
It was Fifty Years Ago Today: Recording Copyright Term and the

Supply of Music

Megan MacGarvie

Boston University, Questrom School of Business and NBER

John McKeon

Boston University, Questrom School of Business

Jeremy Watson

University of Minnesota, Carlson School of Management

July 20, 2021



It was Fifty Years Ago Today: Recording Copyright Term and the
Supply of Music

Abstract

This paper examines the effect of the expiry of recording copyright on the supply of
music - in the form of re-releases, availability in streaming platforms, and concert per-
formances - by artists popular in the UK in the 1960s. We find that recording copyright
expiry has different effects on a song’s availability in different distribution channels. The
lapsing of copyright leads to a large increase in the number of re-releases in physical
formats, holding constant artist, age, and year fixed effects. However, when a song’s
original recording copyright expires, it becomes less likely to be performed in concert.
Moreover, copyright status is not associated with differences in availability on the digital
streaming platform Spotify. These results show that copyright has nuanced effects on
availability, and can lead to different and even opposite effects on availability of a prod-
uct across different distribution channels. They also show that within the context of
digital distribution, the impact of copyright on availability differs based on the business
model of a platform.
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Copyright is critical to the strategies of firms that sell creative products such as music. Yet much

of the empirical literature on the effects of copyright has studied content distribution channels from

the pre-digital era, typically focusing on a single distribution channel.1 Because technological change

has led to a rapid and dramatic evolution of business models in copyright-intensive industries, more

empirical research is needed to inform and adapt copyright regimes and firm strategy (Greenstein

et al., 2013). This is particularly true in the music industry, where consumers access music through

several distinct channels with disparate vertical structures.2

This paper examines the nuanced effects of recording copyright on the availability of music, using

a unique data set that covers the musical releases, live performances, and digital availability of

musicians that were popular in the UK in the 1960s. Within this context we examine the effect of

sound recording copyright expiration on the availability of affected recordings. In addition, because

artists can use live performances to promote album sales, we assess whether copyrighted songs are

more likely to be performed in concert than songs of the same age for which recording copyrights

have expired.

We find that copyright has different, and even opposing, effects on the availability of popular music

dependent upon the nature of the distribution channel. Several of our findings depart from prior

estimates of the effects of copyright, studies which do not capture availability through alternative

channels more relevant in the case of music, and do not address the role of digital streaming

platforms.3 In contrast to most prior research, we are able to identify the impact of a change in

copyright status during an artist’s lifetime (and can therefore observe changes in the supply of

performances). We also exploit the extension of copyright terms in 2013 to empirically disentangle

copyright status from year and age effects, correcting for potential bias due to 50th anniversary

effects.

We make several contributions. First, examining data on re-releases of songs distributed in retail

channels, our results suggest a substantial increase, of approximately 160-340%, in the number of

UK re-releases of songs once recording copyright expires, relative to songs of the same age and

approximate vintage remaining under copyright protection.

This result is consistent with previous findings for books, which are also distributed using a

retail model, and serves to replicate these previous studies in a new music industry context. But

because recorded music differs from books in the number of distinct copyrights that must be cleared

before re-issuing a song, these results show that the stimulating effects of public domain status on

1Prior research on books demonstrates that copyright expiry leads to an increase in the availability of books in
print (Heald, 2014a; Reimers, 2018).

2The movie and music industries, among other core copyright industries (WIPO, 2015), generate value through
retail sales, live performances (which now generate a large share of total revenue for the industry), and bundled digital
streaming (Waterman, 2009; Mortimer et al., 2012). The industry is in transition from sales of primarily physical
(CD and LP) albums to distribution through Digital Streaming Platforms (DSPs) which have stimulated revenues
for the industry as a whole after years of decline.

3While demand for e-books has grown considerably, digitization and a low incidence of piracy have not disrupted
the book industry’s longstanding “retail” model of distribution in which physical books and digital download e-books
are sold directly to consumers through retailers, while the predominant e-book retailer Amazon remains relatively
open on the supply side.

1



availability are observed even when some copyrights (e.g. composition rights) remain in force.

However, results on live performances challenge prior findings on copyright and availability. Live

performances play an important role in promoting album sales and streaming demand. Exploiting

the fact that we observe variation in copyright status during the lifespan of artists in our sample,

we show that public domain songs by a given artist are less likely to be performed in concert than

copyrighted songs by that artist. This finding is consistent with a model in which artists choose to

perform (and thus promote) songs that bring the highest sales royalties. In contrast to prior research

which has suggested that extending copyright does not encourage the restoration, maintenance and

distribution of pre-existing works (Buccafusco and Heald, 2013), this suggests that the negative

supply effects of the extension on re-releases may be somewhat counteracted by a positive supply

response in live performances.

Our findings on digital platform availability further depart from prior results on copyright and

availability. We show that the typical DSP distribution model, with its comprehensive licensing of

large catalogs of rights, negates the effects of copyright expiry for any individual song. In contrast

to our finding that copyright expiry leads to greater availability of songs distributed via a retail

model of physical copies, we find that popular songs with recording copyrights in the public domain

are no more likely to be available on Spotify than songs whose copyrights have yet to expire. To be

precise, we show that a song whose recording copyright has expired in the UK but not in the US

is no more likely to be available in the UK than a song protected by copyright in both locations.

However, it is the predominant streaming platform strategy rather than digital distribution per

se that explains this difference, because estimates based on the availability of permanent digital

downloads from Amazon (a “retail” style platform) show similar effects around copyright expiry to

what is observed for physical releases. In addition, there is suggestive but not dispositive evidence

that copyright could still limit the availability of the most obscure artists on digital platforms.

Taken together, these results show that copyright has nuanced effects on availability, and can

lead to different and even opposite effects on availability of a product across different distribution

channels. They also demonstrate that within the context of digital distribution, the impact of

copyright on availability differs based on the business model of a platform. As the revenue shares,

and relative importance, of dissimilar distribution channels shift in an industry in transition, it is

important to understand how the impact of intellectual property rights on product availability may

change as new channels rise in prominence.

1 Prior Literature

Researchers in the economics (Reimers, 2018; Li et al., 2018), information systems (Danaher et al.,

2017; Aguiar et al., 2018), and legal literatures (Heald, 2008a; DiCola, 2013; Heald, 2014a) have in-

vestigated copyright’s market restrictions in terms of product access, prices, and creator incentives.

With a few exceptions, the latter aspect has received relatively little empirical research. MacGarvie

and Moser (2015), for example, study publisher payments to authors around the British copyright
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term extension of 1814 and find that payments increased substantially after the extension, partic-

ularly for superstar novelists. Giorcelli and Moser (2016) show that Italian states that adopted

copyright laws, as a result of annexation by Napoleon, saw a five-fold increase in the creation of

historically significant operas and a ten-fold increase in the creation of operas still available in

recordings today.

Product access includes consumers’ access to copyrightable information goods as well as supply-

side access – that is – the re-use of copyrighted material in the production of new information.

A growing literature considers copyrights effects on supply-side access and reuse (Heald, 2008a,

2014a,b; Nagaraj, 2018; Biasi and Moser, 2018; Watson, 2018). Empirically focused papers in this

stream consistently find that copyright protection decreases re-use across contexts, such as scientific

works (Biasi and Moser, 2018), music (Watson, 2018), and Wikipedia (Nagaraj, 2018).

Consumers predominantly access music through retail sales (Rob and Waldfogel, 2006; Oberholzer-

Gee and Strumpf, 2007; Hendricks and Sorensen, 2009), live performances (Mortimer et al., 2012;

Cho et al., 2017), and digital platforms (Danaher et al., 2014; Aguiar and Waldfogel, 2018). In

this work, we consider how the copyright status of a song affects consumer access through all three

of these channels. Early research in the legal literature (Heald, 2008a,b, 2014a) demonstrates that

copyright status is correlated with availability, but inference from these observational studies is

limited by the absence of causal empirical design. Building on these works, Reimers (2018) utilizes

a regression discontinuity approach and finds that lapse into the public domain results in an average

of 26.5 additional book editions.

However, because the data used in these studies is drawn from the book industry, they do not

study copyright’s effect on availability aside from a retail (or bookstore) model of selling physical

copies, or the similar model of permanent digital download sales through an open retail platform (or

online marketplace, e.g. Luca (2017)). Alternative distribution strategies stemming from product

differentiation, segmentation, and bundling are common in the copyright industries (Smith and

Telang, 2009; Shiller and Waldfogel, 2011). Furthermore, while some content platforms exhibit a

great deal of openness towards content providers on the supply side (e.g., YouTube, Steam), many

of the dominant platforms such as Spotify and Netflix exert greater control. In this paper, we

show that copyright status interacts with the nature of the distribution channel to influence the

availability of music. With the shift to digital distribution of music, we show that copyright status

may or may not influence availability, depending on the design of the platform on which music

is distributed. This contributes to the growing literature on platforms, pointing out that digital

distribution per se is less influential than the specific business models that digital distribution

enables, and that the effects of platforms depend on the design choices made by the architects of

platforms (Edelman et al., 2017).
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2 Conceptual Framework and Underlying Economics of Copyright

and Music Availability

In UK copyright law, a piece of recorded music may be protected by three separate copyrights.

The first is the musical composition, or the pattern of notes, underlying the song. The rights to

the musical composition are typically owned by the composer. The second aspect of copyright is

the right to the lyrics to the song, which are treated as a literary work and typically owned by the

lyricist. The third aspect is the sound recording which is the right to a specific fixation or recording

of a song. Performers typically enter into contracts that assign recording copyrights to a record

label in exchange for a royalty.4 The sound recording can be thought of as the specific way that

the song is performed and recorded. There can be multiple different sound recordings copyrighted

separately for the same music composition performed in different ways or by different artists.5

Copyright in sound recordings (or “records, perforated rolls, and other contrivances by means

of which sound may be mechanically reproduced”) was established in the UK by the Copyright

Act of 1911, which limited the duration of rights to fifty years (Copyright Act, 16/12/1911, Article

19, section 1). In 2013 the UK updated the Copyright, Designs and Patents Act 1988, following

Directive 2011/77/EU, to extend the duration of sound recording copyright from 50 years to 70

years from the year of first publication. According to a post-implementation review of the legislation

by the UK Intellectual Property Office, “The primary objective of the legislation was to enhance

the welfare of performers (artists) and record labels, ensuring they receive appropriate rewards for

their effort throughout their lives for their sound recordings and performances”(UK Intellectual

Property Office (2018)).6,7 This is still a much shorter term than the United States’, which protects

the copyright of sound recordings for the artist’s life plus 70 years. The law extends protection

on songs first published in 1963 or later, and EU member states were required to comply with

the Directive by November 1, 2013.8 Songs originally released before 1963 are unaffected by the

extension and entered the public domain after 50 years.

Copyright affects different artists and songs in different ways. Artists that write, compose, and

record their own songs will receive revenues from both the musical composition and sound recording

4Directive 2011/77/EU, section (9). Non-featured performers (i.e. session musicians who play in the background),
who typically received lump-sum payments rather than a royalty, became entitled to receive royalties 50 years after
the recording when the directive came into being.

5“Cover versions” are a common example of sound recordings that are distinct from the original version’s recording
copyright.

6This justification is focused on ex post compensation of artists rather than any motivation for stimulating creation
of new work. Singer for The Searchers Mike Pender has recently said, “It is nice to still have the royalties. It means I
can still take my wife to a nice restaurant!” https://www.dorsetecho.co.uk/leisure/17519726.founding-member-

searchers-mike-pender-reveals-spends-royalty-cheques, accessed 5/24/2021.
7However, according to Theofilos (2013), “[m]ost artists who were young and just starting their careers were

systematically forced by powerful record companies into signing deals that paid only low royalty rates and effectively
forced those artists to relinquish all other rights to their music.” Theofilos notes that Kretschmer (2011) finds that
approximately 72% of the monetary benefits of term extension will go to record labels, with only 28% going to
artists (and only 4% to artists facing an income gap). Stanley (2011) notes that the more popular artists would have
renegotiated their contracts with labels and stood to gain substantially from the extension, particularly artists like
Cliff Richard who did not write their own songs and therefore did not benefit from composition royalties.

8Article 2, section 1, Directive 2011/77/EU.
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rights to their music, while artists that perform compositions written by others depend on the

royalty stream from sound recording copyrights. Regardless of the nature of the benefits to the

artist, a third party must pay for recording as well as composition rights when reissuing music. In

what follows, we examine how copyright protection and its expiration affect the supply of music in

terms of physical releases, availability on digital channels, and live performances in concert. These

distribution channels represent the majority of current revenue streams for musicians.9 We focus

upon copyright’s role in markets for existing products and do not consider copyright’s incentives to

create new products, a question outside the scope of this paper.

2.1 How Might Copyright Expiration Affect the Supply of Music in Physical

Channels?

Following the prior literature on copyright and availability in books (Heald, 2014a; Reimers, 2018),

we measure the availability in terms of the number of re-releases of a song. The decision to re-release

a song is made by a label. Record labels, which control the recording copyrights of associated artists,

may exclude others from using, exploiting, or distributing their songs for a statutory duration.

Labels may exploit these copyrights for a monopoly profit for the duration of the copyright, or

instead license the rights to entrants, with licensing fees set at a level such that the label is indifferent

between options. We term these entrants “reissue” labels. Large established labels in the music

industry possess complementary assets such as distribution networks, promotional capabilities, and

a portfolio of copyrights that may be bundled together in a release. These complementary assets,

combined with control of recording copyrights, ensure that major labels have an advantage over

small reissue labels when releasing on-copyright songs. “Generic” reissue labels lack these assets and

instead pursue a strategy of issuing lower-cost releases based on public domain works. As described

by Synovitz (2003), regarding recordings that were public domain in Europe but rights-protected

in the U.S.,

“Without the requirement of paying royalties to the original record producers, firms

like the U.K.-based Charley Records, Holland’s Disky Communications, and France’s

EPM Remastering are able to sell public-domain CDs for as little as $2 each. In Amer-

ica, where the producers of the same recordings still exercise copyright control, music

collectors routinely pay $15 to $25 per CD for the music.”10

These entrants may distribute reproductions of the original recording, near-perfect substitutes for

the original, at low marginal cost. Such reproductions may be sold either directly to the consumer

by the entrant label or through retail outlets. Entry, and the associated increase in supply from

physical recordings, should lead to lower average prices for consumers due to competition between

close substitutes for a public domain recording. We observe only releases, not prices, and so do

9Because we lack data on synchronizations (3% of U.S. recorded music revenue) and terrestrial radio airplay, we
do not examine the impact of copyright on these channels. Synchronizations are licenses for attaching music to other
forms of media (e.g. TV, film, advertisements, etc.)

10Synovitz (2003) (https://www.rferl.org/a/1101848.html)
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not estimate this latter price effect, which has been documented observationally elsewhere (Pollock

et al., 2010).

According to the above, we should expect to see more reissues of a recording once it enters the

public domain. However, some have argued that extending copyright terms may increase availabil-

ity because it creates incentives for rights holders to invest in the restoration and public distribution

of their works (Eldred v. Ashcroft, 537 U.S. 186, 207 (2003), cited by Heald 2014a).11 For exam-

ple, recorded music was distributed via successive standards of phonograph records and compact

cassettes before the proliferation of digital audio CDs, DVDs, and current digital distribution over

networks. Recordings must also be remastered to adapt to changing consumer tastes and listening

technology (e.g., mono vs stereo recordings). Prior observational research has not found support

for this idea (Buccafusco and Heald, 2013).

