratio tend toward as wχ → 0 ?
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Chapter 18

Pump-probe microscopies

Problem 1

Derive Eqs. 18_PP and 18_PVV

Problem 2

CARS microscopy is performed with Gaussian pump and Stokes pulses defined by Ep (t) =
Ep exp

(
−t2/∆t2p

)
exp (−i2πνpt) and Es (t) = Es exp− (t2/∆t2s) exp (−i2πνst), which overlap

in time.
a) The spectral resolution ∆νCARS of a CARS microscope can be defined as the half-

width at 1/e-maximum of |PCARS (ν)|2. Show that this spectral resolution is defined by the
spectral width of the pump beam alone. What is this spectral resolution?
b) Consider adding a frequency chirp to the pump pulse, but not the Stokes pulse. The

chirp rate is b. That is, the pump field and its Fourier transform are given by

Ep (t) = Epe
−t2/∆t2pe−i2π(νp+bt)t

Ep (ν) =
1√
π∆ν ′p

Epe
−(ν−νp)2/∆ν′ 2p

where ∆ν ′p = ∆νp
√

1 + i2π∆t2pb and ∆νp = 1
π∆tp

.
What is the new spectral resolution of the CARS microscope?
c) The pump pulse, in addition to being chirped, is also temporally broadened to a width

∆t′p > ∆tp. Again, calculate the CARS spectral resolution. What is the maximum chirp rate
allowed for this new resolution to be better (narrower) than the original resolution calculated
in part (a)?

Problem 3

Most commonly, two techniques are used to obtain a CARS spectrum. The first makes use
of picosecond pump and Stokes beams (that is, both are relatively narrowband). A spectrum
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can then be obtained by scanning the frequency of one of the beams, and acquiring data
sequentially. This has the advantage that only a single detector is required.
Alternatively, the Stokes beam can be femtosecond (i.e. broadband), and a spectrum can

be obtained by recording the CARS frequencies in parallel using a grating and line camera
(called a spectrograph). This has the advantage that it does not require frequency scanning.
Alternatively still, both the pump and Stokes beam can be femtosecond and chirped,

with the same chirp rate (see Problem 2). For this last scenario, describe a technique to
obtain a CARS spectrum without modifying the laser parameters and using only a single
detector. Qualitatively, what happens if the chirp rates are not the same?

Problem 4

Equation 18_chi32 suggests that CARS microscopy cannot provide a direct measure of
Imχ

(3)
r (ν). But consider the case where a measurement of

∣∣χ(3) (ν)
∣∣2 is obtained over a large

range of frequencies, much larger than the Raman features of interest. Assume also that
χ

(3)
nr is much greater than χ

(3)
r (ν), as is common in practice. Can you devise a numerical

technique to estimate Imχ
(3)
r (ν) from your measurement?

Hint: use Fourier transforms.

Problem 5

Derive Eq. ???. Note that this problem is rather lengthy and can benefit from the aid of
software such as Mathematica.
Hint: Use spherical coordinates, and integrate over ϕ0, then r0, then θ0. Also helpful is

the identity

J0 (2πκa) =
1

2π

∫ 2π

0

e−i2πκa cos(ϕ−ϕ0)dϕ0.
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Chapter 19

Superresolution

Problem 1

The pupil and point spread functions of a microscope are denoted by P (~ξ) and PSF(~ρ)
respectively. Consider introducing phase variations (or aberrations) in the pupil function,
such that Pφ(~ξ) = eiφ(~ρ), leading to PSFφ(~ρ). A standard method for evaluating PSFφ(~ρ) is
with the Strehl ratio, defined by

Sφ =
PSFφ(~0)

PSF0(~0)

where PSF0(~ρ) is the theoretical diffraction-limited PSF obtained when the pupil is unob-
structed (i.e. P0(~ξ) = 0 or 1). The larger the Strehl ratio, the better the quality of PSFφ.
Show that the introduction of aberrations can only lead to a degradation in the point spread
function (i.e. Sφ ≤ 1). Proceed by first verifying Eq. 19.3 ???.
Hint: You will find the Schwarz inequality to be useful here, which states:∣∣∣∣∫ X(~κ⊥)Y (~κ⊥)d2~κ⊥

∣∣∣∣2 ≤ (∫ |X(~κ⊥)|2 d2~κ⊥

)(∫
|Y (~κ⊥)|2 d2~κ⊥

)
where X and Y are arbitrary complex functions.

