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Abstract: For the past 30 years, there has been a lack of objective tools for diagnosing Gulf War
Illness (GWI), which is largely characterized by central nervous system (CNS) symptoms emerging
from 1991 Gulf War (GW) veterans. In a recent preliminary study, we reported the presence of
autoantibodies against CNS proteins in the blood of veterans with GWI, suggesting a potential
objective biomarker for the disorder. Now, we report the results of a larger, confirmatory study of
these objective biomarkers in 171 veterans with GWI compared to 60 healthy GW veteran controls
and 85 symptomatic civilian controls (n = 50 myalgic encephalomyelitis/chronic fatigue syndrome
(ME/CFS) and n = 35 irritable bowel syndrome (IBS)). Specifically, we compared plasma markers of
CNS autoantibodies for diagnostic characteristics of the four groups (GWI, GW controls, ME/CFS,
IBS). For veterans with GWI, the results showed statistically increased levels of nine of the ten
autoantibodies against neuronal “tubulin, neurofilament protein (NFP), Microtubule Associated
Protein-2 (MAP-2), Microtubule Associated Protein-Tau (Tau), alpha synuclein (α-syn), calcium
calmodulin kinase II (CaMKII)” and glial proteins “Glial Fibrillary Acidic Protein (GFAP), Myelin
Associated Glycoprotein (MAG), Myelin Basic Protein (MBP), S100B” compared to healthy GW
controls as well as civilians with ME/CFS and IBS. Next, we summed all of the means of the CNS
autoantibodies for each group into a new index score called the Neurodegeneration Index (NDI).
The NDI was calculated for each tested group and showed veterans with GWI had statistically
significantly higher NDI values than all three control groups. The present study confirmed the utility
of the use of plasma autoantibodies for CNS proteins to distinguish among veterans with GWI and
other healthy and symptomatic control groups.
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1. Introduction

Although the 1991 Gulf War (GW) only had less than two months of air strikes and less than a week
of ground combat, approximately one-third of the 697,000 U.S. veterans developed a combination of
health symptom complaints, including debilitating fatigue, chronic headache and body pain, memory
and concentration difficulties, gastrointestinal problems, and skin abnormalities, known as Gulf War
illness (GWI) [1–3]. In addition, some GW veterans also had increased rates of two other distinct
conditions, Irritable Bowel Syndrome (IBS) and Myalgic Encephalomyelitis/Chronic Fatigue Syndrome
(ME/CFS), which have overlapping symptoms with GWI [4,5]. Given these overlapping symptoms
with other chronic conditions, it has been difficult to confirm the presence or absence of GWI or to
differentiate between these disorders [6–8]. Neuroimaging has been found to be useful as a differential
diagnostic tool for GW ill versus GW healthy individuals; however, what has been missing is the
ability to use a less invasive, more readily available, and less costly tool, such as blood biomarkers to
differentiate GWI from GW healthy status and differentiate GWI from another chronic multisymptom
discord [6,8]. There have been some encouraging blood biomarker studies reporting differences
between GWI cases and controls on neuroinflammatory markers that require validation in other GWI
cohorts [9–11]. In addition, recently, we reported on a pilot study of serum biomarkers, which found
seven out of eight markers significantly differed in veterans with GWI versus symptomatic controls with
lower back pain, suggesting new potential blood markers for GWI [12]. The current study expanded
on these prior findings by adding newly developed cutting-edge blood plasma autoantibodies in GW
veteran and civilian cohorts, including those with IBS and ME/CFS, to identify whether veterans with
GWI have the signature central nervous system (CNS) damage associated with their deployment that
is different from other groups with overlapping chronic symptoms. IBS is a chronic mutisymptom
illness that affects the gastrointestinal system and results in diarrhea or constipation or both. Although
the cause of IBS is not known, it may result from altered gut motility, stress, environmental exposures,
and genetic predisposition. It has also been shown to be related to alterations of the gut–brain axis
in animal models of GWI and in a pilot study of GW veterans [13–16]. ME/CFS is characterized
by extreme fatigue, muscle pain, headaches, multijoint and throat pain, lymph node swelling and
soreness, chronic insomnia, and sleep disorders [6]. In addition, it may cause loss of memory and
reduced concentration. Contributing factors may include viruses, weakened immune system, stress,
or environmental exposures. Although some symptoms among the three disorders (GWI, IBS, ME/CFS)
overlap, the etiologies differ, raising the question whether objective blood markers of GWI could be
distinguished among these other chronic medical conditions.