2.2 Promotion and Live Performances

Artists perform live concerts to generate income from ticket sales, as well as to promote sales of

recordings (Mortimer et al., 2012). When choosing a set of songs to perform in concert, artists

consider their private rewards for performing each song. These rewards are a mixture of monetary

and non-monetary rewards (i.e., personal taste of the artist). Artists typically receive royalties from

labels on each sale of a recording protected by copyright (see section 2), while recordings in the

public domain generate no royalties. These artists have an incentive to prioritize the promotion

of recordings still protected by copyright over those in the public domain, all else equal. This is

clearly articulated by Cliff Richard, quoted in an article about the looming expiry of his recording

copyrights:

“It seems terribly wrong that 50 years on they lose everything from it...Sometimes I’m

absolutely fed up with singing Living Doll but I have sung it constantly since 1959

because every time I sing it live it generates sales of the original record and royalties to

me.” (Cliff Richard quoted by Miller (2006))

The monetary rewards to performing a given song also depend on matching setlists to audiences

tastes to ensure continued audience patronage. The expiration of a recording copyright could

potentially affect this monetary reward as well, since labels may choose to promote and market

only on-copyright songs over public domain songs, which may predispose audiences to prefer these

promoted songs that are still under copyright.

It is worth noting that incentives for performance of back-catalog songs by older artists differ

from the incentives faced by contemporary emerging artists. Some observers have suggested that

album releases are primarily used to promote concerts, rather than vice versa, since in the era

of internet piracy new artists derive most of their revenues from touring (Papies and van Heerde,

11One possible example that could be cited in support of this idea is the recent 50th anniversary reissue of the
Beatles’ Sgt. Pepper’s Lonely Hearts Club Band, which included previously unreleased takes of all songs as well as
remixes and 33 additional recordings from the original recording sessions.
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2017).12 This argument is less relevant, however, for artists that depend on a large back catalog of

works, who have little or no new content to release, and whose audience primarily consumes music

through legal channels rather than through piracy.

It is also important to note that the protection of a recording copyright does not limit an artist

from performing a song publicly. Our analysis is not focused on performance rights which require

permission to perform a song to be obtained from the holder of the composition copyright. Venues

are responsible for these licenses, and typically acquire a blanket license administered by a national

collection society (i.e., PRS for Music in the UK). Given the licensing context and the fact that these

copyrights endure for 70 years (as described above), they are not relevant for the setlist decisions

in our sample.

2.3 Copyright and Supply in Digital Channels

Streaming music royalties represent a source of growth for an industry that has faced declining

revenues since the advent of peer-to-peer file sharing. Music distribution through streaming is

concentrated among just a few large platforms, especially Spotify, Apple Music, Amazon, Pandora,

and YouTube (Steele, 2018).

Since the value of a platform is greater to both buyers (listeners) and sellers (labels) when large

numbers of buyers and sellers are present on the platform (Rochet and Tirole, 2003), a notable

feature of DSPs is the availability of a near-complete catalog of music. Consumers pay a fixed

monthly subscription, or view ads, in exchange for a bundle representing unlimited streaming of

the entire catalog of music licensed to the DSP. Nicolaou (2018) quotes Matt Pincus, chief executive

of music publisher SONGS who says that,

“[t]he problem with audio streaming is you need to have 100 per cent of the content

rights in the world for music, otherwise nobody buys your product.”

Record labels have entered into catalog-encompassing licensing agreements with DSPs, such as

Spotify, that enable this bundling strategy. DSPs such as Spotify do not search for and aggregate

content themselves, but instead receive sound recordings delivered by major labels or intermedi-

aries.13 These labels and consolidators typically license entire catalogs to the DSP because “We

have to be where the fans are” (Scott Borchetta, chief executive of Big Machine Label Group,

quoted by Nicolaou 2018).14 Presumably to help facilitate this comprehensive licensing approach,

Spotify has given major record labels large advances on royalty payments and an 18% equity stake

12Papies and van Heerde (2017) cite the example of Prince, who released the album 20Ten for free to promote
concert ticket sales.

13Small independent labels wishing to distribute content through digital platforms must contract with a consolidator
such as CDBaby, which acts as an intermediary between labels and platforms. CDBaby delivers master recordings to
Spotify and distributes payments to indie labels after taking a cut.

14Holdouts are exceedingly rare. Some superstar artists with distribution control, such as Prince, objected to
widespread streaming of their catalog, though Prince’s estate has since licensed the artist’s catalog for streaming.
Withholding new releases from DSPs has also been used in the past as a form of intertemporal price discrimination.
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in the company (Cohen et al., 2015).15

Streaming platforms’ usage of statistical learning to derive competitive advantage further encour-

ages the universal availability of songs. Spotify derives revenue from advertising and subscriptions,

but like other streaming platforms (e.g. Netflix as described by Smith and Telang (2016)), part

of this strategy depends on improved recommendations to users and analytics services to labels

and performers (Marr, 2017). The latter services depend on amassing troves of data across cat-

alogs of songs and millions of customers. As a result, it is critical for Spotify to be able to offer

comprehensive access to virtually all recorded music.

On the supply side of the platform, DSPs govern quality by limiting direct access to the three

major labels and a set of large preferred distributors (Boudreau and Hagiu, 2009). This private

regulation prevents excess variety from persisting on the platform, moderating consumer search

costs on the demand side but excluding public-domain and reissue labels that thrived when CDs

were distributed in physical channels. The platforms further limit the variations of the same song

allowed on the platform to help consumers identify the song most likely to be searched.16

Thus, the decisions faced by DSPs contrast in several key ways with the model described above

for physical channels, in which labels maximize profits by choosing the price at which to sell discrete

quantities of albums, which vary in their cost of production according to copyright status. Spotify

primarily derives revenue from advertisers and subscribers, and its users are attracted by near-

universal access to music. Spotify maximizes an objective function in which the number of listeners

using their product weighs very heavily, which creates strong incentives to make as much music

available as possible, independent of copyright status.17 Because the vast majority of recorded music

remains copyright protected in developed countries, it would be infeasible for a general audience

platform to favor lower-cost public domain songs over rights protected music.

Rights holders thus transfer bundles of on-copyright recordings with public domain recordings,

with no space for a potential entrant label to enter with public domain recordings once the DSP

has negotiated a catalog-wide license and transfer with the original rightsholding label. With this

structure, potential entrants selling re-releases of public domain recordings could instead create their

own DSP, but face high fixed costs along with stiff competition against incumbents in a network-

effects driven market dominated by a few major platforms. In retail channels, public domain labels

can provide value by distributing releases with unique combinations of public domain works, but

the playlist and recommendation feature of DSPs, along with policies limiting excess variety, have

15Insight into the nature of licensing arrangements with major labels can be gained from a 2011 contract be-
tween Sony Music and Spotify which was leaked to the press, https://www.theverge.com/2015/5/19/8621581/sony-
music-spotify-contract.

16These variations may be various remasters, mono vs stereo recordings, explicit vs clean recordings, radio versions
vs album versions, and so on.

17Note that other music platforms pursue different strategies. Amazon music has both a streaming option and a
retail (a-la-carte) model, as does Apple through its Apple Music streaming service and permanent digital downloads
through the iTunes store. Non-interactive services, such as Pandora, may be less reliant on a complete catalog of
music as the platform chooses songs for the listener. Although licensing sound recordings on non-interactive services
follows a statutory rate in the U.S., Pandora at one point negotiated lower royalty rates for a network of independent
labels (Merlin) in exchange for steering listens to these independent artists. See the written statement of Pandora
Media, Docket No. 14-CRB-0001-WR (2016-2020)
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disrupted the strategy of these small entrant labels. The blanket licensing of large catalogs of rights

may thus negate the effects of copyright expiration for any individual song. This model stands

in contrast to the distribution model for physical sales, in which even small reissue labels can, at

relatively low cost, distribute a compilation CD of public domain songs.

However, despite the incentives for universal availability in the DSP model, it is not necessar-

ily obvious that public-domain and copyrighted songs will be equally available. The long life of

copyrights may still pose challenges for the digitization and distribution of information from past

generations.18 First, musicians face non-pecuniary incentives, and may resist new forms of dig-

ital distribution for personal reasons.19 So long as copyright protection of a recording persists,

any residual control rights of the original artist may complicate licensing and prevent distribution.

Further complications arise from aging recording and distribution contracts between record labels

and artists, which may have ambiguous terms regarding the control of digital distribution rights,

and thus the recordings and rights covered by aging agreements may be omitted from catalog-wide

licensing agreements. The original label may be defunct, and the contemporary rightsholder may

be difficult to identify or locate, similar to the “orphan works” problem wherein content remains

unexploited because rightsholders cannot be located by a diligent potential licensee (Varian, 2006).

While major labels may have less difficulty locating, interpreting, and renewing contracts with

the most prominent artists of high-value songs, agreements made more than 50 years ago between

small independent labels and more obscure artists may be harder to locate and interpret. If old

licensing agreements must be renewed or renegotiated for digital distribution, transaction costs may

overwhelm the expected profits for out-of-fashion music. These incomplete contracting issues have

afflicted the digital availability of even more recent artists. In an interview with Bloomberg, Kevin

Mercer of the group De La Soul spoke of the contractual issues surrounding the group’s albums

released in the late 1980s and 1990s,

“Unfortunately, a lot of the earlier stuff we did on Tommy Boy [Records], from what

we understand, a lot of the legal language that needed to be a part of the contracts

between ourselves, the owners of the master and the publishing, I guess it didn’t include

the world of digital. It was almost specifically to vinyl, cassettes, CDs. So a lot of those

contracts needed to be reworked.”20

Such uncertainty around property rights is eliminated when a recording enters the public domain,

and this may increase the likelihood of availability on the platform. If it is true that public domain

status increases the likelihood of a song being available on Spotify due to reductions in uncertainty

about the ownership of rights, we would expect this effect to be primarily observed among the

relatively obscure artists for which licensing transaction costs may be high compared to the expected

value of streaming. We test this hypothesis in the empirical analysis.

18For example, the litigation regarding Google Book Search in Authors Guild, Inc. v. Google, Inc.
19See, for example, https://www.billboard.com/articles/news/7549739/artists-streaming-services-

holdout-not-available.
20https://www.bloomberg.com/news/videos/2015-04-09/de-la-soul-raises-400k-on-kickstarter
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3 Data

3.1 Physical Release Data

In order to identify a set of songs affected by the copyright term extension, we collected all Top

20 UK Album charts from 1960 through the end of 1965 from Officialcharts.com. OfficialCharts

provides a top 10 list of UK albums for the first 11 weeks of 1960, whereas for the remainder of

1960-1965 it provides weekly top 20 lists. These charts were then carefully hand-matched to the

MusicBrainz database (musicbrainz.org) to link the artists in the OfficialCharts data to the unique

artist identifiers in the MusicBrainz database. There are 138 artists from OfficialCharts that match

to the MusicBrainz data, and 45 artists that did not appear in the database or had no relevant

releases. Soundtrack albums appearing on OfficialCharts were excluded, including albums credited

to “Original Soundtrack,” “Original Cast Recordings,” “Original Broadway Cast,” etc.

Using the sample of artists gathered from OfficialCharts, we then collect all songs released by

these artists in the MusicBrainz database. We collect: artist name, release name (e.g., the name of

the album/EP), the country of release, the date of release, the song name (standardizing case and

stripping accent marks), the release type (album/single/ep), whether the song is part of a re-release,

and the year of original release.21 A song is considered a re-release if there is an exact match for

the artist and song title with a prior date in the database.

In the UK, sound recording copyright terms begin with the original release of a recording. Year

of original release, for the songs in our sample, runs from 1923 to 1975.22 We create a final dataset

in which the unit of observation is at the song-year level, and the key dependent variable is the

number of re-releases of that song i in the UK in year t.

Information on the record label is available for approximately 90% of the UK recordings in our

dataset. We classify a release as a major label releases if the label type field on MusicBrainz is one

of production, original production, imprint, or holding. Reissue Production labels are the second

most common label type in our database. There are clear patterns of specialization by label and

copyright status of songs. Major labels are dominated by a few large firms such as Columbia, EMI,

Parlophon, and Virgin, and mostly issue copyrighted songs. Reissue labels (such as Real Gone

Jazz/Real Gone Music or Not Now Music) represent only 20% of releases for copyright protected

songs, but 43% of releases for songs in the public domain.

We exclude observations on songs re-released more than 54 years after the original release year,

because this is the maximum age observed for songs released in 1963 in our dataset (since data ends

in 2017). As seen in Table 1, the final dataset used for our regressions contains 922,182 observations

21To ensure accuracy, we also consider the year of original release from Discogs, and use the earlier of the two years.
Further, we manually confirm original release years for any song in the random sample used for Amazon analysis
(described below), performed after age 40, or re-released after age 40 by an artist with an error rate above 20% within
the Amazon sample. Validation of original release years was done using sites such as Wikipedia, Secondhandsongs.com,
and 45cat.com

22The releases before 1940 are by Louis Armstrong, Bing Crosby, Duke Ellington, Ella Fitzgerald, Judy Garland,
Count Basie, Glenn Miller and Frank Sinatra.
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on 18,516 recordings of songs by 138 artists. We observe songs every year after the original release

year from 1960 to 2017, and the average age of an observation in the dataset is 26.6. The typical

song-artist pair is observed 49.8 times in our final dataset.

3.2 Set List Data

We obtain data on songs performed in concert from www.setlist.fm, a wiki service on which users

post lists of songs performed in concert. We queried this site’s API for songs of artists by Mu-

sicBrainz ID for all the artists in our reissue database. We then matched song names listed in

MusicBrainz to the performed songs listed on setlist.fm. We created a crosswalk of standardized

names by parsing out extraneous characters and standardizing case to match songs between the

two datasets. We exclude from the database any artists and songs that never appear on setlist.fm,

because for these artists we cannot distinguish between songs that were never performed and songs

that were not recorded by the creators of the setlist database.

Table 2 reports summary statistics on the set list data. We create one observation per year

that the song could have been performed from 1960 to 2016 and exclude observations in which the

song is at least 55 years old. We create a count variable containing the number of times the artist

performed song i in year t. The average number of performances of a song in the UK in a given

year is 0.244. The typical song is performed in 15.3% of potential song-years. We also restrict the

data to performances in years before the artist’s last active year, according to MusicBrainz. After

these limitations we have 109,583 performance-year observations across 84 artists and 2,825 songs.

We flag years in which the artist was on tour according to our set list data so that we are able to

run analysis conditioned on touring as well.

3.3 Streaming Data

Artists in our MusicBrainz data were hand matched to Spotify’s artist unique identifiers (URIs).

Catalog information, including geographic availability, was then downloaded from Spotify’s API

for all of the artists in our MusicBrainz dataset, and song titles were matched between the two

datasets (see the Data Appendix for details). The resulting match allows us to identify which songs

are available on Spotify, by year of recording and by location of the Spotify user.23 Our hypothesis

is that pre-1963 songs will be more available in the UK relative to the US due to their public domain

status in the UK.

In contrast to the release and set list datasets, which are panels, the Spotify data is a cross section

reflecting availability on Spotify as of September 2017. Unlike re-release and set list data, we do not

observe songs suddenly reaching the age-50 cutoff in this dataset, because it was collected as a cross

section after the term extension directive was enacted. There are a total of 37,032 observations in

23Although it is probable that a small percentage of potential matches were missed in our matching procedure, it is
unlikely that the missed matches are in any way related to copyright status, especially since we can observe a song’s
availability in the US as a baseline estimate.
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the Spotify dataset (one observation on availability in the UK market and one on the US market for

18,516 songs). The variation in copyright status comes from the fact that recordings made before

1963 are in the public domain in the UK, while recordings made after that date are under copyright

protection in the UK, and none of the recordings in the dataset are in the public domain in the US.