Problem 2

Consider a confocal microscope whose illumination and detection PSFs are identical. The
detected power from a simple two-level molecule can be written in a simplified form as

φ(~ρ) = αξ2(~ρ)

where α is the molecule excitation rate exactly at the the focal center, and ξ(~ρ) = PSF(~ρ)
PSF(0)

.
The above expression is valid in the weak excitation limit, namely α � kr (equivalent to
〈e〉 ≈ α

kr
—see Section 13.1.1 ???). In the strong excitation limit, then this expression must be

modified to take into account saturation. In particular, we must write 〈e〉 = α
α+kr

(neglecting
non-radiative decay channels —see Eq. 13.8 ???).
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a) Derive an expression for φsat(~ρ) taking saturation into account (for simplicity, only
keep terms to first order in α

kr
). Note that φsat(~ρ) corresponds to an effective confocal PSF,

which is now saturated.
b) Now consider modulating the excitation rate such that α(t) = α (1 + cos(2πΩt)).

Correspondingly, φmod(~ρ, t) also becomes modulated, and exhibits harmonics. Derive an
expression for φmod(~ρ, t).
c) By using appropriate demodulation, assume that the components of φmod(~ρ, t) oscillat-

ing at the first (Ω) and second (2Ω) harmonics can be isolated. Use the technique employed
in Section 19.2.2 (???) to compare the curvatures of φΩ(~ρ) and φ2Ω(~ρ) to the curvature of
φ(~ρ) (unsaturated and unmodulated). That is, derive approximate expressions for δρΩ and
δρ2Ω. In particular, show that the effective first harmonic PSF exhibits sub-resolution while
the effective second harmonic PSF exhibits superresolution.
Note: remember to normalize all φ(~ρ)’s to the same peak height before comparing their

curvatures.

Problem 3

Assume a molecule is imaged onto a unity-gain camera with unity magnification. Use max-
imum likelihood to estimate the error in localizing a molecule. That is, begin by defining a
chi-squared error function given by

χ2(x) =
∑
i

(
N(xi)− N̄(xi;x)

)2

σ2
N(xi;x)

where i is a pixel index, N(xi) is the actual number of photocounts registered at pixel i, and
N̄(xi;x) and σ2

N(xi;x) are the expected mean and variance, respectively, of the photocounts
at pixel i for a molecule located at position x. Assume the photocounts obey shot-noise
statistics alone. For simplicity, consider only a single dimension (the x axis).
The estimated position of the molecule x̂ is obtained by minimizing χ2(x). That is, x̂ is

a solution to the equation dχ2(x)
dx

= 0.
a) Show that the error in the estimated molecule position, defined by δx = x̂−x0, where

x0 is the actual molecule position, has a variance given by

σ2
x ≈

∑
i

1

N̄(xi;x0)

(
N̄(xi;x)

dx

∣∣∣∣
x0

)2
−1

Hint: to obtain this result, it is useful to first solve for δx by writing

N(xi) = N̄(xi;x0) + δN(xi;x0)

N̄(xi;x) ≈ N̄(xi;x0) + δx
dN̄(xi;x)

dx

∣∣∣∣
x0

and keeping terms only to first order in δN(xi;x0) and δx. Note that σ2
x = 〈δx2〉.
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b) Derive σ2
x for the specific example where the PSF at the camera plane has a normalized

Gaussian profile given by

N̄(xi;x) =
N√
2πw0

|xi−x|+a/2∫
|xi−x|−a/2

dx′ e−x
′2/2w20 ≈ Na√

2πw0

e−(xi−x)2/2w20

where w0 is the Gaussian waist and a is the camera pixel size (assume a� w0).
How does your solution compare with Eq. 19.34?
Hint: approximate the summation with an integral. That is, for an arbitrary function

f(xi), write
∑
i

f(xi) ≈ 1
a

∫
dxi f(xi).