GW veterans were exposed to numerous environmental neurotoxicants, including
acetylcholinesterase (AChE)-inhibiting organophosphate pesticides and nerve gas agents [17,18].
Early studies investigated the hypothesis that GWI resulted from combined exposures of GW-relevant
toxicants including pyridostigmine bromide (PB), N,N-diethyl-meta-toluamide (DEET), permethrin,
and chlorpyrifos in hens [19,20]. Mixed exposures to multiple toxicants resulted in significantly
greater toxic effects than separate exposures. More recent results with GW veterans who were
pesticide applicators during the war also showed that combination exposures to PB and pesticides
were associated with higher rates of GWI and specifically, with diminished CNS functioning on mood
and cognition [18].

Pesticides used during the GW easily enter through the blood–brain barrier (BBB) because they
are lipid-soluble [19,20]. These neurotoxicants have been found to be associated with autoantibodies to
CNS proteins in the blood in several prior studies and exposed groups [12,20,21]. These exposures have
been associated with neurological symptoms associated with CNS cellular functioning. For example,
studies showed increased levels of CNS cellular proteins in pesticide-exposed participants with
neurological symptoms [22–24]. These results were similar to those found in our pilot study of ill GW
veterans [12].

The brain has two types of cells: neurons and supporting glial cells, including astrocytes and
oligodendrocytes [21,25–27]. Neurons are characterized by the cell body and two additional parts,
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including axons and dendrites. Proteins in the axon include neurofilament triplet proteins (NFP),
tubulin, tau, calcium/calmodulin kinase II (CaMKII), and (α-syn) [20,21,26,28]. Proteins in the dendrites
include microtubule associate protein (MAP-2) [28]. Microtubules and tau make up the cytoskeleton
of neurons.

Glial support cells include oligodendrocytes that myelinate axons using myelin basic protein
(MBP) and myelin-associated glycoprotein (MAG). Astrocytes secrete glial fibrillary acidic protein
(GFAP) and S100B only in the CNS [21,29,30].

The present study was carried out to use our newly developed biomarker test to differentiate GWI
from other chronic conditions and healthy controls and confirm/validate our previous preliminary
report of a small number of GW veterans and symptomatic controls showing increased CNS protein
autoantibodies in their blood [12]. We hypothesized that as a result of neurotoxicant exposures during
the war, autoantibodies to these ten CNS proteins would be increased in veterans with GWI when
compared with other healthy and symptomatic control groups. Specifically, we hypothesized that
neuronal and glial CNS proteins would differ in veterans with GWI compared with healthy and
symptomatic controls with similar multisymptom disorders, including IBS and ME/CFS.

2. Materials and Methods

Study Population: GW illness consortium (GWIC) and the Dynamic Modeling of GWI study
participants, two Department of Defense supported studies at Boston University and Nova Southeastern
University, provided plasma samples from veterans deployed to the 1991 GW. Additional GWI
participant samples were shared from the New England School of Acupuncture. These three established
biorepositories of GW veterans were used from veterans who consented to share their blood samples
for future studies. Control samples were provided by the Congressionally Directed Medical Research
Program (CDMRP) funded studies in Boston and Florida, and samples from patients with Irritable
Bowel Syndrome came from the biorepository at Beth Israel Deaconess Medical Center. Institutional
Review Boards (IRBs) approvals from these biorepositories were obtained from Boston University,
Nova Southeastern University, the Miami VA Medical Center, and Beth Israel Deaconess Medical Center.

The same standard operating procedures for phlebotomy, plasma separation, aliquoting,
and storage were followed by all labs for all samples. Plasma samples were obtained from fasting
subjects. Samples remained frozen at −80 ◦C until shipped for autoantibody analysis.