Summary statistics on Spotify availability for artists found in the Official Charts Company (OCC)

top albums charts are found in Table 3. For robustness, we also collected information on more

obscure singles, also found in Table 3.24 Of the 18,516 songs in the main sample, 72.2% are

available in the US, and 77.0% are available in the UK. Of the 7,027 songs in our sample recorded

prior to 1962, 76.5% are available in the US market on Spotify, and 82.1% are available in the UK.

For the 11,489 songs recorded between 1963 and 1975, 69.7% are available in the US and 73.9% are

available in the UK. For the median artist in our sample, 85.3% of the artist’s songs are available

either in the US or in the UK.25

4 Estimation and Results

4.1 Empirical Model

In this section, we examine the effect of public domain status on the availability of songs. We begin

by estimating the impact of songs lapsing into the public domain on the availability of physical

releases and live performances, before estimating the effect of public domain status upon a song’s

availability on the dominant music streaming platform Spotify. Very generally, we estimate the

following model where Y measures the availability of song i, PublicDomain is an indicator for

public domain status in the UK, β controls for year effects, γ for song-age effects, δ for artist

effects, and ε captures idiosyncratic shocks. In an alternative specification, we will use ζ to control

for individual song effects. It is important to note that our data on physical releases and live

performances are panel data, with songs originally released in year t0 and potentially re-released or

performed live in a later year, t. The age of a song in year t is thus A = t− t0.

Y = f(PublicDomain;β, γ, δ, ε) (1)

Before estimating the effect of copyright status on the availability of works, it is useful to con-

sider the ideal experiment that would be used to study this question. In an ideal experiment, the

econometrician would select a sample of copyrighted recordings from the population of recordings,

and randomly partition this sample into a treatment and control group. While the control group

remains undisturbed, the econometrician would nullify the recording copyrights of the treatment

24To assuage concerns that our Spotify dataset consists of only the most durable artists, we collected an additional
sample of songs by more obscure artists for the purpose of robustness checks. These artists are drawn from the OCC
lists of weekly top 50 singles charts between 1960 and 1965. These additional data represent a cross section as of July
2019.

25The artists with availability rates below the 5th percentile of 35% are Bert Weedon, Big Ben Banjo Band, Paddy
Roberts, The Dave Clark Five, The George Shearing Quintet, and Wayne Fontana and the Mindbenders.
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group. With this treatment condition, the availability of recordings could be compared between

the copyrighted control group and the public domain treatment group in terms of physical repro-

ductions, availability on digital streaming platforms, and live performances.

In contrast to the ideal experiment, we use observational data, in which recording copyrights end

after a statutory duration. Previous research demonstrates a correlation between a song’s popularity

and song age (Waldfogel, 2012), which could confound an analysis of the effects of public domain

status. While one might think that a regression discontinuity design with a break at age 50 would

be sufficient to identify the effect of entering the public domain, such a design is complicated by the

fact that the fiftieth anniversary is a common time for revisiting long-lasting cultural products.26

We might therefore expect to see a flurry of commemorative re-releases or performances even in

the absence of copyright term expiry. This flurry could lead to biased estimates of the effect of

copyright, unless we control for age.

Although panel data allows the econometrician to account for the aforementioned age effects, it

is also important to control for the shift in the music industry towards digital distribution. An

analysis based purely on age would confound the fact that songs reaching age 50 in the years

after 2010 are entering the public domain at the same time as demand for physical re-releases was

declining relative to digital distribution. Without year controls, an analysis based purely on age

will underestimate the impact of the public domain on availability.

Our analysis exploits three different sources of variation to identify the effect of copyright on

availability. First, we estimate the change in availability when a song enters the public domain

using only the period prior to the copyright term extension, in which all songs enter the public

domain at age 50. Then, we extend to the period after the term extension and control for age and

year effects. Finally, we estimate a triple difference regression in which US observations on a song

serve as a control group for UK observations on that song.

Our preferred approach is the second, which controls for both age and year effects and relies upon

the variation in copyright status created by the term extension. For recording copyrights published

after November 1963, the law exogenously extended the term of recording copyrights from 50 years

to 70 years. Recording copyrights published before November 1963 lapsed after 50 years, and were

unaffected by the term extension. The copyright term extension thus allows us to separate the effect

of copyright status from shifts in demand as songs grow older, as well as anniversary effects. Absent

the term extension, copyright status in our sample would be perfectly predicted by recordings aging

past 50 years. While all recordings in our panel below 50 years of age are protected under copyright,

this extension provides a sample of counterfactual recordings that are greater than 50 years old and

in the public domain, as well as recordings of the same age that are still under copyright protection,

which allows us to estimate the counterfactual of availability under longer copyright terms.

With this research design in hand, we estimate the effect of copyright protection on the re-releases

26See, for example, the recent 50th anniversary re-release of the Beatles’ Sgt. Pepper album. Another example is
Genius & Soul - The 50th Anniversary Collection, a Ray Charles album released in 1997, containing songs from the
1940s to the 1990s.
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or performances of a song, using the following model:

YitjA = α0 + α1PublicDomainitjA + βt + γA + δj + εitjA (2)

In which the dependent variable is the count of re-releases or performances in the UK of song

i by artist j in year t with song age A. Because the dependent variable is a count, we use Pois-

son pseudo-maximum likelihood regressions with multi-way fixed effects (Correia et al., 2019).

PublicDomainijtA is a binary variable equal to one if the song’s recording copyright has expired

in year t and equal to zero if it is still under copyright protection in year t.27 βt is a dummy for

release year t, γA captures the fixed effect of song age, and δj is the artist fixed effect. In contrast

to prior studies of copyright term extensions that performed before-after analyses, the 2013 term

extension allows us to control for a full set of age and year effects.

In alternative specifications, we control for song fixed effects, ζi and year and age effects:

YitjA = α0 + α1PublicDomainitjA + βt + γA + ζi + εitjA (3)

The song fixed effects control for all song-level characteristics including artist and year of original

release.

The data on live performances and physical releases have a panel structure, with observations on

performances and releases over time. In contrast, Spotify digital streaming availability is observed

only in a cross-section of availability as of 2017.28 Instead of comparing variation in availability

before and after copyright expiry, we instead exploit variation in copyright status between the US

and UK. We assess whether there are differences in availability between the US (where all songs in

our sample are still protected by copyright) and the UK (where recordings made prior to 1963 are

in the public domain) in our cross-country cross sectional data.

In order to measure the effect, we estimate the following model:

YijAk = α0 + α1PublicDomainijAk + γA + θk + δj + εijAk (4)

In which the dependent variable is equal to 1 if song i by artist j of age A (that is, originally

released in year t0) is available on Spotify in country k (either the UK or the US) in the sample

year. PublicDomainijAk is a dummy equal to 1 for UK observations on songs originally released

before 1963, and 0 otherwise. Because we only observe these songs in a single year, we no longer

control separately for age and year effects, and instead include in some specifications γA to control

for age fixed effects as in previous specifications. δj again controls for artist fixed effects and we

cluster standard errors by artist.29 In these DSP regressions we introduce θK to control for country

effects.

27Following Pollock et al. (2010), we refer to these recordings as being in the public domain, although the composition
is still protected by copyright.

28Or 2019 for some robustness checks.
29Our results are also robust to standard errors clustered by original release year.
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Although in the Spotify data we cannot observe the year of expiry as we do in the panel datasets

described above, we do estimate specifications with fixed effects for original release year interacted

with the UK coefficient. This allows us to observe whether there is a discontinuity in availability for

the UK relative to the US that affects starting with songs recorded in 1963. If there are effects of

copyright on Spotify availability, we would expect to see greater availability in the UK than in the

US for songs recorded in 1959-1962, with a drop in availability 1963 that is sustained for subsequent

years.

We exploit variation in copyright status between the US and UK for estimation of digital avail-

ability due to the unavailability of a panel measuring digital streaming availability before and after

copyright expiry. Relying on cross-country data to form a control group is a strong assumption

given the economics of both contexts, so rather than estimating counterfactual outcomes with US

observations we prefer to derive variation in copyright status from a natural experiment and stag-

gered lapse into the public domain when able. Nonetheless, robustness results from triple-difference

estimators for releases and performances are available in Tables 4 and 5 as described in the subse-

quent section. These results confirm a positive impact of copyright expiry on UK releases relative

to a US control group with no expiry. Similarly, they confirm a negative impact of expiry on UK

performances relative to a US control group.

4.2 Results on Re-Releases: Physical Releases

Figure 2 displays the mean number of re-releases by age, for songs released prior to 1963. There

appears to be a discontinuous jump in releases after age 50, when these recordings lapse into the

public domain. However, there also appears to be a trend change in the trajectory of releases after

approximately age 30, perhaps due to fluctuations in demand for physical releases over time. To

account for this, we also display in Figure 2 the residualized mean releases, computed from the

residuals of a regression of the outcome variable on dummies for year t, which controls for variation

over time in the overall number of physical releases. The residualized means have a much flatter

trajectory until the large jump in availability upon rights expiry after age 50.

Table 4 displays the baseline results from regressions in which the dependent variable is the

number of UK re-releases of song i in year t. Standard errors are clustered by artist in specifications

that control for artist fixed effects, and by song in specifications that control for song fixed effects.

Because these are Poisson regression coefficients, the percent increase in releases from public domain

status is eα1 − 1. Column (1) includes controls for year of release and song, and the Poisson

coefficient estimate on the PD dummy variable is 1.341 with a standard error of (0.024), which

implies a highly statistically significant increase of 282% in the number of re-releases after recording

copyright expires. Controlling for the age of the song (number of years since original release), year of

release, and artist in column (2) increases the estimate to 1.413 (standard error of 0.250, percentage

change of 311%). Column (3) removes artist controls and instead controls for song fixed effects,
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which increases the estimate to 1.488 (standard error of 0.067, percentage change of 343%).30

Column (4) introduces a triple-difference regression in which US releases of song i in year t act as

a control for the UK re-releases of the same song. We continue to estimate a large positive coefficient

on the public domain dummy, consistent with our expectation and confirming the importance of

copyright as the main explanation for our findings. Column (5) is an OLS regression with the

dependent variable capturing the share of releases from reissue labels, the coefficient point estimate

of 0.208 (standard error of 0.027) shows that the share of new releases by reissue labels increases

by approximately 23% post copyright expiry.

Column (6) presents an event study regression for the years before and after copyright expiry,

with the year of expiry as the omitted category.31 This demonstrates a sharp increase in availability

upon copyright expiry, also shown in Figure 5. In an additional robustness check not reported in the

table, we estimated a regression-discontinuity model. Results are robust to estimating a regression

discontinuity specification with a linear trend in years to expiry, a linear trend in years post expiry,

and a dummy for post expiry.32

The coefficients in Column (6) increase up to the final year of copyright protection (T=0), followed

by a large jump at the first year in public domain (T=1). Because copyright terms were extended

by 20 years in 2013, songs released in 1963 or later have their “years to expiry” variable reset in

2013, so that songs released in 1966 (for example) are never less than 4 years from expiry, and songs

released in 1965 reach a maximum of 3 years prior to expiry. Thus songs in the -1 category have

systematically older release dates than songs in the -2 category, and so on. The addition of a linear

control for year of original release (Column 7) diminishes the pre-trend observed in Column (6).

Column (8) controls for a linear age term and a differential trend in age for songs released before

1963, effectively eliminating the pre-trend. Figure 5 displays the event-study coefficients found in

Columns (7) and (8) of Table 4.

Our results are based on a comparison of songs first released before 1963, which enter the public

domain at age 50, with songs released later that remain under copyright. If there is a difference in

age trends between these groups, our estimates will be biased. To establish robustness of our results

to the possibility that trends may not be parallel among the pre-1963 and later songs, we estimate

several different specifications in Appendix Table 12. The results are described in detail in the

Appendix (see the section titled “Identification and Robustness to Parallel Trend Assumption”).

To summarize, the increase in releases at copyright expiry is robust to limiting the sample to songs

with original release years before 1963, to narrowing the sample to songs released between 1960 and

1965 (or a still narrower range), and to allowing for pre-1963 songs to have a differential trend in

age. Column (8) of Table 4 displays the event study coefficients after controlling for original release

30It is not possible to control for age, year, original release year and artist fixed effects because the artist fixed effect
is collinear with the original year effects.

31Four years pre- and post- expiry are included in the table. The regression includes dummies for all years prior to
expiry, and these coefficients are omitted from the table but are available upon request.

32This specification, estimated with OLS, yields a coefficient of 0.299 (s.e. 0.011) on the dummy for post copyright
expiry, or a 453% increase in releases at expiry.

16



year and a differential age trend. Following the suggestions of Rambachan and Roth (2020), we also

perform a sensitivity analysis which shows that any kink in the differential trend at age 50 would

have to be implausibly large to explain our results (see the Appendix).

Appendix Table 8 contains several addditional robustness checks on the main result.33 To address

potential concerns that the results are driven by a handful of extremely successful artists, in columns

(1) and (2) we exclude the top 5 artists in the sample in terms of number of releases (The Kinks,

Elvis Presley, The Beatles, Frank Sinatra, and Jerry Lee Lewis). Results are once again very

similar to the equivalent columns in Table 4. In Columns (3) and (4) we remove the age restriction

for our estimation sample and include songs more than 54 years old. Results are similar to the

equivalent specifications in Table 4. Columns (5) and (6) of Table 8 present OLS estimates where

the dependent variable is the log of the number of re-releases (+1) of song i in year t in the US

market. As with the Poisson estimates, we observe a large and significant increase in availability

upon copyright expiry in the linear model. In Column (7) of Table 8 the dependent variable is the

release count in the US of song i in year t, and shows a small and statistically insignificant effect of

public domain status. We restricted the data for the placebo regression to the more homogeneous

sample of songs first released between 1960-1965. This result is consistent with our expectation and

confirms the importance of copyright as the main explanation for our findings.

Due to the fact that releases and performances of a song may be an infrequent event, we collapse

the panel data to the track-five year level in Table 15 of the Appendix. Releases and performances

were aggregated into five-year bins, from 1960-1964, 1965-1969, etc. Average song ages were taken

within each year bin, and the average age was further discretized into five-year age bins. In this

aggregated sample, the mean number of releases in a five-year bin is 0.315, and the mean number

of performances is 1.008. We regressed these five-year aggregated counts of the outcome variable on

a linear control for five-year age bin, five-year fixed effects, and song or artist fixed effects. Results

are robust to collapsing the data in this way, with effect sizes similar to Tables 4 and 5.

4.3 Set List Results

Figure 3 shows average song performances by age, for songs released prior to 1963. Residualized

performances in Figure 3 account for the substantial variation over time in the overall number

of song performances, and show a decrease in performances after age 50, when pre-1963 sound

recordings entered the public domain.

Results on public performances of songs are found in Table 5. Data are restricted to years in

which the artist was active.34 The regression model is similar to the one described in Section 4.1,

where the unit of observation is the number of performances of song i by artist j in year t with

song age A. The estimation method is a fixed effects Poisson regression, and fixed effects for year,

33The main results in Table 4 were estimated using OLS and Logit, with very similar results, always implying a
large and significant increase in the number of re-releases after the expiry of recording copyright.

34Artist active years are gathered from MusicBrainz.
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age, and artist or song are included depending on the specification. Standard errors are clustered

by either artist or song.

In columns (1)-(3) of Table 5, the dependent variable is the total number of concert performances

in the United Kingdom. Column (1) includes controls for year of release and song, and the coefficient

estimate of the public domain effect is -1.401 with a standard error of (0.257), which implies a

statistically significant decrease of 75.4% in the number of performances after recording copyright

expires.35 Adding artist and age fixed effects, while removing song fixed effects, in column (2)

increases the magnitude of the estimated effect to -1.788, or a 83.3% reduction in the number of

performances, significant at the 1% level.36 Column (3) includes age, year, and song fixed effects and

results in a public domain coefficient of -1.898, or an 85.0% reduction in the number of performances,

significant at the 1% level.

