Lightfield Imaging

Single-Shot 3D Widefield Fluorescence Imaging with a Computational Miniature Mesoscope
Yujia Xue, Ian G. Davison, David A. Boas, Lei Tian
arXiv:2003.11994

Fluorescence imaging is indispensable to biology and neuroscience. The need for large-scale imaging in freely behaving animals has further driven the development in miniaturized microscopes (miniscopes). However, conventional microscopes / miniscopes are inherently constrained by their limited space-bandwidth-product, shallow depth-of-field, and the inability to resolve 3D distributed emitters. Here, we present a Computational Miniature Mesoscope (CM2) that overcomes these bottlenecks and enables single-shot 3D imaging across an 8 × 7-mm2 field-of-view and 2.5-mm depth-of-field, achieving 7-μm lateral and 250-μm axial resolution. Notably, the CM2 has a compact lightweight design that integrates a microlens array for imaging and an LED array for excitation in a single platform. Its expanded imaging capability is enabled by computational imaging that augments the optics by algorithms. We experimentally validate the mesoscopic 3D imaging capability on volumetrically distributed fluorescent beads and fibers. We further quantify the effects of bulk scattering and background fluorescence on phantom experiments.

Design of a high-resolution light field miniscope for volumetric imaging in scattering tissue
Yanqin Chen, Bo Xiong, Yujia Xue, Xin Jin, Joseph Greene, and Lei Tian
Biomedical Optics Express 11, pp. 1662-1678 (2020).

Integrating light field microscopy techniques with existing miniscope architectures has allowed for volumetric imaging of targeted brain regions in freely moving animals. However, the current design of light field miniscopes is limited by non-uniform resolution and long imaging path length. In an effort to overcome these limitations, this paper proposes an optimized Galilean-mode light field miniscope (Gali-MiniLFM), which achieves a more consistent resolution and a significantly shorter imaging path than its conventional counterparts. In addition, this paper provides a novel framework that incorporates the anticipated aberrations of the proposed Gali-MiniLFM into the point spread function (PSF) modeling. This more accurate PSF model can then be used in 3D reconstruction algorithms to further improve the resolution of the platform. Volumetric imaging in the brain necessitates the consideration of the effects of scattering. We conduct Monte Carlo simulations to demonstrate the robustness of the proposed Gali-MiniLFM for volumetric imaging in scattering tissue.


3D imaging in volumetric scattering media using phase-space measurements
H. Liu, E. Jonas, L. Tian, J. Zhong, B. Recht, L. Waller
Opt. Express 23, 14461-14471 (2015).

We demonstrate the use of phase-space imaging for 3D localization of multiple point sources inside scattering material. The effect of scattering is to spread angular (spatial frequency) information, which can be measured by phase space imaging. We derive a multi-slice forward model for homogeneous volumetric scattering, then develop a reconstruction algorithm that exploits sparsity in order to further constrain the problem. By using 4D measurements for 3D reconstruction, the dimensionality mismatch provides significant robustness to multiple scattering, with either static or dynamic diffusers. Experimentally, our high-resolution 4D phase-space data is collected by a spectrogram setup, with results successfully recovering the 3D positions of multiple LEDs embedded in turbid scattering media.

PhaseSpaceScattering

3D intensity and phase imaging from light field measurements in an LED array microscope
Lei Tian, L. Waller
Optica 2, 104-111 (2015).
 the 15 Most Cited Articles in Optica published in 2015 (Source: OSA, 2019)

Realizing high resolution across large volumes is challenging for 3D imaging techniques with high-speed acquisition. Here, we describe a new method for 3D intensity and phase recovery from 4D light field measurements, achieving enhanced resolution via Fourier Ptychography. Starting from geometric optics light field refocusing, we incorporate phase retrieval and correct diffraction artifacts. Further, we incorporate dark-field images to achieve lateral resolution beyond the diffraction limit of the objective (5x larger NA) and axial resolution better than the depth of field, using a low magnification objective with a large field of view. Our iterative reconstruction algorithm uses a multi-slice coherent model to estimate the 3D complex transmittance function of the sample at multiple depths, without any weak or single-scattering approximations. Data is captured by an LED array microscope with computational illumination, which enables rapid scanning of angles for fast acquisition. We demonstrate the method with thick biological samples in a modified commercial microscope, indicating the technique’s versatility for a wide range of applications.

3DFourierPtychography

3D differential phase contrast microscopy with computational illumination using an LED array
Lei Tian, J. Wang, L. Waller
Optics Letters 39, 1326 – 1329 (2014).

We demonstrate 3D differential phase-contrast (DPC) microscopy, based on computational illumination with a programmable LED array. By capturing intensity images with various illumination angles generated by sequentially patterning an LED array source, we digitally refocus images through various depths via light field processing. The intensity differences from images taken at complementary illumination angles are then used to generate DPC images, which are related to the gradient of phase. The proposed method achieves 3D DPC with simple, inexpensive optics and no moving parts. We experimentally demonstrate our method by imaging a camel hair sample in 3D.

3DDPC

Wigner function measurement using a lens let array
Lei Tian, Z. Zhang, Jon. C. Petruccelli, G. Barbastathis
Optics Express 21, 10511-10525 (2013).

Geometrical–optical arguments have traditionally been used to explain how a lenslet array measures the distribution of light jointly over space and spatial frequency. Here, we rigorously derive the connection between the intensity measured by a lenslet array and wave–optical representations of such light distributions for partially coherent optical beams by using the Wigner distribution function (WDF). It is shown that the action of the lenslet array is to sample a smoothed version of the beam’s WDF (SWDF). We consider the effect of lenslet geometry and coherence properties of the beam on this measurement, and we derive an expression for cross–talk between lenslets that corrupts the measurement. Conditions for a high fidelity measurement of the SWDF and the discrepancies between the measured SWDF and the WDF are investigated for a Schell–model beam.

lensletarray

Experimental compressive phase space tomography
Lei Tian, J. Lee, S. B. Oh, G. Barbastathis
Optics Express 20, 8296-8308 (2012).
 Highlighted in the OSA Spotlight on Optics

Phase space tomography estimates correlation functions entirely from snapshots in the evolution of the wave function along a time or space variable. In contrast, traditional interferometric methods require measurement of multiple two-point correlations. However, as in every tomographic formulation, undersampling poses a severe limitation. Here we present the first, to our knowledge, experimental demonstration of compressive reconstruction of the classical optical correlation function, i.e. the mutual intensity function. Our compressive algorithm makes explicit use of the physically justifiable assumption of a low-entropy source (or state.) Since the source was directly accessible in our classical experiment, we were able to compare the compressive estimate of the mutual intensity to an independent ground-truth estimate from the van Cittert-Zernike theorem and verify substantial quantitative improvements in the reconstruction.

PST