Cases and controls were determined by Kansas GWI criteria [31]. This criterion requires GW
veterans to self-report symptoms in 3 out of 6 symptom domains (neurologic/mood/cognitive, fatigue,
pain, gastrointestinal, respiratory, and skin). Veteran controls were deployed to the GW and did not
meet the Kansas GWI or exclusionary criteria. Exclusions included CNS medical conditions and
psychiatric illnesses that could account for their symptoms [31]. Plasma samples from symptomatic
controls came from prior studies of individuals with ME/CFS and IBS. ME/CFS cases were determined
by using 1994 CDC criteria [5]. IBS cases were determined by Rome III criteria [32]. The full cohorts have
been described in previous papers (GWIC, ME/CFS, IBS, GWIC subsample) [4,12,14,33,34]. Institutional
review boards at Nova Southeastern University/Miami VA Medical Center, New England School
of Acupuncture, Beth Israel Deaconess Medical Center, and Boston University provided approval.
All participants signed consent to use their plasma for follow-up studies of GWI biomarkers.

Ethical Statement: Approval for the use of stored blood samples for this study was obtained
from the Duke University Health System Institutional Review Board for Clinical Investigations on
9 October 2017 and from the Boston University Medical Campus Institutional Review Board on
19 January 2018. The specific protocol components for Duke University were: Protocol ID: Pro00003202,
Reference ID: 335940, Principal Investigator: Mohamed Abou Donia, Protocol Title: ‘Nervous System
Injury’. The specific protocol components for Boston University were Protocol ID: H-34334, Reference
ID: 1288716, Principal Investigator: Kimberly Sullivan, Protocol Title: ‘Novel Autoantibody Serum and
Cerebrospinal Fluid Biomarkers in Veterans with Gulf War Illness’.
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2.1. Materials

The proteins used in this study were as follows: Tubulin (human recombinant, Cat. #PRO-982,
ProSpec-Tany TechnoGene Ltd., East Brunswick, NJ, USA), Microtubule-Associated Protein 2 (MAP-2,
human recombinant, Cat. #TP316775, OriGene, Rockville, MD, USA), Tau-381 (human recombinant,
Cat. #AG952, MilliporeSigma, Burlington, MA, USA), Neurofilament Protein (NFP, Cat #PRO-523,
ProSpec-Tany TechnoGene Ltd., East Brunswick, NJ, USA), Calmodulin Kinase II (human recombinant,
CaMKII, Cat #H000000H15-P01, Novus Biologicals, Littleton, CO, USA), Alpha-synuclein (human
recombinant, Cat. #AS-55555, AnaSpec, Fremont, CA, USA), Myelin Basic Protein (MBP, human, Cat.
#30R-AM030, Fitzgerald Industries International, Acton, MA, USA), Myelin-Associated Glycoprotein
(MAG, human recombinant, Cat. #131–86-H02H, Sino Biological Inc., Wayne, PA, USA), Glial Fibrillary
Acidic Protein (GFAP, human, Cat. #345996, CalBiochem, San Diego, CA, USA), and S100B Protein
(human, Cat. #30R-AS002, MilliporeSigma, Burlington, MA, USA).

2.2. Procedures

Plasma procedures: All sites used the same written standard operating procedures for
venipuncture, blood handling, plasma separation, aliquoting, and storage at −80 ◦C. Blood samples
were collected prior to intervention for treatment trials. Samples remained frozen until sent for analyses
and were visually inspected to not have hemolysis.

Western blot assay: In this study, a Western blot analysis was used for determination
of CNS autoantibodies and antigens from the plasma samples of GWI cases and healthy and
symptomatic controls. All plasma samples were analyzed three times for consistency and followed
the protocol previously published in [12]. Specifically, each CNS protein was loaded into 10 ng/lanes.
Immunoglobulin G (IgG) was loaded into a 100 ng/lane. All proteins were denatured and
electrophoresed on SDS-PAGE (gradient 4% to 20% gradient) and a separate gel was used for
each plasma sample. Enhanced chemiluminescence was used to determine if proteins were found by
using a Typhoon 8600 variable model recorder (GE Lifesciences, Marlborough, MA, USA). The signal
intensity was determined by Bio-Rad Quantity One image analysis software (Hercules, CA, USA).
Specifically, the protein bands were quantified on digitized images in the mid-dynamic range using
Quantity One software (Bio-Rad) and densitometry measurements were normalized to IgG in the same
samples. Lab researchers were blinded to the case–control status of the samples.