Column (4) in Table 5 reports the results of a triple-differences regression in which performances

in the UK are compared to a control group of performances in the US. There continues to be a

negative and significant coefficient on the public domain dummy in this alternative specification,

although the coefficient is smaller in magnitude than in Column (3), and implies a 57% reduction

in performances. It is possible that this smaller effect reflects spillovers from UK set list choices

into US performances.37 However, it is worth noting that the smaller coefficient estimate from the

triple-difference specification is similar to the coefficients in the regressions on UK-only data that

account for possible deviations from parallel trends in Table 13, discussed below.

Column (5) of Table 5 displays coefficients from an event study prior to and post copyright expiry,

and a clear decline post expiry is apparent. Column (6) estimates the same specification, with the

addition of controls for linear year of original release and a differential trend in age for songs released

before 1963. Coefficients are similar after the addition of these controls. Event studies are shown

graphically in Figure 5.

The number of performances shows an increase prior to copyright expiry driven by The Searchers,

a UK group who gave large numbers of performances on their 50th anniversary tour. The Searchers

had the highest average number of UK performances in this period, and no songs recorded before

1963. Using the method used to calculate years to/from copyright expiry in Column 5 of Table

5, this group’s performances in 2012 are classified as occurring 1 year before expiry because the

copyright term extension had not yet taken place. However, in hindsight of the term extension they

were 21 years from expiry. When we calculate years to expiry using only songs recorded before

35Results are similar when only controlling for age or for year effects individually.
36To ensure the results are not driven by the performance decisions of the most popular artists, we also tried

excluding the top 5 artists measured in terms of the number of performances (The Beach Boys, Bob Dylan, Frank
Sinatra, The Who, and The Rolling Stones). Estimation results are comparable to the equivalent regressions in
column (2).

37Artists may tour both the UK and the US in the same year but cannot be in both locations at once. In addition,
artists who optimize set lists for the UK market may end up playing some of the same songs in the US because they
have rehearsed and played them on the same tour. Therefore the decision to perform a particular song in the UK
may affect the decision to play it in the US. For this reason, the use of the US performances as a control group for
performances may violate the stable unit treatment value assumption (SUTVA), and be less ideal than using the US
controls for re-releases (described previously).
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1963, the ramp-up is not apparent, but the post-expiry decline remains statistically significant.

This specification is included in Column (2) of Table 13.

Table 9 shows additional robustness checks on Setlist results. Columns (1)-(2) use ordinary least

squares as the estimation method and the natural logarithm of performances (+1) as the dependent

variable. Columns (3)-(4) show results from the main specifications, including data on songs that

are more than 54 years old. If the expiry of copyright has an effect on the artist’s decision to tour,

the results in Table 5 combine this effect with any potential effect on the decision of which songs

to perform. Columns (5)-(6) are conditioned on the artist touring in year t, and therefore isolate

the choice of songs. Columns (7)-(8) exclude the top 5 artists measured in terms of the number of

performances.38 Column (9) uses the count of US performances as the dependent variable and shows

a small and insignificant effect of public domain status. The sample in this specification is limited

to original release years between 1960-1965 in order to be conservative and most consistent with our

matched sample style event study specifications. In an additional robustness check not reported

in the table, we estimated a regression-discontinuity model. Results are robust to estimating a

regression discontinuity specification with a linear trend in years to expiry, a linear trend in years

post expiry, and a dummy for years post expiry as well as year and artist or song fixed effects.39

These results do not appear to reflect simple reallocation across songs within a fixed number of

performances. Appendix Table 11 presents results collapsed to the artist-year level which analyze

the probability of having any performances in the UK or US in a given year. These results are

described in the appendix, and suggest that artists do not merely shift from public domain songs

to copyrighted songs: for a given age profile, having a higher percentage of songs protected by

copyright in the UK appears to increase the probability that an artist will perform live in the UK.

This increase in touring propensity could lead to an increase in live performances even for the

inframarginal songs.

It is worth noting that the nature of our data and preferred econometric approach limits our

ability to identify the impact of copyright status on performances, given the length of copyright

relative to typical music industry careers.40 This is because we control for age and artist effects in

our regression, and given these controls can only identify the impact of copyright status in the years

before and after 2012, when a given artist will have songs of approximately the same age both on-

and off-copyright. The number of artists who recorded songs both before and after 1963 who are

38To estimate the effect separately for the most popular songs in our dataset, we created a dummy equal to 1 if the
number of re-releases of the song is above the 99th percentile in our dataset, and then interacted that dummy with
the public domain dummy. In a specification that controls for age, year and artist fixed effects, the coefficient on this
interaction term is -0.653 (with a standard error of 0.366) and the coefficient on the public domain dummy is -1.72
(with a standard error of 0.584). This finding is similar when controlling for song fixed effects.

39This specification, estimated linearly, estimates a coefficient of -0.733 (s.e. 0.237) on the dummy for post copyright
expiry, or a 300% reduction in performances at expiry.

40There are 26 artists who have observations in the setlist data in which at least one song is in the public domain,
and therefore have the variation to capture an artist-specific public domain effect. We explored the possibility of
including performances from more “obscure” artists using data collected for Spotify analysis. Of the 41 “obscure”
artists, none are: found in the setlist.fm data, have tracks released between 1960-1975, have songs both pre-1963 and
post-1963, are active in 2012, and are primarily UK based.
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still performing after 2012 is relatively small.41

It is clear that some artists prefer to play copyrighted songs over public domain ones (all else

equal), both because it is apparent in the data and because Cliff Richard has stated that he pursues

this strategy (see section 2.2). However, it is unclear how important this effect is for recording

artists in general. This is because only a small number of artists from the pre-1963 cohort were

still performing when their songs entered the public domain. This means that we do not directly

observe a within-artist decline in performances of public domain songs for very many artists, making

it hard to tell how important the “Cliff Richard effect” is as a phenomenon for live performances

in general. We can, however, use as a counterfactual the performances of songs aged more than

fifty from the later cohort, who recorded songs in 1963 or later and had their copyrights extended.

Among this group, we observe resilient performances or even an increase around age 50 (see for

example, the Searchers’ aforementioned 50th anniversary tour). The comparison of this group and

the older cohort, who do not show significant performances after age 50, helps us identify the effect

of extended copyright terms on performances.

The set list event study in Table 5 and Figure 5 showed no evidence of a downward pre-trend

that could potentially explain the decline in performances post copyright expiry. Nonetheless,

we estimate similar specifications to those in Table 12 on the set list sample and describe them in

Appendix Table 13. We continue to estimate a robust negative and significant effect after restricting

the sample and incorporating differential trends by original release year. However, the estimated

effect is smaller in the sample restricted to songs first released before 1963 (in which we identify the

effect of copyright expiry solely from the discontinuity in copyright status at age 50) than in the full

sample in which we can control for age effects. The magnitude of the effect of public domain status

on performances in the restricted sample is -63% (Column 1 of Table 13). In the full sample with

age effects, it is -85% (Column 3 Table 5). Other estimates which control for differential trends or

narrow the sample years range from -72% (Column 6, Table 13) to -84% (Column 7 Table 13).

The increase in the magnitude of the effect after controlling for age in the performance regressions

is consistent with a 50th anniversary effect that biases estimates toward zero. This is plausible,

as many of the artists in our sample went on 50th anniversary tours. The positive effect of the

50th anniversary on performances makes it difficult to identify the impact of copyright expiry in

the pre-1963 sample, in which all songs enter the public domain at age 50, and will cause those

estimates to understate the negative effect of copyright expiry on performances. The increase in

the magnitude of the negative effect in the full sample shows the importance of controlling for age

effects and exploiting data from around the time of the term extension to obtain identification.

41There are 31 artists still touring after 2012. Of these, 13 artists have at least one public-domain recording. We
considered expanding the sample to include more artists. However, we did not find sufficient data on the performances
of more obscure artists on Setlist.fm in the post-2012 period to warrant collecting a larger sample.
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4.4 Availability on Spotify

In this section, we estimate the impact of copyright protection on song availability on Spotify.

Figure 6 depicts the lack of a public domain effect on DSP availability with a difference-in-differences

model, wherein the availability of songs in the UK market is compared to their availability in the US

geographic market. There does not appear to be any statistically significant difference in availability

in the UK for songs released prior to 1963, those in the UK public domain, compared to availability

in the US.

We find that sound recordings that have entered the public domain are no more likely to be

available on Spotify than recordings still protected by copyright. Table 6 compares the availability

in the UK geographic market for songs originally released before 1963 with the availability of the

same songs in the US geographic market. Our results suggest that sound recordings released before

1963, (and hence in the UK public domain), are approximately 1% more likely to be available for

streaming in the UK than in the US (where the sound recording has not fallen into the public

domain) but that this difference is statistically insignificant at the 5% level.42 This small and

statistically insignificant difference is of limited economic significance when compared to our results

covering copyrights impact on physical releases.

A possible caveat to this finding is that we have restricted our analysis to artists that appeared

on top twenty weekly album charts in the early sixties. In order to address the effect that public

domain status may have on less prominent (or “obscure”) artists, we collected data on artists that

have only one song in weekly top singles charts, and whose song appears on the charts for two or

fewer weeks.43 We incorporate these artists into our population and estimate the regression model

in column (5) to capture the effect of public domain status on availability for these songs by obscure

artists. The interaction of Obscure ∗ Pre63 ∗Dk captures the additional effect that public domain

status has on these obscure artists. We find that sound recordings from obscure artists that have

entered the public domain are approximately 4.3% more likely to be available for streaming in the

UK than in the US but that this difference is statistically insignificant at the 5% level. This implies

a lack of difference in effect for obscure artists compared to non-obscure artists. This result may be

due to DSPs employing a blanket license strategy in which the entire catalog of a label/distributor

is negotiated for, leading to a lack of differentiation between the major artists and the obscure

ones.44

A number of robustness checks on the Spotify dataset are presented in Table 10. Column (1)

presents a naive regression, controlling for song and country fixed effects. Columns (2)-(3) present

specifications with different combinations of fixed effects on the population that includes the obscure

songs from the singles charts referenced above. Column (4) excludes any song that is unavailable in

both the UK and the US, to confirm that our results are not driven by errors in our song matching

42Recordings made before 1972 are not covered by federal copyright law, but rather by state law, which according
to Brooks (2005a) implies that these recordings will enter the public domain in 2067.

43Approximately 15% of songs within the singles charts appear for two or fewer weeks.
44According to CD Baby, negotiations occur in this blanket format, rather than artist by artist.
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process.45 Column (5) drops the top 5 artists, Column (6) estimates the regression on a restricted

sample of songs used in the analysis of Amazon data (see below), and Column (7) excludes any

songs above the 90th percentile of age (songs recorded before 1957). Results are robust to these

various specifications.

It is possible that some of the most obscure songs will not appear on Spotify due to difficulties in

locating rightsholders (the “orphan works” problem). Although we did not identify any significant

difference in the effects of copyright on availability at different popularity levels in our sample (as

seen above), it is possible that this occurs among songs that are even more obscure than the most

obscure songs in our sample (e.g. those that did not appear on the charts) and were necessarily

omitted from our analysis as a result of our sample construction. To address this possibility, we

collected an auxiliary list of performers appearing on the BBC radio program The Saturday Club

between 1958 and 1969. Analysis of this sample is described in the appendix. To summarize, we

find some evidence that suggests that copyright could limit availability for more obscure songs,

however some patterns in the data suggest confounding factors besides copyright may explain the

results. More research is needed to understand the effects of copyright on digital availability for the

most obscure songs and artists. This question remains exceedingly difficult, however, as the most

obscure artists from past vintages are unlikely to be recorded in any digital database.

4.4.1 Availability on Amazon

One question raised by the digital streaming platform results is whether they are a result of digital

distribution per se, or of the specific DSP business model, with its comprehensive licensing of whole

catalogs. To answer this question, we collected data measuring the availability on Amazon Music of

a random sub-sample of the songs in our database (stratfied by recording year). Although Amazon

has a streaming service, it also sells individual à la carte digital downloads of songs on both the

US site (Amazon.com) the UK site (Amazon.co.uk). We collected data on the number of versions

available on each site in February 2021.46 The methods and results are described in detail in the

appendix and results are shown in Table 7. In summary, we perform the same analysis performed on

the Spotify data, in which we compare availability in the US and the UK across the pre- and post-

1963 time periods.47 We find a dramatic decline in the number of MP3 versions available for sale

on Amazon.co.uk for tracks recorded after 1963, and hence still under copyright in the UK, relative

to tracks recorded before. We do not observe a similar decline in availability of the same tracks

on Amazon.com (see Appendix Figure 9). Estimating a difference-in-differences regression that

compares the difference in availability for songs recorded before and after 1963 in the UK relative

45There are likely to be some songs that are available on Spotify but which we incorrectly classify as unavailable
in both the UK and the US as a result of the difficulty of matching such a large number of song-artist combinations.
If there were any bias introduced by false-negative matches, we would expect results in Column (4) of Table 10 to be
substantially different from the results in Table 6. The similarity of the coefficients confirms that this bias is unlikely
to be a problem.

46In a previous draft, we analyzed data on a different random sample not stratified by year, and obtained very
similar results.

47Additionally, we conduct the Spotify analysis described above, limited to this random sample, and find very
similar results.
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to the US, we estimate a 252-398% increase in availability associated with public domain status,

significant at the 1% level. Graphically, we observe a sharp change in availability at 1963 similar

to the jump observed for physical releases (see Figure 6).48 Controlling for a differential trend in

age reduces the coefficient to 1.259 (standard error 0.087), or a 252.2% increase in availability in

the UK relative to songs still under copyright. Thus, when songs are sold in an online marketplace

that mimics the “record store” model, entry by low-cost reissue labels drives up availability when

recording copyrights expire. Though the typical Spotify listener may be less interested in the artists

from the 1960s than the typical purchaser of CDs, we have no reason to suspect a dramatic shift in

demand for songs from 1962 versus 1964, for example. Additionally, these Amazon results confirm

the idea that it is the digital streaming platform business model, rather than digitization of music

distribution per se, which eliminates the effect of copyright expiry on availability.

It is worth noting that, while availability is relatively unaffected by public domain status, actual

consumption of songs may still be affected if Spotify privileges public domain songs in promotion.

Since Spotify does not have to pay royalties for the recording copyright for public domain songs, they

may have an incentive to promote consumption of them over copyrighted songs. If Spotify privileges

songs with expired recording copyrights on suggested playlists, we may see higher consumption of

these songs than would otherwise be observed. However, we currently do not have access to data

on usage patterns for these songs.

4.5 Discussion and Welfare

4.5.1 Results in Context

We have shown that prior findings of an increase in books in print upon copyright expiry (Reimers

(2018); Heald (2008b)) correspond well to the effects of recording copyright on song re-releases

in the historically dominant physical distribution channel. However, results differ in two separate

channels which have come to account for the majority of revenues for the music industry. Our

findings should be interpreted in the context of the ongoing evolution of the music industry in

order to understand the relative importance of each set of results. In other words, should copyright

terms be extended more readily in a world in which DSPs have become predominant? Moreover,

although we estimate a positive effect of copyright on live performances in our sample, does this

finding generalize beyond our setting, and how important is it for the average music consumer?