Problem 4

The purpose of this problem is to compare STED microscopy with continuous versus pulsed
beams. The case of continuous-wave beams was treated in the chapter, where it was found
in Eq. ??? that the time averaged fluorescence rate per molecule was

〈φ〉cw =
〈α〉 kr

kr + σse 〈Ise〉
where σse and 〈Ise〉 are the stimulated-emission cross-section and STED beam illumination
intensity, respectively (kse = σse 〈Ise〉 and assume 〈α〉 � kr and knr = 0).
Consider now using pulsed beams. The excitation beam has pulse period τl and infinitely

narrow pulse duration. The STED beam has pulse period τl and pulse duration τp. Assume
that the onsets of the STED pulses immediately follow the excitation pulses. Assume also
that the molecule is excited with probability ξ at each excitation pulse, such that the average
excitation rate is 〈α〉 = ξ/τl, where τl � k−1

r . Finally, for fair comparison, assume that 〈a〉
and 〈Ise〉 are the same in both pulsed and continuous cases.
a) Derive an expression for 〈φ〉pb when using pulsed beams. Hint: this involves solving

for the excited-state probability e (t), and integrating.
b) Show that STED is most effi cient (i.e. 〈φ〉pb is smallest) when τp → 0. What is 〈φ〉pbin

this case?
c) Using your result from (b), show that pulsed-beam STED is always more effi cient

than continuous-wave STED (i.e. 〈φ〉pb < 〈φ〉cw), even for arbitrarily small values of 〈Ise〉,
provided τl > k−1

r .

Problem 5

Consider a distribution of N point-like molecules located at positions ~ρn, each fluorescing
with time-dependent intensities fn (t). These are imaged by a standard widefield microscope.
The resulting intensity at the camera is

I (~ρ, t) =

N∑
n=1

PSF (~ρ− ~ρn) fn (t)
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a) Show that if the time-dependent intensities fn (t) are independent of one another, then
an image constructed by the temporal variance at each position ~ρ is given by

σ2
I (~ρ) =

N∑
n=1

PSF2 (r − rn)σ2
n

where σ2
n is the temporal variance of fn (t). This is an unusual type of imaging since it

provides a representation not of average fluorescence levels but rather of variances of fluores-
cence levels. Nevertheless, this can lead to superresolution imaging (called Superresolution
Optical Fluctuation Imaging —or SOFI), by exploiting a priori knowledge of fluorescence
statistics and the fact that PSF2 is narrower than PSF.
b)Consider molecules that produce fluorescence with Gaussian statistics (see Section ???).

Rewrite the above result in terms of the average fluorescence levels 〈fn〉.
c) Convince yourself that you would not achieve the same result by simply squaring the

initial image. In other words, compare the above result with 〈I (~ρ)〉2.
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Chapter 20

Imaging in scattering media

Problem 1

Consider Fig. 20.1 in the limit of small-angle scattering. A light ray enters a scattering
medium from a perpendicular direction (as shown). After several scattering events, the
probability distribution for the ray position is spread over transverse area of width w (L),
where L is the penetration depth. Use a simple model where the transverse position of
the ray undergoes a random walk as the ray propagates into the sample. That is, at each
scattering event, the ray takes a step of size lsθ in the transverse plane, with arbitrary
direction. Provide rough scaling laws for w (L). Specifically, how does w (L) scale with L?
With µs? With (1− g)?
Compare your result with the spread incurred by a Gaussian focus (Eq. 20.47).

Problem 2

In Chapter 9 we considered the Rytov solution for field propagation in an inhomogeneous
medium (see Section ???), given by

E (~r) = eiΨ(~r)Ei (~r)

Decompose δΨ (~ρ) into real and imaginary components, such that Ψ (~ρ) = ϕ (~ρ) + iχ (~ρ).
Assume that both ϕ (~ρ) and χ (~ρ) obey Gaussian statistics. That is, they obey the probability
distributions given by

pϕ (ϕ) =
1√

2πσϕ
e−ϕ

2/2σ2ϕ

pχ (χ) =
1√

2πσχ
e−(χ−χ̄)2/2σ2χ

where σϕ and σχ are standard deviations (not to be confused with cross-sections), and a bias
χ̄ is introduced to take into account a mean attenuation of the field.
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δϕ
δχ

Re Re

ImIm

( )zE ρ′
r( )zE ρr

Derive the corresponding probability distributions for the field amplitude A = |E| and
intensity I = |E|2 (in terms of σϕ, σχ and χ̄). Your results should be examples of what are
known as log-normal probability distributions.
Hint: remember that probability distributions transform as pY (Y ) = pX (X) |dX/dY |.