2.3. Calculations

Measurement of chemiluminescent optical density for cases and controls was obtained by dividing
plasma IgG concentrations. This optical density measure was normalized to controls and expressed as
fold-change from healthy controls. Therefore, the CNS autoantibody measurements were presented as
mean triplicate assay values normalized to healthy control values.

2.4. Neurodegeneration Index (NDI)

This new index was designed to determine the overall neurodegenerative condition of an
individual based on the level of autoantibodies in the plasma. It is calculated by adding all of the values
of autoantibodies for each neural protein, and then, dividing the sum by the number of autoantibodies
used. Finally, this value is multiplied by 10 to produce the NDI.

Neurodegeneration Index (NDI) = (The Sum of Autoantibodies to “n” Proteins/n) × 10 (1)

The NDI is used here as a simple, blood-based proxy to determine the extent of neurodegeneration
of an individual, based on a plasma assay of autoantibodies for an individual.
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2.5. Statistical Methodology

Descriptive statistics are presented as mean ± SE for continuous variables and as number and
percent of participants per category of categorical variables. Subjects’ demographic values were
compared across the four groups using one-way analysis of variance for continuous outcomes and
the chi-square test for categorical outcomes. Mean values of the antibodies were compared across
groups using analysis of covariance (ANCOVA) adjusting for age, sex, and race. p values were
two-sided. To account for multiple comparisons, p < 0.001 was accepted as statistically significant for
the comparisons between treatments on antibody levels. Analyses were conducted using SAS Version
9.4 (SAS Institute, Cary, NC, USA).

3. Results

3.1. Specificity of Serum Autoantibodies

The specificity of the serum autoantibodies against all tested neural proteins was previously
reported by performing protein/peptide competitive assay [12,26]. The specificity of an autoantibody
in the sera was assessed by performing a peptide/antigen absorption assay by preabsorbing the serum
with the target proteins. The preabsorbed serum was tested by Western blot (Figures 1–3).
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Figure 1. Representative panel of Western blotting from three cases of the GWI patients (upper panels),
and healthy controls (lower panels).

3.2. Participant Demographics

Demographics are presented in Table 1. Participants were 175 veterans with GWI, 60 GW veteran
healthy controls, 37 IBS controls, and 50 ME/CFS symptomatic controls. Significant differences were
seen for age, sex, and race.

This study was carried out to use our newly developed neurodegenerative biomarkers to
diagnose veterans of the 1991 Gulf War with GWI compared with healthy and symptomatic controls.
The biomarkers consist of circulating autoantibodies of ten neural proteins (six neuronal and four
glial) determined in the plasma of GW veterans with GWI, healthy Gulf war veterans, veterans with
ME/CFS, and IBS that were used as controls. The NDI was calculated as described in the methods
above and was assessed among the groups by chi-square tests.
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Figure 3. Representative panel of Western blotting from three cases of the ME/CFS patients (upper
panels), and healthy controls (lower panels).

3.3. Autoantibody Levels for Neuronal and Glial Proteins using Western Blot

Autoantibodies were determined for GWI cases, GW healthy veteran controls, IBS symptomatic
controls, and ME/CFS symptomatic controls for the six neuronal proteins: NFP, tubulin, tau, MAP-2,
CaMKII, and α-syn. In addition, four proteins from two types of glial cells were measured, including
MBP and MAG from oligodendrocytes and GFAP and S100B from astrocytes.

The first analysis, which compared all three control groups combined (GW controls, IBS and
ME/CFS groups), with veterans with GWI showed significantly increased mean levels for veterans GWI
for nine out of the ten autoantibodies (Table 2; Figure 4). The only exception was for the glial protein
S100B, whose mean level was similar to that of healthy controls (Table 2). In addition, there were no
interacting the groups for any of the outcome measures.
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Table 1. Demographic information of Gulf War Illness cases and healthy Gulf War and
symptomatic controls.