The answer to the former question depends in part on the resilience of the market for physical

releases. CDs, LPs and other physical formats accounted for over 60% of label revenues in the UK

in 2010 and 32% of record labels’ revenues in 2017 with total revenues of £310.5M. Sales of vinyl

albums (LPs) have grown substantially to account for 5.7% of label revenues by 2017. Starting from

2.9% of revenues in 2010, streaming (subscription, ad-supported and video) generated £388.8M in

revenues for labels in 2017, or 40.3% of all label revenues, and 58.9% (or £628M) by 2019 (British

48This result is also consistent with what Reimers (2018) found for e-books.
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Phonographic Industry (2019)). Gross Value Added from live performances in the UK in 2017 was

£991M (UK Music (2019)).

Although the market share of CDs and LPs has fallen substantially, these formats still comprised

approximately 20% of the UK market in 2019 (British Phonographic Industry (2019)), and sales

of LPs were growing substantially.49 CDs remain particularly popular in certain sub-markets of

the industry, for example among purchasers of greatest hits albums, a category highly relevant

in this study (Knopper (2018)). In addition, results on a sub-sample of digital downloads from

Amazon Music suggest that the increase in availability observed for physical formats is also seen

in the availability of digital downloads (due to the download platform’s similarity to a “retail”

distribution model). For this reason, our results on availability in physical formats remain relevant

even as digital distribution rises in prominence. Moreover, distribution channels that follow the

“retail” model may be especially relevant as streaming comprises an even larger share of the market,

since physical formats, as durable goods that may be exchanged on secondary markets, provide an

alternative for consumers that may moderate the market power of streaming providers.

Comparing the magnitudes of the effects across samples, we estimate that entering into the public

domain leads to an increase in physical releases ranging from 163% (Table 4, Column 4) to 343%

(Table 4, Column 3). With a mean number of song releases per year of 0.066, implying that the

average song will see 0.108-0.226 more releases per year when copyright ends. By contrast, entering

into the public domain results in a reduction in the number of performances of a song ranging from

57% (Table 5, Column 4) to 85% (Table 5, Column 3). With a mean number of UK performances

per song per year of 0.244, this represents a decline of approximately 0.139-0.207 UK performances

per song per year.

It is important to keep in mind that only a minority of artists are still actively performing 40-50

years after their songs were first recorded, and the results should be interpreted in light of the fact

that as copyright terms lengthen, the positive impact of copyright protection on the total number

of performances will decline as the number of active artists declines. In our sample, 48 artists were

still actively performing in 2000, 33 in 2016, and the average total number of performances per

year of songs that were 49 years old between 2000 and 2013 was 61.8. However, the increase in

re-releases after age 50 in the pre-1963 group of songs is sustained over time (see Figure 2), while

performances by most artists in their eighth decades will soon come to an end.

The small number of artists still performing 50 years post recording illustrates the difficulty of

estimating the impact of copyright on incentives when copyrights last longer than the performing

careers of most artists. The fact that Cliff Richard was so active in lobbying for copyright extension –

the Act became colloquially known as “Cliff’s Law” – may further suggest that the positive effects

of the extension on performances were concentrated among a limited number of still-performing

artists, while the negative effects of the extension on re-releases apply to a much larger group of

49Musician Jack White has stated that ”I definitely believe the next decade is going to be streaming plus vinyl.
Streaming in the car and kitchen, vinyl in the living room and the den. Those will be the two formats. And I feel
really good about that” (Knopper (2018))
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artists whose recordings are still in demand.

Another important consideration is that our sample is based on a set of songs that did not have

their copyright terms extended, while the set that did see extensions includes hits by some of the

most popular recording artists of all time (The Beatles, Bob Dylan, and The Rolling Stones). It

seems reasonable to expect that, were these songs to enter the public domain, we might see larger

changes in the number of releases upon expiry.

Our results document mixed effects of copyright expiry on music availability. However, the

prior literature has identified several significant potential drawbacks of copyright extensions. These

include the maintenance of higher prices and lower availability in traditional retail distribution

channels; a lack of variety; and negative effects on cumulative innovation. We discuss these below.

4.5.2 Price-related welfare effects

The effect of copyright on price is perhaps the most salient of these effects. According to Pollock

(2009), the study closest to ours in terms of data and legal context, the average price difference

between UK pop recordings protected by copyright and those in the public domain is 4-14%. Pollock

estimates the deadweight loss associated with copyright in book data (where the price effect is

estimated at 5-15%) at 0.1-0.2% of total revenues (both copyrighted and public domain works).

By contrast, Reimers’s (2018) more detailed structural analysis estimates an average consumer

surplus per public-domain title of $9,982, compared to $4,145 in profit per title for copyrighted

works. Reimers concludes that “[w]ithout changing incentives for creation, the 1998 Copyright

Term Extension was welfare decreasing unless the copyright holder or publishers used the added

profits for further innovation.” (p. 26)

Our analysis suggests that applying prior estimates of the welfare losses of copyright will be

incomplete for two reasons. First, because the act extended copyright during artists’ lifetimes, the

extension increased incentives for artists to perform copyrighted material. This may have led to an

overall increase in live performances for artists with many songs near the 50-year cutoff. Indeed,

our analysis in Table 11 suggests that having a larger number of songs in the public domain is

associated with a higher propensity to go on tour, controlling for year effects and a quadratic in

average song age.50 While it is clear that our results do not speak to the impact of copyright

on incentives to create new recordings, they suggest that copyright encourages artists to increase

the supply of complements to existing recordings (live performances). This stands in contrast to

prior research which has suggested that extending copyright does not encourage the restoration,

maintenance and distribution of pre-existing works (Buccafusco and Heald, 2013). As described

above, this increase in live performances is limited due to the advanced age of the artists and the

50The extension presumably did not increase performances among younger artists. However, the royalties received
from recording copyrights create incentives for any artists receiving those royalties to perform and promote copyrighted
songs, regardless of age. Although our results exploit an older sample of songs in which it is possible to identify
the effect of copyright, we expect the phenomenon whereby live performances promote sales of copyright-protected
recordings to apply equally to younger songs.
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relatively small number of artists still performing at that age.

More significantly, the shift to digital streaming platforms with their flat-rate pricing models has

attenuated the negative effect of copyright protection on consumer availability.51 In one sense, this

would seem to eliminate the dead-weight loss associated with copyright, since almost all popular

music is now available for free on ad-supported platforms such as Spotify and YouTube. However,

the advertising that supports the free versions of these services presumably reduces utility for users

of the free version of Spotify, who account for approximately half of users, and the other half incur

the cost of a monthly subscription fee.52 Furthermore, the value of these streaming platforms largely

flows to consumers with broadband internet access.

Would Spotify’s monthly UK subscription price be lower if high-value sixties recordings had

entered the public domain after 2013? Royalties paid by Spotify to the UK holders of recording

rights to these songs would have fallen if recording copyrights had lapsed, implying a reduction

in licensing costs. However, Waldfogel (2020) argues that Spotify maximizes revenues rather than

profits. This may stem from the labels’ large ownership stakes in Spotify, and their desire to avoid

double marginalization (p. 597). Revenue maximization implies that prices are determined by the

elasticity of demand, and a reduction in licensing costs would therefore not reduce subscription

prices. However, copyright could affect elasticity of demand by limiting competition from entry of

CDs released by re-issue labels. Had the term extension of 2013 not occurred, early Beatles, Stones

and Dylan recordings might now be available on CD from a variety of reissue labels. The increased

availability of some of the most popular recordings of the 20th century on CD could potentially

have slowed the transition away from CDs as the dominant format for recorded music.

If one DSP were to become the single dominant music platform, it could have sufficient market

power to raise prices with deleterious effects on consumer welfare. In the long-run, consumers that

prefer public domain music (“oldies”) and who have low valuations for newer music and the DSP’s

bundle may be excluded from the market.53 However, inter-platform competition, relatively weak

network externalities, cheap substitutes (e.g., CDs), and the outside option of piracy currently

constrain any dominant platform’s ability to raise prices.

On the supply side of the above scenario, a monopolist DSP would have incentives to maintain

access to labels and rightsholders, as it internalizes the value of supply-side competition through

the price paid by consumers. Spotify and Apple Music currently provide access to preferred ag-

gregators and limit excess variety on the platform, but this policy provides value by diminishing

consumer search costs.54 Farrell and Weiser (2003) provide a framework for analyzing scenarios

51Availability effects similar to CDs are observed in digital downloads on Amazon Music, however the revenue share
of digital downloads has declined along with CDs as streaming has become more prevalent.

52It is difficult to quantify exactly how much advertising affects utility for the average listener. It is likely to be
substantially less than the $9.99 monthly subscription fee for the ad-free service. According to Brynjolfsson et al.
(2019), the median consumer of digital music in 2017 valued it at $168/year.

53That is, those consumers in the past who greatly benefit when a recording copyright expires and generic recordings
proliferate. Of course, bundling may also facilitate transactions for consumers that are willing to pay for the bundle,
but otherwise have very low valuations for individual songs.

54In physical channels, reissue labels also provided value by marketing unique arrangements of public domain music.
In the digital-era, this value is largely internalized by Spotify’s playlist features and recommendation engine.
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in which a platform may not internalize complementary efficiencies (ICE), and instead act in an

anti-competitive manner.

4.5.3 Additional welfare effects

Separate from the price effects of copyright, there are additional welfare implications that have

been identified by the prior literature. For example Nagaraj (2018) has identified negative effects

on cumulative innovation on Wikipedia; Nagaraj and Reimers (2020) find that free digital access

increases sales of books, and Biasi and Moser find negative effects of copyright on knowledge diffusion

in science. Simcoe and Watson (2019) find that stronger enforcement of copyrights preventing

sampling of songs led to less reuse but also more dispersion in the distribution of sampled work.

Given the findings of this prior research, we might expect that copyrighted recordings in our sample

are used less in derivative works such as music sampling, films or television shows. Copyright term

extensions may thus reduce variety or cumulative artistic innovation by raising the costs of licensing

music for use in films and television programs (Heald, 2014a). The cost of rights to include Beatles

compositions in the recent film Yesterday was reported by Billboard at $10 million, or 40% of the

total budget of the film.55 Additionally, rights holders can be reluctant to grant permission for

re-use if there is concern that the derivative work will reduce the value of the underlying right.56

Finally, welfare considerations must acknowledge the consumer frictions and switching costs that

accompany technological change. For example, the technology used to consume recorded music

when the albums of the early 1960s were first released is essentially obsolete today. In a random

sample of 1,500 American recordings released between 1890 and 1964, Brooks (2005b) finds that

65% of historic recordings are not available to listeners because they are not reissued by rights

holders and because “the physical barriers created by recording technologies change often and have

rendered most such recordings accessible only through obsolescent technologies usually found only

in special institutions” (p. 14).

Moreover, recent research on book sales has suggested that consumers tend to be wedded to their

preferred distribution channel, whether physical or digital (Chen et al., 2018, p. 11) and that, if a

song is not available in CD format, consumers may choose a different song available on CD rather

than switching to Spotify. This suggests that, if old music is not reissued on CD due to extended

copyrights, it may fade into obscurity.

55The Long and Winding Road to ’Yesterday,’ a Film Full of Beatles Music, by Itzkoff, Dave. The New York Times,
International edition; New York, 01 July 2019.

56“It has to be the right product, it has to be the right film, it has to be the right brand,” he said. “We don’t
want to be detrimental to the group or their legacy in any way. Its about making sure that every part of it is right.”
(Itzkoff 2019).
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5 Conclusion

We obtain mixed results on the effect of recording copyright term on the supply of music: when a

song enters the public domain, there are more reissues of that song, but songs with recordings in

the public domain are performed less often in concert. This suggests that when artists are living at

the time of a copyright term extension, the negative supply effects of the extension on re-releases

may be partially offset by a temporary positive supply response in live performance. The practical

importance of this effect depends on the number of artists still living and performing in concert

at the time of the extension, and the remaining lifespan of these artists. Given heterogeneity

in copyright terms across countries, our results may inform debates surrounding the appropriate

duration of rights, the transition of content industries to bundled subscription platforms (e.g.,

Kindle Unlimited, Audible), and industries in which rightsholders provide complementary effort to

copyright protected works.

Our results regarding the supply of re-releases are consistent with prior studies of copyright’s

impact on the availability of books (Heald, 2008a; Reimers, 2018). This may not be surprising,

given that CDs and books share similar distribution models, in which multiple publishers/labels

compete to offer desirable editions/releases, and the expiry of copyright lowers entry barriers for

those wishing to offer a low-priced edition/release. The resulting entry lowers prices and increases

availability for both books and music distributed on CD.

However, our analysis of digital distribution represents a departure from the prior research on

copyright and book title availability. Consumers’ desire for near universal access and the high fixed

costs of negotiating licenses with record labels have led to the concentration of digital distribution

among a small number of large platforms, and the entry by “generic” producers observed in the

CD market does not occur. Despite this, we observe no difference in availability on Spotify be-

tween public-domain recordings and those remaining under copyright in our main analysis sample,

presumably due to the blanket licensing of songs by labels to DSPs.

In the long run, the market’s shift away from CDs and towards streaming platforms like Spotify

may thus work to moderate the negative welfare implications of copyright term extensions. It is

possible that this null effect of copyright on availability is unique to Spotify, but the three major

music labels and large aggregators like CDBaby also license their catalogs to smaller competing

platforms such as Apple Music, Google Play Music, and Amazon Music’s streaming service. There

may be significantly greater availability of public domain compositions, through excess variety, on

open access platforms such as YouTube operating under a notice-and-takedown regime. Further

empirical work may also examine whether digital streaming platforms are biasing consumer rec-

ommendations to lower-cost public domain content.57 This result may be limited to our sample

of artists that were relatively well-known during their prime. Analysis of an auxiliary sample is

suggestive that copyright may indeed reduce availability on DSPs for more obscure artists, possi-

57Bourreau and Gaudin (2019) develop a theoretical model in which a platform provider maximizes profits by
biasing recommendations towards low-royalty content.
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bly due to the “orphan works” problem. Additional research is needed to definitively determine

whether results are similar for more obscure or older recordings such as those considered by Brooks

(2005b). However, the available evidence as examined in this paper indicates that digital streaming

platforms and live performances have partially offset the negative effects of longer copyright terms

on the availability of the most popular music from this period.
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Figure 1: Copyright Term and Availability

Re-release

End of Recording 
Copyright Term

Selected Releases of "Move It," by Cliff Richard, first released 1958

Selected Releases of "Summer Holiday," by Cliff Richard, first released 1963

Original Release Re-releases 

1958 1977 2008 20092006

1963 2008

Re-releaseOriginal Release Re-release 
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End of Recording 
Copyright Term

2033

 Single: Move It  
Label: Columbia 

Format: Vinyl

Re-release

 Album: 40 Golden 
Greats 

Label: EMI      
Format: Vinyl

 Album: Two's 
Company - the duets  

Label: EMI      
Format: CD

 Album: Forever 
Rock 'N' Roll  

Label: Not Now 
Music  Format: CD

 Album: The Final 
Reunion  

Label: 2 Entertain                 
Format: CD

 Single: Summer 
Holiday

Label: Columbia 
Format: Vinyl

 Album: The Best 
Sixties Summer 

Party...Ever!
Label: Virgin TV      

Format: CD

 Album: The 50th 
Anniversary Album

Label: EMI      
Format: CD

Average Annual Performances of "Move It"

Up to age 50: 3.5

After Age 50: 0.5

Spotify Availability of "Move It"

UK Market: Available

US Market: Available

Spotify Availability of "Summer Holiday"

UK Market: Available

US Market: Available

Average Annual Performances of "Summer Holiday"

