Physics-informed deep learning imaging

Displacement-agnostic coherent imaging through scatter with an interpretable deep neural network
Y Li, S Cheng, Y Xue, L Tian
arXiv preprint arXiv:2005.07318

Coherent imaging through scatter is a challenging topic in computational imaging. Both model-based and data-driven approaches have been explored to solve the inverse scattering problem. In our previous work, we have shown that a deep learning approach for coherent imaging through scatter can make high-quality predictions through unseen diffusers. Here, we propose a new deep neural network (DNN) model that is agnostic to a broader class of perturbations including scatter change, displacements, and system defocus up to 10X depth of field. In addition, we develop a new analysis framework for interpreting the mechanism of our DNN model and visualizing its generalizability based on an unsupervised dimension reduction technique. We show that the DNN can unmix the diffuser/displacement information and distill the object-specific information to achieve generalization under different scattering conditions. Our work paves the way to a highly scalable deep learning approach to different scattering conditions and a new framework for network interpretation.

SIMBA: Scalable Inversion in Optical Tomography using Deep Denoising Priors
Zihui Wu, Yu Sun, Alex Matlock, Jiaming Liu, Lei Tian, Ulugbek S. Kamilov
arXiv:1911.13241

Two features desired in a three-dimensional (3D) optical tomographic image reconstruction algorithm are the ability to reduce imaging artifacts and to do fast processing of large data volumes. Traditional iterative inversion algorithms are impractical in this context due to their heavy computational and memory requirements. We propose and experimentally validate a novel scalable iterative mini-batch algorithm (SIMBA) for fast and high-quality optical tomographic imaging. SIMBA enables high-quality imaging by combining two complementary information sources: the physics of the imaging system characterized by its forward model and the imaging prior characterized by a denoising deep neural net. SIMBA easily scales to very large 3D tomographic datasets by processing only a small subset of measurements at each iteration. We establish the theoretical fixed-point convergence of SIMBA under nonexpansive denoisers for convex data-fidelity terms. We validate SIMBA on both simulated and experimentally collected intensity diffraction tomography (IDT) datasets. Our results show that SIMBA can significantly reduce the computational burden of 3D image formation without sacrificing the imaging quality.

Reliable deep learning-based phase imaging with uncertainty quantification
Yujia Xue, Shiyi Cheng, Yunzhe Li, Lei Tian
Optica 6, 618-629 (2019).

Emerging deep-learning (DL)-based techniques have significant potential to revolutionize biomedical imaging. However, one outstanding challenge is the lack of reliability assessment in the DL predictions, whose errors are commonly revealed only in hindsight. Here, we propose a new Bayesian convolutional neural network (BNN)-based framework that overcomes this issue by quantifying the uncertainty of DL predictions. Foremost, we show that BNN-predicted uncertainty maps provide surrogate estimates of the true error from the network model and measurement itself. The uncertainty maps characterize imperfections often unknown in real-world applications, such as noise, model error, incomplete training data, and out-of-distribution testing data. Quantifying this uncertainty provides a per-pixel estimate of the confidence level of the DL prediction as well as the quality of the model and data set. We demonstrate this framework in the application of large space–bandwidth product phase imaging using a physics-guided coded illumination scheme. From only five multiplexed illumination measurements, our BNN predicts gigapixel phase images in both static and dynamic biological samples with quantitative credibility assessment. Furthermore, we show that low-certainty regions can identify spatially and temporally rare biological phenomena. We believe our uncertainty learning framework is widely applicable to many DL-based biomedical imaging techniques for assessing the reliability of DL predictions.

 

Deep speckle correlation: a deep learning approach towards scalable imaging through scattering media
Yunzhe Li, Yujia Xue, Lei Tian
Optica 5, 1181-1190 (2018).
 Top 15 most cited articles in Optica published in 2018 (Source: OSA)

Imaging through scattering is an important yet challenging problem. Tremendous progress has been made by exploiting the deterministic input–output “transmission matrix” for a fixed medium. However, this “one-to-one” mapping is highly susceptible to speckle decorrelations – small perturbations to the scattering medium lead to model errors and severe degradation of the imaging performance. Our goal here is to develop a new framework that is highly scalable to both medium perturbations and measurement requirement. To do so, we propose a statistical “one-to-all” deep learning (DL) technique that encapsulates a wide range of statistical variations for the model to be resilient to speckle decorrelations. Specifically, we develop a convolutional neural network (CNN) that is able to learn the statistical information contained in the speckle intensity patterns captured on a set of diffusers having the same macroscopic parameter. We then show for the first time, to the best of our knowledge, that the trained CNN is able to generalize and make high-quality object predictions through an entirely different set of diffusers of the same class. Our work paves the way to a highly scalable DL approach for imaging through scattering media.

intro