Data GWI Cases GW Healthy Controls IBS Controls ME/CFS Controls

N 175 60 37 50
Age *

(Mean ± SD) 48.7 ± 7.8 50.92 ± 7.48 39.40 ± 13.93 46.74 ± 10.24

Sex *
Male (%) 80.2% 93.3% 8.6% 10%

Female (%) 19.8% 6.7% 91.4% 90%
Race *

Caucasian (%) 81.3% 73.7% 85.7% 91.3%
African American

(%) 12.9% 23% 8.6% 8.7%

Other/Multiracial (%) 5.8% 3.3% 5.7% 0.0%

Note: * denotes significant differences p < 0.01 across the four groups. We obtained information for age, sex, and race
from 171 individuals for GWI veterans, and 35 individuals for IBS controls.

Table 2. Autoantibodies against neural proteins in GWI cases and healthy and symptomatic controls a

using ANCOVA analysis and adjusting for age, sex, and race.

GWI vs. All
Controls

GWI vs. GW
Controls

GWI vs. IBS
Controls

GWI vs.
ME/CFS
Controls

A. Neuronal Proteins

Neurofilament Triplet Mean (SE) 3.42 (0.19) *** 1.88 (0.26) *** 0.86 (0.02) *** 1.18 (0.05) ***

Proteins (NFP) Range 2.6–15.15 0.16–9.74 0.64–1.23 0.51–2.25

Tubulin
Mean (SE) 4.13 (0.25) *** 2.36 (0.30) *** 1.14 (0.03) *** 2.71 (0.24) **

Range 0.32–15.15 0.09–10.76 0.62–15.36 0.63–7.39

Microtubule Associated
Protein Tau (Tau)

Mean (SE) 2.92 (0.22) *** 1.57 (0.17) *** 1.24 (0.13) *** 1.02 (0.07) ***
Range 0.33–10.55 0.34–5.13 0.52–4.11 0.40–3.36

Microtubule Associated
Protein-2 (MAP-2)

Mean (SE) 9.66 (0.73) *** 5.04 (0.76) *** 1.05 (0.07) *** 6.97 (0.35) **
Range 0.88–27.42 0.24–23.00 0.64–2.45 1.40–14.02

Calcium/Calmodulin Mean (SE) 2.04 (0.15) *** 1.20 (0.13) *** 0.70 (0.03) *** 1.16 (0.05) ***
Kinase 2 (CaMKII) Range 0.10–5.50 0.15–4.50 0.37–1.43 1.11–1.92

Alpha Synuclein (α-syn) Mean (SE) 2.52 (0.19) *** 1.46 (0.02) *** 0.78 (0.06) *** 1.13 (0.05) ***
Range 0.17–11.77 0.37–6.45 0.51–1.93 0.41–1.93

B. Glial Proteins:
Oligodendrocytes

Myelin Basic Protein (MBP) Mean (SE) 4.28 (0.18) *** 2.17 (0.32) *** 1.19 (0.03) *** 1.52 (0.09) ***
Range 0.09–17.34 0.42–11.83 0.74–1.7 0.44–4.33

Myelin Associated
Glycoprotein (MAG)

Mean (SE) 4.94 (0.28) *** 2.12 (0.25) *** 3.20 (0.21) * 1.58 (0.11) ***
Range 0.24–20.94 0.38–6.51 1.03–6.51 0.26–4/48

Glial Proteins: Astrocytes

Glial Fibrillary Associated
Protein (GFAP)

Mean (SE) 4.27 (0.18) *** 2.34 (0.30) *** 0.84 (0.03) *** 4.86 (0.26)
Range 0.39–13.14 0.35–14.98 0.45–1.38 0.66–8.44

Glial S100B (S100B) Mean (SE) 1.17 (0.04) 1.16 (0.03) 0.95 (0.03) 1.34 (0.06) *
Range 2.60–2.41 0.37–2.74 0.53–1.34 0.49–2.26

Note: * p < 0.01 ** p < 0.001 *** p < 0.0001. a Values reflect fold change relative to control.
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Figure 4. Neural autoantibodies in plasma of GWI cases, GW healthy controls, IBS controls, and ME/CFS
controls. *** p < 0.0001 (blue) GWI group to all three control groups combined using ANCOVA adjusted
for age, sex, and race. *** p < 0.0001 (orange) GWI group to GW veteran control group using ANCOVA
adjusting for age, sex, and race. *** p < 0.0001 (grey) GWI group to IBS group using ANCOVA adjusting
for age, sex, and race. *** p < 0.0001 (yellow) GWI group to ME/CFS group using ANCOVA adjusting
for age, sex, and race.