Up to age 50: 1.3

After Age 50: 2.0

Notes: This figure illustrates the effect of the copyright term extension for two separate songs by
Cliff Richard. The top timeline shows selected releases before and after UK copyright expiry for
the song “Move It,” first released in 1958. The song lapsed into the public domain in 2009, and
was subsequently re-released by small independent labels, here depicted in compilation albums
by Not Now Music and 2 Entertain. The bottom timeline shows selected releases for the song
“Summer Holiday,” first released in 1963. This song was re-released on compilation albums by
Virgin and EMI in 2002 and 2008. Note that the Columbia and Virgin labels were owned by
EMI. Due to the copyright term extension, this song remains under UK copyright protection
until the end of 2033. Below the timelines, the average annual number of performances and
Spotify availability for each song are displayed.
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Figure 2: Raw Effect of Copyright on Physical Releases in the UK
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Figure 3: Raw Effect of Copyright on Concert Performances in the UK
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Notes: The top figure shows the average number of physical releases in the UK, by song age.
The bottom figure shows the average number of times songs were performed in the UK, by song
age. Residualized mean releases are computed from the residuals of a regression of the outcome
variable on dummies for year t. The sample is restricted to songs released before 1963, for which
the recording copyright term expired at 50 years of age. Songs to the right of the dashed line
are in the public domain.
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Figure 4: Raw Effect of Copyright on Digital Platform Availability: UK vs US
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Notes: This figure shows the average availability of songs, by original release year, on the UK
and US Spotify platforms. Recordings of songs originally released before 1963 (to the left of the
dashed line) are in the public domain.
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Figure 5: Time-varying Estimates of the Effect of Copyright on Releases and Live Performances
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Notes: The figures display 95% confidence intervals for αT in the pseudo-poisson regression:
y itj = α0 +

∑4
T=−50 αT + βt + δj + γOrigYear i + ζAge × 1{OrigYear < 1963}it + εitj , where

αT=−1 = 1 if song i is 1 year from copyright expiry in year t, and αT=4 = 1 if song i is 4 years
past copyright expiry in year t. The model includes artist fixed effects (δj), year fixed effects
(βt), and up to two additional controls. Estimates in gray control for year of original release
(γ), while those in black control for year of release as well as a differential trend in age for songs
released before 1963 (ζ). The year of copyright expiration (T = 0) is the excluded category.
The estimation sample includes all observations in which age is less than 55 years, and a full set
of dummies for years to/from expiry is included. For illustration purposes the figure is limited
to 8 years in the pre-expiry period.
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Figure 6: Time-varying Estimates of the Effect of Copyright on Digital Streaming and Retail
Availability
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Notes: 95% confidence intervals for αT in the linear regression:
availability itj = α0 +

∑
T αT + γA + δj + θk + εiAjk, where αT=−4 = 1 for observations of song i

in the UK recorded in 1967 (4 years after the cutoff for public domain status, 1963), and αT=4

= 1 for observations in the UK if song i was recorded in 1959 (4 years from the cutoff for public
domain status). The model includes artist fixed effects (δj), age fixed effects (γA) and country
effects (θk). US observations are pooled with the excluded category, the last year of copyright
protection (T = 0 or 1963). For illustration purposes, the figure is limited to four years before
and after 1963, but the estimation sample includes all observations in the dataset. For Spotify,
the data covers observations with original release years of 1975 and prior, while the Amazon
data covers only 1959 to 1967.
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Table 1: Summary Statistics on Releases

(1)
Mean SD Min Max

Original Release Year 1963.496 6.624 1923 1975
Year of Release 1990.142 15.091 1960 2017
Age of Track 26.647 14.788 1 54
UK Releases 0.066 0.333 0 12
US Releases 0.078 0.341 0 11
Public Domain 0.030 0.172 0 1
UK Major Label Releases 0.036 0.217 0 8
UK Non-major Label Releases 0.030 0.212 0 9

Observations 922,182

Notes: Release data from MusicBrainz includes 18,516 songs across 138 artists. “Original Re-
lease Year” is the year the song was first released, and “Year of Release” is the year of subsequent
re-release. Data is restricted to observations where original release year is 1975 or earlier and
age is less than 55. Each song has an observation for each year subsequent to its original release
year from 1960 until 2017. Original release year is based on MusicBrainz and is cross-checked
with data from Discogs. “Public Domain” is a dummy equal to 1 in years after the end of a
song’s recording copyright term. We define a release as a “major label” release if the “label
type” field on MusicBrainz classifies the release as production, original production, imprint, or
holding.

Table 2: Summary Statistics on Set Lists

(1)
Mean SD Min Max

Original Year 1964.199 6.117 1928 1975
Performance Year 1987.145 14.578 1960 2016
Year Performance Count 1.576 7.987 0 178
UK Performance Count 0.244 2.484 0 127
US Performance Count 0.977 5.826 0 122
Touring (= 1 if on tour) 0.633 0.482 0 1
Public Domain 0.012 0.108 0 1
Age 22.945 14.209 0 54

Observations 109,583

Notes: Setlist data from Setlist.fm includes 2,825 songs across 84 artists. “Original Release
Year” is based on MusicBrainz and is cross-checked with data from Discogs. Data is restricted
to observations where original release year is 1975 or earlier and for years in which the artist is
still active, according to MusicBrainz. Each song has an observation for each year from 1960
until the artist is no longer active (or 2016). “Yearly Performance Count” shows the number of
performances of a song in each year, and includes years in which the song was not performed.
“Public Domain” is a dummy equal to 1 in years after the end of a song’s recording copyright
term.
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Table 3: Summary Statistics on Online Streaming

(1) (2)
Album Charts Singles Data

Mean SD Min Max Mean SD Min Max

Original Release Year 1963.449 7.257 1923 1975 1965.375 5.493 1952 1975
Available 0.746 0.435 0 1 0.708 0.455 0 1
UK 0.500 0.500 0 1 0.500 0.500 0 1
pre-1963 0.380 0.485 0 1 0.375 0.484 0 1
Obscure 0.000 0.000 0 0 1.000 0.000 1 1

Observations 37,032 2,686

Notes: Online streaming data was gathered from Spotify in September 2017, matched to Mu-
sicBrainz release data. The Album Charts data in Panel 1 include the same songs and artists
found in Table 1. Each song has two observations in our data, one denoting availability in
the US market and one denoting availability in the UK market as of 9/2017. Panel 1 contains
18,516 songs by 138 artists in the UK and US markets, for a total of 37,032 observations. Panel
2 includes the additional population of obscure artists used in Column (5) of Table 6, with 1,343
songs by 41 artists and is a cross section as of 7/2019. Data is restricted to observations where
original release year is 1975 or earlier.
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Table 4: Baseline Results on Releases

Poisson OLS Poisson

(1) (2) (3) (4) (5) (6) (7) (8)
UK Releases UK Releases UK Releases UK vs US ShareNew UK Releases UK Releases UK Releases

Public Domain 1.341∗∗∗ 1.413∗∗∗ 1.488∗∗∗ 0.968∗∗∗ 0.208∗∗∗

(0.024) (0.250) (0.067) (0.026) (0.027)

UK -0.267∗∗∗

(0.013)

T = -4 -0.500∗∗∗ -0.227∗∗ -0.047
(0.103) (0.100) (0.109)

T = -3 -0.360∗∗∗ -0.153 0.002
(0.106) (0.103) (0.110)

T = -2 -0.352∗∗∗ -0.214∗∗ -0.097
(0.113) (0.109) (0.122)

T = -1 -0.269∗∗∗ -0.202∗∗∗ -0.142∗∗

(0.063) (0.061) (0.066)

T = 0 0.000 0.000 0.000
(.) (.) (.)

T = 1 1.129∗∗∗ 1.140∗∗∗ 1.139∗∗∗

(0.096) (0.094) (0.093)

T = 2 1.093∗∗∗ 1.086∗∗∗ 1.085∗∗∗

(0.101) (0.091) (0.092)

T = 3 1.045∗∗∗ 1.024∗∗∗ 1.020∗∗∗

(0.122) (0.101) (0.101)

T = 4 0.879∗∗∗ 0.895∗∗∗ 0.887∗∗∗

(0.162) (0.108) (0.108)

Age FE No Yes Yes Yes Yes No No No
Year FE Yes Yes Yes Yes Yes Yes Yes Yes
Artist FE No Yes No No No Yes Yes Yes
Song FE Yes No Yes Yes Yes No No No
Orig. Yr. Trend No No No No No No Yes Yes
Pre-’63 Age Trend No No No No No No No Yes
N 572,665 920,439 572,665 1,555,256 42,890 920,439 920,439 920,439

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: This table displays estimated coefficients from regressions in which the dependent variable
is the number of UK releases of song i in year t. Columns (1)-(4) and (6)-(8) are Poisson
regressions, column (5) is Ordinary Least Squares (OLS). Age fixed effects control for the number
of years since original release. Year fixed effects control for the year of release. Song fixed effects
control for the artist-song combination. All specifications control for year FE. Column (1) also
controls for song FE. Column (2) controls for age and artist FE, and column (3) controls for age
and song FE. Column (4) is a difference-in-differences regression using a Poisson specification
comparing the number of releases in the UK to the number of releases in the US before and after
songs lapse into the public domain. Column (5) is an OLS regression in which the dependent
variable is the share of releases from new labels. Columns (6)-(8) control for time fixed effects
before and after copyright expiry, with the year of expiry as the omitted category. Column (7)
adds a linear control for original release year. Column (8) controls for year of original release
and a differential trend in age for songs released before 1963. Standard errors are clustered at
the level of the respective group fixed effect, artist or song.
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Table 5: Set List Results

Poisson

(1) (2) (3) (4) (5) (6)
UK Performances UK Performances UK Performances UK vs US UK Performances UK Performances

Public Domain -1.401∗∗∗ -1.788∗∗∗ -1.898∗∗∗ -0.838∗∗∗

(0.257) (0.608) (0.364) (0.246)

UK -1.381∗∗∗

(0.079)

T = -4 0.375 0.336
(0.249) (0.478)

T = -3 0.441 0.408
(0.317) (0.323)

T = -2 0.944∗ 0.915∗

(0.532) (0.536)

T = -1 1.637∗∗ 1.612∗∗∗

(0.637) (0.570)

T = 0 0.000 0.000
(.) (.)

T = 1 -1.201∗ -1.201∗

(0.727) (0.721)

T = 2 -1.628∗∗∗ -1.626∗∗∗

(0.329) (0.321)

T = 3 -1.531∗∗ -1.528∗∗

(0.740) (0.768)

T = 4 -2.786∗∗∗ -2.780∗∗∗

(1.023) (1.047)

Age FE No Yes Yes Yes No No
Year FE Yes Yes Yes Yes Yes Yes
Artist FE No Yes No No Yes Yes
Song FE Yes No Yes Yes No No
Orig. Yr. Trend No No No No No Yes
Pre-’63 Age Trend No No No No No Yes
N 56,266 97,804 56,266 193,568 97,456 97,456

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: This table displays estimated coefficients from a Poisson regression where the dependent
variable is the number of times a song i was performed in year t in the United Kingdom (columns
1-3 and 5-6). Age fixed effects control for the number of years since original release. Year fixed
effects control for the year of release. Song fixed effects control for the artist-song combination.
All columns control for year FE. Column (1) also controls for song FE. Column (2) controls
for age and artist FE, and column (3) controls for age and song FE. Column (4) shows a DiD
regression comparing the number of performances for song i in the UK and US before and after
song i lapses into the public domain. Columns (5)-(6) control for time fixed effects before and
after copyright expiry, with the year of expiry as the omitted category. Column (5) includes
all original release years. Column (6) also controls for linear year of original release and a
differential trend in age for songs released before 1963. Standard errors are clustered at the level
of the respective group fixed effect, artist or song.
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Table 6: Availability on Spotify

L.P.M

(1) (2) (3) (4) (5)
Availability Availability Availability Availability Availability

Public Domain (pre1963 x UK) 0.014 0.014 0.014 0.014
(0.016) (0.016) (0.016) (0.016)

pre1963 0.068∗∗

(0.030)

T=-4 (1967 x UK) 0.019
(0.023)

T=-3 (1966 x UK) 0.040
(0.027)

T=-2 (1965 x UK) -0.002
(0.027)

T=-1 (1964 x UK) 0.010
(0.023)

T=0 (1963 x UK) 0.000
(.)

T=1 (1962 x UK) 0.056
(0.036)

T=2 (1961 x UK) 0.030
(0.032)

T=3 (1960 x UK) 0.041
(0.033)

T=4 (1959 x UK) 0.007
(0.038)

UK x Obscure 0.061∗

(0.031)

pre63 x Obscure 0.051
(0.049)

pre63 x ObscureUK 0.043
(0.037)

Age FE No Yes Yes Yes Yes
Artist FE No Yes No Yes Yes
Song FE No No Yes No No
Country FE Yes Yes Yes Yes Yes
N 37,032 37,032 37,032 19,596 39,718

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: This table displays coefficients from a linear probability model. In all specifications, the
dependent variable is a binary variable that equals 1 if song i is available in geographic market
k on the digital music streaming platform Spotify as of September 2017. The estimation sample
is restricted to songs with an original release year before 1975. Pre-1963 equals 1 for songs with
an original release year prior to 1963. Age fixed effects control for the number of years since
original release. Song fixed effects control for the artist-song combination. Country fixed effects
control for the US market versus the UK market. All columns control for country FE. Column
(2) also controls for age and artist FE, and column (3) controls for age and song FE. Column (4)
controls for time fixed effects for number of years before and after the cut-off for public domain
status (1963), with 1963 as the omitted category. Column (5) includes data on more obscure
artists, who have one song appear in singles charts and whose song is on the charts for two or
fewer weeks. Standard errors are clustered by artist.
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Table 7: Availability on Amazon

Poisson

(1) (2) (3) (4) (5) (6)
Version Count Version Count Version Count Version Count Version Count Drop 1966

Public Domain 1.606∗∗∗ 1.606∗∗∗ 1.606∗∗∗ 1.259∗∗∗ 1.581∗∗∗

(0.085) (0.085) (0.049) (0.087) (0.087)

pre-1963 0.861∗∗∗

(0.113)

Age × Treated 0.084∗∗∗

(0.018)

T = -4 (1967 × UK) -0.211
(0.147)

T = -3 (1966 × UK) -0.284∗∗∗

(0.100)

T = -2 (1965 × UK) -0.055
(0.151)

T = -1 (1964 × UK) -0.110
(0.113)

T = 0 (1963 × UK) 0.000
(.)

T = 1 (1962 × UK) 1.302∗∗∗

(0.120)

T = 2 (1961 × UK) 1.425∗∗∗

(0.101)

T = 3 (1960 × UK) 1.700∗∗∗

(0.110)

T = 4 (1959 × UK) 1.552∗∗∗

(0.110)

Age FE No Yes Yes Yes Yes Yes
Artist FE No Yes No No Yes Yes
Song FE No No Yes Yes No No
Country FE Yes Yes Yes Yes Yes Yes
N 3,676 3,644 3,620 3,620 3,644 3,252

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: This table displays coefficients from a Poisson model. The dependent variable is a count
of the number of versions of song i available in geographic market k (UK or US) on Amazon
Music as of March 2021. The estimation sample is a random sub-sample of the songs in Table
6, stratified by year of original release. Pre-1963 equals 1 for songs originally released prior to
1963. Age fixed effects control for the number of years since original release. Song fixed effects
control for the artist-song combination. Country fixed effects control for the US market versus
the UK market. All columns control for country FE. Column (2) also controls for age and artist
FE, and column (3) controls for age and song FE. Column (4) controls for age, song and country
effects as well as for a linear age term interacted with the UK dummy. Column (5) controls
for time fixed effects for number of years after and before the cut-off for public domain status
(1963), with 1963 as the omitted category. Column (6) drops songs released in 1966 from the
sample as a robustness test due to the statistically significant 1966 coefficient in the Figure 6
event-study. Standard errors are clustered at the level of the respective group fixed effect, artist
or song.
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Identification and Robustness to Parallel Trend Assumption

In this section, we describe the robustness of our results to potential violations of the parallel trend

assumption. Our preferred specification with age, year and song fixed effects relies on having an

“untreated” group of songs that do not enter the public domain at age 50, because this allows us

to identify the effect of expiry as distinct from the effect of a song turning 50. However, our results

could be invalid if there is a difference in age trends between treated and untreated groups large

enough to explain the change in the outcome variable at the time of copyright expiry. For example,

if songs released before 1963 saw increasing demand as they aged while songs released in 1963 or

later saw falling demand, we could estimate an increase in releases from entering the public domain

which actually reflected the diverging trends in age among these two groups.