Problem 3

We return here to the Beam Propagation Method described in Chapter 9. Imagine that each
phase screen imparts spatially random phases, such that the field just after the screen is
given by E ′z (~ρ) = eiδψ(~ρ)Ez (~ρ), where Ez (~ρ) is the field just before the screen. As illustrated
in the figure, we can decompose δψ (~ρ) into real and imaginary components, such that
δψ (~ρ) = δϕ (~ρ) + i (χ̄+ δχ (~ρ)), where δϕ (~ρ) and δχ (~ρ) are (real) phase and amplitude
variations, both centered on zero so that δϕ (~ρ) = δχ (~ρ) = 0, and a bias χ̄ is introduced to
account for any mean amplitude reduction (note that δϕ (~ρ) and δχ (~ρ) are not the same as in
Problem 2). Moreover, assume that the phase and amplitude fluctuations are uncorrelated,
and their variances

〈
δϕ (~ρ)2〉and 〈δχ (~ρ)2〉 are independent of ~ρ , meaning that the phase

screen is statistically homogeneous.
The effect of the phase screen on the mutual intensity can be written as

J ′z (~ρ, ~ρ ′) = Kδz (~ρ, ~ρ ′) Jz (~ρ, ~ρ ′) .

a) Show that, with our usual coordinate transformation,

Kδz (~ρd) = exp
(
−2χ̄+ 2

〈
δχ2
〉
−
〈
δχ2
〉

(1− γδχ (ρd)−
〈
δϕ2
〉

(1− γδϕ (ρd)
)

where γδχ (ρd) and γδϕ (ρd) are normalized autocorrelation functions of δχ (~ρ) and δϕ (~ρ),
respectively.
Hint: Identities from Appendix ??? are useful here.
b)Assume that the phase and amplitude variations obey similar statistics, as suggested in

the figure. That is, assume
〈
δϕ (~ρ)2〉 =

〈
δχ (~ρ)2〉 ≡ 1

2

〈
|δψ (~ρ)|2

〉
, and γδχ (ρd) = γδϕ (ρd) ≡

γδψ (ρd). Also, use the a priori knowledge thatKδz (0) = exp (−µaδz), and
〈
|δψ (~ρ)|2

〉
= µsδz.

Show that Kδz (~ρd) simplifies to

Kδz (~ρd) = exp (−µeδz + µsδz γδψ (ρd)) .
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This model for small propagation distances can be compared with the more exact Eq. 20.23
for larger propagation distances.

Problem 4

Problem 3 introduced the complex phase variations δψ (~ρ) imparted by a phase screen in the
Beam Propagation Method (Chapter 9). Here a link will be established between γδψ (ρd) and
γδn (rd), where δn are index-of-refraction variations of the sample, assumed to be isotropic
and spatially invariant, with normalized autocorrelation function given by Eq. ???.
a) In accord with the Beam Propagation Method, neglect diffraction effects when con-

sidering transmission through the phase screen. That is, write δψ (~ρ) = 2πκ
∫ δz

0
dz δn (~r).

Show that

γδψ (ρd) =

∫∞
−∞ dzd γδn (ρd, zd)∫∞
−∞ dzd γδn (0, zd)

.

Hint: make use of the following trick (similar to the trick used with Eq. ???)∫ δz

0

dz

∫ δz

0

dz′ =

∫ δz

0

dzc

∫ δz−2|zc−δz/2|

2|zc−δz/2|−δz
dzd ≈

∫ δz

0

dzc

∫ ∞
−∞

dzd

where the second approximation makes the assumption that the characteristic size of the
index-of-refraction inhomogeneities is much smaller than δz, allowing the integration limits
for dzd to be extended to infinity without significant error.
b) Convince yourself that the first equality in the above trick is true.
Hint: make a sketch of the integration area spanned by dzc and dzd.

Problem 5

Consider a sample where the index-of-refraction variations obey Gaussian statistics given by

γδn(rd) = e−r
2
d/l

2
n

where ln is the index-of-refraction correlation length.
a) Show that, in the small-angle approximation (equivalent to κln � 1), the correspond-

ing phase function is given by

p (θ) ≈ 1

2π (1− g)
e−θ

2/2(1−g)

where

g ≈ 1− 1

2π2κ2l2n
.

b) Verify that Eq. 20.57 is satisfied.
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