The next analysis compared only GWI cases to GW veteran controls. The results of this comparison
also showed that mean levels of nine out of the ten plasma autoantibodies of GWI cases were significantly
higher for veterans with GWI than for healthy GW controls. Again, levels of S100B autoantibodies for
GWI cases were not significantly increased from GW veteran controls.

Next, we compared GWI cases to symptomatic non-veteran IBS controls. The results again showed
higher mean levels of nine out of ten autoantibodies for GWI cases compared to IBS controls. Again,
the only non-significantly different autoantibody was S100B (Table 2).

Finally, we compared GWI cases to symptomatic non-veteran ME/CFS controls. The results
showed higher mean levels of nine out of ten autoantibodies for GWI cases compared to ME/CFS
controls. The only non-significantly different autoantibody between the two groups was for the GFAP
protein (Table 2).

3.4. Neurodegeneration Index (NDI)

The Neurodegeneration Index score was calculated as described above for each tested group and
the results were as follows (Figure 5): GWI = 39.35, GW healthy controls = 21.3, IBS controls = 11.94,
and ME/CFS controls = 23.47. The mean NDI score for veterans with GWI was significantly higher
than in all controls combined (p < 0.0001). In addition, the percentage of participants with NDI > 20
was significantly higher in GWI cases than in all controls combined (94.3% vs. 44.2%; p < 0.0001 via the
chi-square test). The percentage of participants with NDI > 30 was also significantly higher in GWI
cases than in all controls combined (71.8% vs. 14.3%; p < 0.0001 via the chi-square test).
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4. Discussion

For the past 30 years, there has not been an objective diagnostic marker for GWI, which has
hindered research in the field. Chronic symptoms reported by veterans with GWI have included
headache, memory and attention decrements, debilitating fatigue, chronic pain, and gastrointestinal
problems [2,3,35]. Many of these symptoms overlap with other comorbid conditions, including IBS
and ME/CFS, necessitating the need for an objective marker that can delineate among these diagnostic
groups. The present well-powered study confirms and expands the results of our previous descriptive
study, where we identified a unique signature of objective biomarkers of CNS proteins in blood samples
of 20 GW veterans compared with 10 controls [12]. In this study, we confirmed our prior results
in a much larger sample of over 300 participants, including ill and healthy GW veterans and other
symptomatic controls with IBS and ME/CFS. Specifically, we compared GWI cases vs. three control
groups (GW controls, IBS, ME/CFS) and found that GWI cases had higher autoantibodies than all
combined controls in nine out of ten autoantibodies. We then compared GWI cases with the three
control groups separately and also found that the GWI cases showed significantly higher levels of nine
out of ten autoantibodies than GW controls, IBS, or ME/CFS groups. These results clearly distinguish
GWI cases not only from healthy GW counterparts but also other symptomatic controls with chronic
multisymptom disorders.

Our results showed significantly elevated CNS autoantibodies in the plasma of veterans with GWI.
The presence of low levels of autoantibodies in the plasma of GW healthy controls is consistent with
previous findings in healthy individuals [12,36]. These results suggest that GW healthy controls had
no lasting CNS effects from their deployment. In contrast, increased levels of CNS autoantibodies are
consistent with veterans with GWI’s chronic neurological complaints and thus, provides an objective
biomarker of the illness. The results revealed large increases in autoantibodies in the GWI cases
compared to all controls except for S100B. These increases were significantly higher than controls with
autoantibodies against MAP-2, showing the highest overall level in all groups tested. These were
followed by autoantibodies against myelin and other glial-related proteins showing the highest levels
(MAG > MBP > GFAP) and then, followed by increased neuronal cytoskeletal protein autoantibodies
against Tubulin > NFP > Tau.
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Our results show that autoantibodies to neural proteins can be used as biomarkers for
diagnosis and prognosis of GWI and may also provide insight into the potential mechanisms of
GWI. The only consistent risk factors for GWI are environmental exposures, including the use of
pyridostigmine bromide pills and pesticides, which are now known to adversely affect the CNS in
significant or combined dosages [14,15,17–20,24–28]. Although a total of over 50 pesticide products
were used during the Gulf War, less than 20 were designated as “pesticides of concern” by the
Department of Defense, including the insecticides permethrin and lindane as well as the repellant,
DEET (N,N-diethyl-m-toluamide) and organophosphate insecticides and nerve gases, sarin and
cyclosarin [23]. These same exposures were recently shown by our group to be associated with
higher rates of GWI and specifically, with worse mood and cognitive functioning [18].