We rule out this possibility using several approaches. First, we show that results are robust

to restricting the sample to songs recorded before 1963 (Column 1 of Table 12). This approach

identifies the effect of copyright expiry solely from a comparison of songs older than 50 years with

younger songs, and does not exploit the 2013 term extension. The coefficient on Public Domain

is robust to this specification (1.252, with a standard error of 0.034). An alternative approach

narrows the sample to songs originally released between 1960-1965. These songs should be more

similar in their demand trajectories over time than songs released much earlier or later, so we are

essentially “matching” songs to a group of songs that are more similar because they were released

at around the same time. There is no apparent pre-trend in this narrowed sample, but the large

and significant increase in releases at copyright expiry is nonetheless robust to using this narrowed

sample. It is also robust to narrowing the sample further (e.g. to narrower windows around 1963,

not presented here but available upon request).

Third, we estimate results from the full sample but allow for the possibility that trends in age are

not parallel for songs released before 1963 and songs later, by augmenting our baseline specification

with a group-specific linear trend. A similar approach is used by Dobkin et al. (2018) to study

the economic effects of hospital admissions, a context in which pre-trends in outcome variables

obviously complicate the estimation of event study coefficients. This is referred to as a “parametric

event study” by Rambachan and Roth (2020) (p. 11). The augmented regression controls for age,

year and song fixed effects, as in the specification in Column 3 of Table 4, and adds a linear trend

in age interacted with a dummy for the group of songs with original release dates before 1963. This

group-specific trend will control for any potential difference in the trends of the two groups. We also

present a specification (in Column 6) with the group-specific trend restricted to the 10 years prior

to copyright expiry, since the pattern of outcomes immediately preceding copyright expiry is likely

to be the most relevant. An additional specification in Column (7) includes interactions between

the year of original release and a linear age term, to allow for differences in age trajectories by year

of original release. Results are robust to this specification. Column (8) presents results from the

US-UK triple difference specification found in Table 4, Column (4), controlling for a differential

trend in age for the pre-1963 songs as well as a differential trend in age for songs in the UK market

and a differential trend in pre-1963 songs in the UK market. To be precise, we add to the regression
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in Column (4) an interaction of age with a dummy for pre-1963 cohort, an interaction of age with

the UK market dummy, a UK X Pre-63 interaction, and a UK X Pre-63 X Age interaction. The

song and age fixed effects control for the main effects of original release year and age. The public

domain coefficient is robust to controlling for these additional trend variables.

Following Rambachan and Roth (2020), we also consider the possibility of a kink in the differential

trend at the time of copyright expiry. We are unaware of any reason why such a kink would exist.

However, Rambachan and Roth (2020) suggest using untreated groups to benchmark potential

deviations from parallel trends. One way to obtain a benchmark for a hypothetical change in slope

of the differential pre-trend at copyright expiry is to check whether there is a kink in the trend for

US releases, which are not affected by UK copyright laws. We thus regressed US releases on fixed

effects for age, song and year, as well as the differential age trend (age interacted with a dummy for

pre-1963 release) up to age 50 and a separate differential age trend above age 50. The coefficient

on this differential age trend is 0.0077 (standard error 0.0015) below the age 50 cutoff and 0.0097

(standard error 0.0016) above the cutoff. Because the slopes before and after the cutoff are very

similar in magnitude, with overlapping 95% confidence intervals, this casts substantial doubt on

the idea that there could be an increase in the slope that explains our large estimated increase in

releases post copyright expiry.58

Another approach to estimating a potential kink uses the pre-period coefficients of the event-

study regression in Table 4. Rambachan and Roth (2020) provide guidelines for sensitivity analysis

that bounds the extent to which the slope of a hypothetical differential trend could change between

consecutive periods. For a given M, the amount by which the slope of a differential trend could

change from one period to the next, they suggest, “one could...construct an upper bound on the

largest change in slope in the pre-period for the groups used in the main event-study of interest.

One could then benchmark M in terms of multiples of the largest value observed in the pre-period”

(p. 35). In Column 8 of Table 4, the coefficients on the years up to year T=-1 are not significantly

different from zero, but the coefficient on T=-1 is negative and significant, with a 95% confidence

interval of (-0.271, -0.013). This implies a dip in releases in year T=-1, followed by an increase in

year T=0. If we extrapolate the rise in releases from T=-1 to T=0 forward linearly to T=+1, in

year T=+1 we would expect to observe releases in the range (0.013, 0.271), in the following year it

is 2 times this (0.025,0.542), in the third year (0.038, 0.814) and so on. Even with this extremely

conservative assumption, the estimated increase in re-releases upon copyright expiry is outside these

bounds for the extrapolated pre-trend.

Turning to the results on performances, we do not observe a pre-trend in Figure 5 that could

explain a decline in performances after expiry, but nonetheless we perform a similar robustness

analysis to that described above. Results in the set list sample are also robust to restricting the

sample to songs released before 1963 (Appendix Table 13 Column 1), or within a narrower range

of original release years (Columns 3-4), as well as to augmenting the model to control for group-

58The differential trend coefficient of 0.02 in Column (5) of Table 12 would have to increase by 63.5 times one year
post expiry, or 15.9 times four years post expiry, to explain the public domain coefficient of 1.271.
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specific trends (Columns 5-7). The coefficients in columns (5) and (6) of Table 13 are negative but

small. However, since the coefficients in Columns (5) and (6) have quite large standard errors, an

intensification in the negative slope of the differential trend of -0.038 in Column (5) could reach

the upper limit of the 95% confidence interval by one year post-expiry if the slope decreased by a

factor of 17.19, or by 4 years post-expiry if it decreased by a factor of 4.30. To obtain a benchmark

for a potential change in slope of the differential pre-trend, we check whether there is a kink in the

trend for US performances. We regressed US performances on fixed effects for age, song and year,

as well as the differential age trend (age interacted with a dummy for pre-1963 release) below age

50 and a separate differential age trend at age 50 and above. The coefficient on this differential

age trend is -0.017 (standard error 0.011) below the age 50 cutoff and -0.021 (standard error 0.012)

above the cutoff. The difference in these coefficients is not statistically significant, which itself casts

doubt on the idea of a kink in the differential trend. Controlling more carefully for differences in

age trajectories across song vintages (with age X origin year interactions in Column 7) leads to an

increase in the magnitude of the negative coefficient on Public Domain, implying an 84% reduction

in performances.

Column (8) presents results from the US-UK triple difference specification found in Table 5,

Column (4), controlling for a differential trend in age for the pre-1963 songs, a differential trend in

age for songs in the UK market, an interaction between the pre-1963 and the UK market dummies,

as well as a pre-1963 X UK X age interaction.59 With these interactions in Column (8), effect sizes

are similar and inference remains consistent with Column (4) of Table 5.

In Figure 9, there is a drop in availability on Amazon.co.uk for songs first released in 1963 or later,

and one may be concerned with a declining trend in availability from 1959 to 1967. The Amazon

event study in Figure 6, for example, does not have an immediately apparent pre-trend except for

the negative 1966 coefficient being significantly different from the excluded reference category. To

correct for a potential pre-trend, we conduct two robustness tests. First, we include in the regression

an interaction between a pre-1963 release indicator with a linear age term. This reduces the public

domain coefficient in Table 7 from 1.606 (s.e. 0.049) to 1.259 (s.e. 0.087). Alternatively, to remove

outliers observed in the event study we drop all songs that were originally released in 1966, which

trivially attenuates the estimated coefficient from 1.606 (s.e. 0.049) to 1.581 (s.e. 0.087).

6 The Saturday Club Data

To explore whether the DSP availability of more obscure artists benefits from public domain status,

this section analyzes data on artists who appeared on The Saturday Club in the late fifties and

sixties. This was one of two popular music programs that aired on the BBC in the late fifties and

early sixties.60 There are 1,079 performers who appeared on these lists between 1958 and 1969.

59To be precise, we add to the regression in Column (4) an interaction of age with a dummy for pre-1963 cohort, an
interaction of age with the UK market dummy, an interaction of the UK market dummy with a dummy for pre-1963
cohort, and an interaction between age, the UK market dummy, and a dummy for pre-1963 cohort.

60We extracted performers names from episode lists posted at http://epguides.com/SaturdayClub/.
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We drop 81 performers who appeared on The Saturday Club and are also found in our regression

sample described above. After matching the data to MusicBrainz to recover original release years,

the final sample resulted in 22,831 total songs found on Spotify in any market worldwide by 171

artists that do not appear in our original data set. Note that the song-level sample is conditional

on having an exact match by artist name and standardized song name, as well as the song being

available in at least one Spotify market globally.

Estimates for the effect of public domain status in this sample are striking, but deserve attention

by future researchers due to known empirical challenges in the data. Figure 10 displays the mean

availability of songs by year of original release, from 1959 to 1966, split by country. While it appears

that songs in the UK may have slightly higher availability in the pre-1963 period (recordings in the

public domain) compared to ’63-66 period, it is problematic that availability in the US is low in

1959 and appears to systematically grow over year of original release through 1966. This may be

due to the fact that the popularity of the BBC’s Saturday Club grew over time, and more popular

artists appeared in later years of the show. Thus, while the most obscure Saturday Club artists

may only have notable demand in the UK, more successful artists appeared later in the show with

global appeal, correlating with year of original release.

Despite these empirical challenges, the results are striking. Column 1 of Table 14 compares

availability between the US and UK while controlling for artist, country, and age fixed effects,

implying a 39% increase in availability for those sound recordings that are in the public domain

in the UK. Column 2 interacts original release year with a UK indicator, and while songs released

in the pre 1963 period generally have greater availability in the UK of between 18 and 31 percent,

there does appear to be a significant pre-trend in the sense that years 64-66 have systematically

lower availability than the excluded year of 1963. Again, estimation here is complicated by the

fact that US availability for this sample grows over time from 1959 to 1966, despite no break in

copyright status. Due to this fact that US availability pre-1963 may be a flawed counterfactual

for UK availability pre-1963, we drop US observations from the sample and compare availability in

the UK in the 1959-1962 period to the 1963-1966 period, with the maintained assumption that the

availability of 1963-1966 songs provides a counterfactual for the availability of pre 1963 songs had

those songs not lapsed into the public domain. Column 3 compares the availability of public domain

recordings in the UK (1959-1962) to copyright protected recordings (1963-1966), and implies that

songs in the public domain in this sample are about 5.1% more likely to be available on Spotify in

the UK than copyright protected songs. Column 4 adds a linear control for age and shows a similar

effect.

Columns (5) - (6) of Table 14 study availability on Spotify at the artist level. In this analysis,

we study the 998 artists that appeared on The Saturday Club and are not in our main sample. We

record if each artist has any songs on Spotify in the US and UK market. Since these analysis are run

at the artist level, we use year of appearance on the Saturday Club as a proxy for original release

year. Observations in the UK from artists that appeared in the pre-1963 period are considered in

the public domain. Column 5 controls for country and age fixed effects and implies a 4.6% increase
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in availability for artists who appeared on The Saturday Club before 1963 in the UK. Column 6

compares the availability of artists who appeared in the pre 1963 period (1959-1962) to those who

appeared after, only within the UK market and shows no significant difference. Altogether, these

results are suggestive of a possible effect of public domain status among these more obscure artists,

but warrant further research.

7 Probability of touring

Appendix Table 11 presents results collapsed to the artist-year level. Column (1) presents coeffi-

cients from a regression of the dummy capturing whether the artist toured in the UK in a given

year on the percentage of the artist’s songs in the public domain in that year, controlling for artist

and year fixed effects and a quadratic in the average age of the artist’s songs. We find that a 1

percent increase in the number of songs in the public domain in the UK reduced the probability of

touring in the UK by 0.4 percentage points (significant at the 1% level). By contrast, Column 2

shows that there is no significant difference in the probability of touring in the US as the percentage

of songs in the public domain in the UK increases (the coefficient estimate is -0.0002 percentage

points with a standard error of 0.0009 percentage points). We also examined the total number of

songs performed per year as a function of the percentage of an artist’s songs in the public domain

(Columns 3-4). Once again, there is a statistically significant decline in the number of songs per-

formed per year in the UK as the percentage of songs in the public domain increases (Column 3).

There is no significant effect for the US (Column 4).

Dataset Construction

OfficialCharts/Musicbrainz Data

Weekly top 20 album charts were collected from the Official Charts Company (OCC) between 1960

and 1965. Artist and group names were then hand-matched to the unique database identifiers in

the MusicBrainz database, with 138 artists successfully matched between the datasets.61 To collect

a sample of songs by more obscure artists for robustness checks in our Spotify analysis, we also

collected weekly top 50 singles charts from OCC between 1960 and 1965. Artist and group names

were then hand-matched in an identical manner as described above to create a sample of 41 relevant

artists, who do not also appear in the albums charts, have only one song in weekly top singles charts,

and whose song appears on the charts for two or fewer weeks.62

A local Musicbrainz Virtual Machine was then used for generating the data-sets via SQL queries.63

All recordings and the releases of such recordings by the sample artists were collected - thus we pick

61Official Charts tracked just the Top 10 albums during the first two months of 1960.
62Official Charts tracked just the Top 30 singles during the first three months of 1960.
63https://musicbrainz.org/doc/MusicBrainz_Server/Setup

50

https://musicbrainz.org/doc/MusicBrainz_Server/Setup


up not only albums/singles released by the artists, but also compilation albums featuring various

artists. Data was also collected on the country of release, the format of release (e.g., CD, SACD,

Digital), and the release label.

Song titles were standardized by: a) converting titles to lowercase, b) stripping accent marks,

and c) removing punctuation marks. To ensure a reliable year of release, we measured the original

year of release as the earliest original year listed between both our MusicBrainz data and data

from the Discogs music database (data.discogs.com). Artists in our MusicBrainz data were care-

fully hand-matched to the corresponding artists in the Discogs database, and song titles in the

Discogs data were standardized via the aforementioned method. Further, we manually confirm

original release years for any song in the sub-sample used for Amazon analysis (described above),

performed after age 40, or re-released after age 40 by an artist with an error rate above 20% within

the Amazon sample. Validation of original release years was done using sites such as Wikipedia,

Secondhandsongs.com, and 45cat.com

Data are missing on the original release year of the song for 7,831 of 716,685 total observed

song releases in the raw data, and 3,476 of 599,624 observations when the sample is restricted to

official releases. These observations are dropped from the sample. Country of release is missing

for 115,914 of these observations, or 70,244 for official releases. Observations with missing data on

country of release and year of release are dropped from the dataset. In previous versions of this

manuscript both official releases and ”bootleg” releases (bootlegs account for 66,023 total releases)

were included in the data set, but the current analysis considers only official releases.64 Results are

robust between including or omitting bootlegs. Data are collapsed to the release-level, such that a

given release with multiple variations on the same recording is counted only once.

Set List Data

Musician set list data was collected from setlist.fm using their REST API documented at

https://api.setlist.fm/docs/1.0/index.html. Setlist.fm’s database tracks artists using the Musicbrainz

GID, the same unique identifier used by the MusicBrainz database. Of the artists in our sample, 99

appeared in the Setlist.FM data, as matched by MusicBrainz GIDs. All set lists were collected via

the web API for these 99 artists, resulting in 16,847 total concert set lists encompassing 295,232 total

song performances. Songs in this data were manually standardized by stripping extraneous char-

acters and standardizing case. They were then matched to equivalently standardized song/artist

combinations in the re-release data and matches were kept for analysis.

Spotify Data

Artists in our MusicBrainz data were hand matched to Spotify’s artist unique identifiers (URIs).

Catalog information, including geographic availability, was then downloaded from Spotify’s API

64MusicBrainz also includes a small number of promotional releases in addition to official and bootleg releases.
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for all of the artists in our MusicBrainz dataset, see https://developer.spotify.com/web-api/get-

track/ for fields obtained. Song titles in the Spotify dataset were matched to the MusicBrainz

data by artist. We standardized the Spotify song titles to match our standardized MusicBrainz

titles: titles were converted to lowercase, punctuation was stripped, and the word remaster was

stripped.65 Remaining unmatched titles between our Spotify and MusicBrainz data were then

manually matched in order to properly match titles with alternative spellings.

Amazon Music Data

To obtain data on the availability of tracks as MP3 downloads on Amazon Music, we took a

random sample of songs from the Musicbrainz database, and searched the digital music pages on

Amazon.co.uk and Amazon.com for MP3 downloads matching the song title and artist name. The

random sample consisted of 2025 songs, stratified by original release year between years 1959 to

1967 (225 songs per year) from our dataset of physical releases. The original release years for all

songs in this sample were checked by hand to ensure the precision of results. We crawled the search

results pages and ran python code that extracted the number of search results listed in response

to structured search queries for song title and artist name. We also recorded song title and artist

names on each page of search results.

Given that a naive count of these search results may inflate availability due to similar terms

and cover songs by similar artists, we structured our search queries using URL parameters to

ensure that: 1) only songs from the Digital Music store were returned using the appropriate URL

parameter, excluding search results for albums (which would lead to double-counting when an

album and song share a title) and physical editions, 2) results were restricted to Amazons unique

indexed artist name for the focal song using the p lbr music artists browse-bin URL parameter.

Each page of search results was scraped and song titles were then matched with our sample to

count the total number of available editions on both the US and UK store. Although we believe

we have eliminated all cases in which the search result count was substantially overstated, our data

may in some cases slightly misstate the number of versions of a song available due to the nature of

Amazon’s algorithm for displaying search results, and the difficulty of obtaining a precise count of

the number of versions of an MP3 download available on the site. However, because we compare

the number of search results for the same song on Amazon’s US and UK sites, any overcounting

due to Amazon’s search algorithm should be differenced out in this comparison. Any remaining

errors should merely introduce noise into our sample and should not bias the results.

We also use this random sample, stratified by year, to validate our Spotify results. Overall, 79.0%

of songs in our Spotify dataset are available in the US or UK on Spotify. To ensure this availability

rate is not driven by any errors in our data matching process, we look at this sample of songs that

had been mechanically matched to Amazon and were found at a rate of around 78.9% in February

65Copyrights for remastered sound recordings cover only those elements of the new fixation that differ from the
original. See guidance from PPL in the UK, http://www.ppluk.com/Documents/Distribution/Guidance%20to%

20PPL%20Members%20on%20Remasters.pdf

52

http://www.ppluk.com/Documents/Distribution/Guidance%20to%20PPL%20Members%20on%20Remasters.pdf
http://www.ppluk.com/Documents/Distribution/Guidance%20to%20PPL%20Members%20on%20Remasters.pdf


2020. We re-ran our Spotify analysis. The results were consistent, thus we have no reason to believe

any tracks that were imperfectly matched would have any influence on our findings.
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8 Results Appendix
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Figure 7: Raw Effect of Copyright on Physical Releases in the UK
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Notes: This figure shows the average number of physical releases in the UK by song age. Resid-
ualized mean releases are computed from the residuals of a regression of the outcome variable
on dummies for year t. The left panel is restricted to songs released before 1963, for which the
recording copyright term remained fixed at 50 years. The right panel is restricted to songs re-
leased in 1963 or later, which had copyright terms extended at the end of 2013. The estimation
sample includes all observations in which age is less than 55 years.
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Figure 8: Raw Effect of Copyright on Concert Performances in the UK
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Notes: This figure shows the average number of times songs were performed in the UK by song
age. Residualized mean releases are computed from the residuals of a regression of the outcome
variable on dummies for year t. The left panel is restricted to songs released before 1963, for
which the recording copyright term remained fixed at 50 years. The right panel is restricted to
songs released in 1963 or later, which had copyright terms extended at the end of 2013. The
estimation sample includes all observations in which age is less than 55 years.
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Figure 9: Raw Effect of Copyright on Amazon Versions
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Notes: This figure shows the average number of versions for songs, by original release year, on
the UK and US Amazon platforms.

Figure 10: Percentage of Saturday Club Songs on Spotify, by Market
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Notes: This figure illustrates the availability of songs in our song-level Saturday Club sample by
year of original release and country. Availability measures the mean availability on Spotify UK
and Spotify US in 2021.
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Table 11: Analysis of touring probability and total performance counts

(1) (2) (3) (4)
UK Tour US Tour UK Count US Count

Percent Songs in Public Domain -0.004∗∗∗ -0.000 -0.084∗∗∗ -0.018
(0.001) (0.001) (0.025) (0.023)

Avg(Age) -0.014 -0.042∗∗∗ -0.485∗∗ -0.363∗∗∗

(0.008) (0.014) (0.214) (0.104)

Avg(Age)2 0.000 0.000 0.004 0.001
(0.000) (0.000) (0.003) (0.001)

Year FE Yes Yes Yes Yes
Artist FE Yes Yes Yes Yes
N 3,294 3,294 2,262 2,618

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: The unit of observation is an artist-year. The dependent variable in Column (1) is a
dummy equal to 1 if artist j toured in the UK in year t. The dependent variable in Column (2)
is a dummy equal to 1 if artist j toured in the US in year t. The dependent variable in Column
(3) is the count of total performances by artist j in the UK in year t. The dependent variable in
Column (4) is the total count of performances by artist j in the US in year t. Columns (1-2) are
estimated using Ordinary Least Squares, Columns (3-4) using fixed effects Poisson. “Avg(Age)”
is calculated as the mean age by artist-year. Standard errors are clustered by artist.
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Table 12: Robustness of Releases Results to Trend Assumptions

(1) (2) (3) (4) (5) (6) (7) (8)
Released < 1963 Released < 1963 1960-65 1960-65 Full Sample Full Sample Full Sample UK vs US

Public Domain 1.252∗∗∗ 1.271∗∗∗ 1.390∗∗∗ 1.004∗∗∗ 0.992∗∗∗

(0.034) (0.066) (0.065) (0.027) (0.029)

T = -4 -0.398∗∗∗ -0.280 -0.039
(0.129) (0.210) (0.098)

T = -3 -0.203 -0.315 -0.038
(0.130) (0.203) (0.095)

T = -2 -0.202 -0.260 -0.111
(0.135) (0.196) (0.099)

T = -1 -0.212∗∗∗ -0.138 -0.095
(0.065) (0.142) (0.096)

T = 0 0.000 0.000 0.000
(.) (.) (.)

T = 1 1.189∗∗∗ 1.386∗∗∗ 1.584∗∗∗

(0.098) (0.179) (0.086)

T = 2 1.238∗∗∗ 1.166∗∗∗ 1.434∗∗∗

(0.096) (0.220) (0.096)

T = 3 1.288∗∗∗ 0.925∗∗∗ 1.279∗∗∗

(0.101) (0.317) (0.119)

T = 4 1.290∗∗∗ 0.386 0.861∗∗∗

(0.095) (0.295) (0.132)

Age × Treated 0.020∗∗∗ 0.005∗∗∗

(0.002) (0.001)

Age × UK 0.000
(0.001)

UK × pre-63 -0.617∗∗∗

(0.053)

Age × UK × pre-63 0.008∗∗∗

(0.001)

Age FE No No No No Yes Yes No Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes
Artist FE No Yes Yes No No No No No
Song FE Yes No No Yes Yes Yes Yes Yes
Orig. Year FE No No No No No No Yes No
N 242,734 354,638 358,470 227,563 572,665 572,665 572,665 1,555,256

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: Releases results, robustness to differential trends. Columns (1) and (2) restrict the
sample to songs released before 1963. Columns (3) and (4) restrict the sample to songs released
between 1960 and 1965. Column (5) controls for age, year and song effects, as well as a linear
term for age interacted with a indicator variable for original release year before 1963. Column
(6) duplicates Column (5), except the linear trend is restricted to age 40 and up. Column
(7) includes fixed effects for year, song and year of original release, as well as year of original
release interacted with a linear age term. Column (8) is based on the UK versus US sample
with controls for differential trends in age for the pre-1963 releases, UK releases, and pre-1963
releases in the UK.
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Table 13: Robustness of Setlist Results to Trend Assumptions

(1) (2) (3) (4) (5) (6) (7) (8)
Released < 1963 Released < 1963 1960-65 1960-65 Full Sample Full Sample Full Sample UK vs US

Public Domain -0.987∗∗ -1.347∗∗∗ -1.260∗∗∗ -1.834∗∗∗ -0.874∗∗

(0.462) (0.354) (0.366) (0.288) (0.358)

T = -4 0.269 1.856∗∗∗ 1.841∗∗∗

(0.264) (0.632) (0.543)

T = -3 -0.297 1.385∗∗ 1.239∗∗

(0.588) (0.568) (0.525)

T = -2 -0.374∗ 1.779∗∗ 1.976∗∗∗

(0.213) (0.783) (0.554)

T = -1 -0.104 2.589∗∗∗ 2.781∗∗∗

(0.338) (0.750) (0.544)

T = 0 0.000 0.000 0.000
(.) (.) (.)

T = 1 -0.752∗∗ 0.043 -1.167
(0.317) (0.907) (0.947)

T = 2 -1.120∗∗∗ -0.528 -1.813∗∗

(0.281) (1.263) (0.780)

T = 3 -1.934∗∗∗ -0.209 -1.461
(0.366) (1.424) (1.049)

T = 4 -1.856∗∗∗ -0.008 -1.066
(0.514) (1.225) (0.937)

Age × Treated -0.038∗∗∗ -0.026∗∗∗

(0.009) (0.005)

Age × UK 0.007
(0.004)

UK × pre-63 -1.011∗∗∗

(0.362)

Age × UK × pre-63 0.018
(0.014)

Age FE No No No No Yes Yes No Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes
Artist FE No Yes Yes No No No No No
Song FE Yes No No Yes Yes Yes Yes Yes
Orig. Year FE No No No No No No Yes No
N 9,917 24,399 36,641 22,653 56,266 56,266 56,195 193,568

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: Setlist results, robustness to differential trends. Columns (1) and (2) restrict the sample
to songs released before 1963. Columns (3) and (4) restrict the sample to original release years
1960-65. Column (5) controls for age, year and song effects, as well as a linear term for age
interacted with a dummy for release year before 1963. Column (6) is the same as Column (5),
only the trend is restricted to age 40 and up. Column (7) controls for fixed effects for year, song
and year of original release, as well as year of original release interacted with a linear age term.
Column (8) is based on the UK versus US sample with controls for differential trends in age for
the pre-1963 releases, UK releases, and pre-1963 releases in the UK.
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Table 14: Saturday Club Artists on Spotify

(1) (2) (3) (4) (5) (6)
US vs UK US vs UK UK pre/post UK pre/post US vs UK UK pre/post

Public Domain 0.389∗∗∗ 0.051∗∗∗ 0.052∗∗ 0.046∗∗∗ -0.020
(0.049) (0.016) (0.021) (0.016) (0.033)

UK 0.029∗∗∗

(0.008)

UK x Release = 1959 0.312∗∗∗

(0.091)

UK x Release = 1960 0.309∗∗∗

(0.066)

UK x Release = 1961 0.182∗

(0.092)

UK x Release = 1962 0.258∗∗∗

(0.067)

UK x Release = 1963 0.000
(.)

UK x Release = 1964 -0.180∗∗∗

(0.059)

UK x Release = 1965 -0.171∗∗∗

(0.065)

UK x Release = 1966 -0.247∗∗∗

(0.065)

Age -0.000
(0.005)

Artist FE Yes Yes Yes Yes No No
Country FE Yes Yes No No Yes No
Orig. Year FE Yes Yes No No Yes No
N 45,662 45,662 22,821 22,821 1,996 998

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: Columns (1) and (2) compare availability between the US and UK at the song-level for
songs by Saturday Club artists, with dependent variable = 1 if song i is available in market k
(UK or US) in 2021. Columns (1) and (2) include artist, country, and original release year fixed
effects. Column (2) introduces an interaction term of a UK indicator with year of original release
(1963 omitted). Columns (3) and (4) limit observations to UK-only, and compare availability
of songs released before 1963 (public domain in the UK) to those released during or after 1963
(copyright protected). Column (4) includes a linear age control. Columns (5) and (6) use the
artist-level sample, where the dependent variable = 1 if any song by the Saturday Club artist is
on Spotify in market k (UK or US) in 2021 and the original release year is proxied by the artist’s
average year of appearance on the Saturday Club. Column (5) includes all artists and controls
for country and release year fixed effects. Columns (6) limits observations to the UK-market
only, and compares the availability of artists on Spotify UK before 1963 to those with average
year of release equal to or greater than 1963.
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Table 15: Panel data collapsed into five-year age bins

(1) (2) (3) (4) (5) (6)
Releases Releases Releases Performances Performances Performances

Public Domain 1.369∗∗∗ 1.302∗∗∗ -1.824∗∗∗ -2.199∗∗∗

(0.118) (0.027) (0.586) (0.321)

Pre’63 x Ages [31,35] 0.202∗ 1.019∗

(0.106) (0.527)

Pre’63 x Ages [36,40] 0.261∗∗ -0.481
(0.109) (0.508)

Pre’63 x Ages [41,45] 0.170 0.395
(0.104) (0.441)

Pre’63 x Ages [46,50] 0.000 0.000
(.) (.)

Pre’63 x Ages [51,55] 1.167∗∗∗ -1.427∗∗∗

(0.108) (0.461)

Age 0.069∗∗∗ 0.024∗∗∗ 0.066∗∗∗ 0.054∗∗ 0.024 0.043∗

(0.009) (0.009) (0.010) (0.026) (0.030) (0.026)

5-Year FE Yes Yes Yes Yes Yes Yes
Artist FE Yes No Yes Yes No Yes
Song FE No Yes No No Yes No
N 196,560 123,483 196,560 21,278 11,108 21,278

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: The panel data on releases and performances for a given song is collapsed into five-year
bins, e.g., [1960,1965), [1965,1970), etc. In these regressions, the dependent variable is the count
of the outcome variable in a given five-year bin, the main variable of interest is mean of public
domain dummy, and control variables are the 5-year binned means of song age a within a year
bin, 5-year bin fixed effects, and song or artist fixed effects. Columns (1) and (4) controls for five-
year and artist fixed effects and column (2) and (5) controls for five-year and song fixed effects.
Column (3) and (6) interact an indicator for songs released before 1963 with indicators for the
binned average song age within the bin. Songs released during or after 1963 are pooled with
the excluded category of Age = [46,50]. Indicators for ages younger than [31,35] are included
in the estimation but omitted from the table. Standard errors are clustered at the level of the
respective group fixed effect, artist or song.
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