Furthermore, several studies have shown some organophosphorus (OP) compounds, such as
sarin and chlorpyrifos in addition to inhibiting acetylcholinesterase, also cause neurodegeneration
of the CNS [37–40]. A recent study reported increased CNS autoantibodies in blood from farm
workers exposed to OP pesticides [41]. Investigations into the mechanisms by which these compounds
cause neurodegeneration have established that OPs increase the activity and expression of CaMKII,
which causes hyperphosphorylation of neural proteins, leading to their aggregation and slowing of
axonal transport, resulting in neuronal cell death [19,42–45]. In agreement with this is our prior finding
that airline crews who were exposed to OPs developed autoimmune antibodies to neural proteins [46].
Another study using Magnetic Resonance Imaging (MRI) examination of another cohort of aircrews,
showed decreased white matter microstructure and blood perfusion are potential causes of cognitive
and mood symptoms experienced by the aircrews [46].

These results suggest the involvement of white matter alterations in the development of GWI
is consistent with increased autoantibodies against MBP and MAG that are present in myelinated
axons [9,37,39,44]. Blood markers of MBP are also elevated in myelin-related CNS disorders. Increased
autoantibodies to MBP in the plasma of veterans with GWI correlate with demyelination following
axonal degeneration caused by exposure to OPs [12,37,39]. GFAP is a glial protein that is involved in
white matter and blood–brain barrier functioning [21]. This finding also correlates with our recent
finding that GFAP almost completely distinguished between GWI cases and controls in our prior pilot
study [12]. This also correlates with recent findings of increased neuroinflammation seen in imaging
the brains of veterans with GWI, as shown by significantly greater glial activation using PET brain
imaging [47].

CaMKII is widely distributed in the CNS, constituting up to 2% of the protein in the
hippocampus [48]. Exposure to organophosphates, such as di-isopropyl fluorophosphate (DFP),
a surrogate compound for sarin, enhanced Ca++ release and increased expression and activity of
CaMKII, resulting in hyperphosphorylation of several cytoskeletal proteins, i.e., tubulin, MAP-2,
Tau, and neurofilament triplet proteins [44,45,49]. Increased phosphorylation of MAP-2, Tubulin,
and Tau resulted in their aggregation and slowing of axonal transport [44,45,49]. CaMKII-induced
hyperphosphorylation caused significant increase in both c-fos and c-jun expression, leading to
apoptosis mediated by cytochrome c released from mitochondria due to the imbalance between the
Bax, Bcl-2, and BCl-xl proteins triggered by the generation of Reactive Oxygen Species [29,30].

The results show that autoantibodies against S100B were not different from controls and were
consistent with its neuroprotective action and the chronic nature of GWI. S100B’s half-life is 2 h in
blood, supporting the use of its autoantibodies as biomarkers for neuronal conditions [29,30].

When the results of GWI cases were compared to controls with IBS, autoantibodies values were
much higher, which is consistent with the fact that IBS is not considered a neurodegenerative disorder.
The only elevated autoantibodies in IBS controls were against MAG but even that was less than half
that of GWI cases. These results not only confirm the validity of our test as a biomarker for CNS effects,
but also establishes its specificity as a marker for chronic GWI. MAG comes from oligodendrocytes
in CNS and by Schwann cells in the periphery. The present results suggest that MAG protein was
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released from peripheral nerves in the gastrointestinal tract, a major target for IBS, suggesting its
potential use for that disorder.

Furthermore, ME/CFS symptomatic controls exhibited levels of autoantibodies against neural
proteins that were intermediate between veterans with GWI and controls with IBS. ME/CFS is
characterized by body and muscle pains as well as some CNS symptoms, including debilitating fatigue.
GWI cases had higher levels of all autoantibodies except for GFAP when compared with ME/CFS
controls. The increased GFAP levels in ME/CFS suggest a potential marker and pathobiology for that
disorder. Recent studies from other groups have shown increased antibodies against ß2-adrenergic
receptors in ME/CFS patients [50,51]. This suggests that ME/CFS is more similar to GWI than IBS
based on these autoantibody biomarkers, but GWI still clearly represents a unique disorder based on
different autoantibody patterns.

Increased autoantibodies of biomarkers NFP, tau, tubulin, and MBP, and neuronal cytoskeletal
disruptions, including microtubule instability, axonal degeneration, and altered axonal transport, have
been found in many cell and animal studies of toxicant-induced models of GWI [27,42–45,49,52–54].
We are only aware of the following prior studies, including our prior pilot study, showing increased
autoantibodies in much smaller pilot studies of GW veteran blood samples [12,55–58]. To our
knowledge, this is the first large, more definitive study to validate these prior animal, cell, and veteran
studies in the blood of ill GW veterans compared with combined and separate healthy and symptomatic
comparison groups.

We hypothesized that exposures to chemicals present in the GW theater, such as pesticides and
nerve gases, can cause CNS damage and release of CNS autoantibodies through the BBB into blood
circulation, where B-lymphocytes produce antibodies to proteins and T cells produce cell-mediated
immune responses, and IgG autoantibodies are then made [48,59,60]. Theoretically, IgG autoantibodies
can enter through the BBB and disrupt CNS functioning, which could lead to symptoms of GWI [59–61].
Further research is needed to confirm this hypothesis. The results of the NDI analyses, showing GWI
cases were three times more likely to have an NDI score of 30 or greater, suggest that these individuals
may be at increased risk for early onset of age-related neurodegenerative disorders.

Correspondingly, recent studies have reported increased levels of CNS autoantibodies in blood,
from neurodegenerative diseases such as Alzheimer’s disease (AD) and Parkinson’s disease (PD),
suggesting the need for further studies of the potential increased risk of these disorders in GW
veterans [62–64]. Having these reports, together with the results of the present study, raises concerns
regarding the likelihood for veterans with GWI to develop neurodegenerative diseases such as AD
and/or PD as they age. These CNS protein biomarkers may be useful for determining who is at risk for
these disorders in addition to using them in clinical trials for treatment efficacy of GWI.

Limitations

Like all studies, our study had limitations. GWI diagnosis was based on veterans’ self-reported
symptoms, which could have introduced some classification errors. In addition, some veterans could
have very early signs of neurodegenerative disorders that were not picked up in the clinical evaluations,
which could have increased autoantibody levels in the veterans. However, the Kansas criteria for GWI
would have excluded known cases of these disorders, including AD, PD, and other chronic illnesses
that could have accounted for their chronic symptoms [31]. There were also sex differences within our
groups as might be expected, with more women in the ME/CFS and IBS groups and more men in the
GWI groups, and although these sex differences were controlled for in the analyses, future studies
should more directly compare these autoantibody outcomes by sex. A major strength of our study
included the large sample size and the inclusion of both healthy and symptomatic veteran groups
in this objective biomarker study. In addition, the CNS autoantibody analyses were similar chronic
multisymptom disorders (IBS, ME/CFS). We confirmed and validated our prior preliminary results
of increased autoantibodies in a much larger sample of veterans with GWI compared with healthy
GW veterans and with symptomatic non-veteran IBS and ME/CFS controls [12]. This study confirmed
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that nine of the ten autoantibodies were significantly increased in veterans with GWI, suggesting
considerable CNS differences compared to both healthy and symptomatic controls. This confirms our
prior studies, which suggested a strong CNS component to GWI [18,38]. The present study confirmed
the utility of the use of plasma autoantibodies for CNS proteins to distinguish among veterans with
GWI and other healthy and symptomatic control groups and our newly developed NDI summary
score can be further utilized to compare pre and post treatment trial efficacy.
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