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a b s t r a c t

All primates depend for their survival on being able to rapidly learn about and recognize objects. Objects
may be visually detected atmultiple positions, sizes, and viewpoints. Howdoes the brain rapidly learn and
recognize objectswhile scanning a scenewith eyemovements,without causing a combinatorial explosion
in the number of cells that are needed? How does the brain avoid the problem of erroneously classifying
parts of different objects together at the same or different positions in a visual scene? In monkeys and
humans, a key area for such invariant object category learning and recognition is the inferotemporal
cortex (IT). A neural model is proposed to explain how spatial and object attention coordinate the ability
of IT to learn invariant category representations of objects that are seen at multiple positions, sizes, and
viewpoints. The model clarifies how interactions within a hierarchy of processing stages in the visual
brain accomplish this. These stages include the retina, lateral geniculate nucleus, and cortical areas V1,
V2, V4, and IT in the brain’s What cortical stream, as they interact with spatial attention processes within
the parietal cortex of the Where cortical stream. The model builds upon the ARTSCAN model, which
proposed how view-invariant object representations are generated. The positional ARTSCAN (pARTSCAN)
model proposes how the following additional processes in the What cortical processing stream also
enable position-invariant object representations to be learned: IT cells with persistent activity, and
a combination of normalizing object category competition and a view-to-object learning law which
together ensure that unambiguous views have a larger effect on object recognition than ambiguous views.
The model explains how such invariant learning can be fooled when monkeys, or other primates, are
presented with an object that is swapped with another object during eye movements to foveate the
original object. The swapping procedure is predicted to prevent the reset of spatial attention, which
would otherwise keep the representations of multiple objects from being combined by learning. Li and
DiCarlo (2008) have presented neurophysiological data frommonkeys showing howunsupervised natural
experience in a target swapping experiment can rapidly alter object representations in IT. The model
quantitatively simulates the swapping data by showing how the swapping procedure fools the spatial
attentionmechanism.More generally, themodel provides a unifying framework, and testable predictions
in both monkeys and humans, for understanding object learning data using neurophysiological methods
in monkeys, and spatial attention, episodic learning, and memory retrieval data using functional imaging
methods in humans.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The brain effortlessly learns to recognize objects that are
seen at multiple positions, sizes, and viewpoints. How does
the brain rapidly learn to recognize objects while scanning a
scene with eye movements, without causing a combinatorial
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explosion in the number of cells that are needed? How does
the brain avoid the problem of erroneously classifying parts
of different objects together? In monkeys and humans, a key
area for such invariant object learning and recognition is the
inferotemporal cortex (IT). A neural model is proposed to explain
how spatial and object attention coordinate the ability of IT to
learn representations of object categories that are seen at multiple
positions, sizes, and viewpoints. Such invariant object category
learning and recognition can be achieved using interactions
between a hierarchy of processing stages in the visual brain. These
stages include the retina, lateral geniculate nucleus, and cortical
areas V1, V2, V4, and IT in the brain’s What cortical stream, as
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they interact with spatial attention processes within the parietal
cortex of the Where cortical stream. The model builds upon the
ARTSCAN model (Fazl, Grossberg, & Mingolla, 2009; Grossberg,
2009), which proposed how view-invariant object representations
may be learned and recognized.

A key prediction of the ARTSCAN model is how the reset of
spatial attention in the Where cortical stream prevents views of
different objects from being learned as part of the same invariant
IT category. The positional ARTSCAN (pARTSCAN) model that
is developed in the current article proposes how the following
additional processes in the What cortical processing stream also
enable position-invariant object representations to be learned: IT
cells with persistent activity, and a combination of normalizing
object category competition and a view-to-object learning law
which together ensure that unambiguous views have a larger effect
on object recognition than ambiguous views. The model is tested
by simulating neurophysiological data from a target swapping
experiment of Li and DiCarlo (2008) that is predicted to fool the
spatial attentional reset mechanisms which usually keep different
object views separated during learning.

Many electrophysiological experiments have shown that cells
in the inferotemporal (IT) cortex respond to the same object at
different retinal positions; for example, many IT cells show little
attenuation in firing rate across object translations (Booth & Rolls,
1998; Desimone & Gross, 1979; Gross, Rocha-Miranda, & Bender,
1972; Ito, Tamura, Fujita, & Tanaka, 1995; Schwartz, Desimone,
Albright, & Gross, 1983). The target swapping experiment of Li and
DiCarlo (2008) showed, in addition, how the positional selectivity
of cells in IT can be altered by experience. Their experiment
was divided into two exposure phases, in which two extra-foveal
positions (3° above or below the center of gaze) were prechosen as
swap and non-swap positions. The experiment studied IT neuronal
responses to two objects that initially elicited strong (object P ,
preferred) andmoderate (objectN , non-preferred) responses at the
two positions. The monkey always began a learning trial looking
at a fixation point. During a ‘‘normal exposure’’, when an object
appeared at the prechosen non-swap position, themonkey quickly
moved its eyes to it with a saccadic eye movement that brought
its image to the fovea. During a ‘‘swap exposure’’, in which an
object appeared at the prechosen swap position, the object P (or
N) was always swapped for the other object N (or P) during the
saccade. Li and DiCarlo found that IT neuron selectivity to objects P
and N at the swap position was reversed with increasing exposure
(see Fig. 1(A)), but there was little or no change at the non-swap
position.

The pARTSCAN model (Fig. 2) quantitatively explains and
simulates the Li and DiCarlo data as a manifestation of the
mechanisms whereby the brain learns position-invariant object
representations. Some prominent efforts to model IT have built
invariant representations using a hierarchy of feedforward filters
leading to a learned category choice (Bradski & Grossberg, 1995;
Grossberg & Huang, 2009; Riesenhuber & Poggio, 1999, 2000,
2002), or through grouping object translations through time (Fazl
et al., 2009; Wallis & Rolls, 1997). The pARTSCAN model proposes
how the brain learns position-invariant object representations
that are consistent with the Li and DiCarlo swapping data. In
particular, the pARTSCAN model, as in the ARTSCAN model on
which it builds, proposes how multiple brain processing stages,
beginning in the retina and lateral geniculate nucleus (LGN), and
proceeding through cortical areas V1, V2, V4, and IT in the What
cortical stream, can gradually learn such position-invariant object
representations, as they interact with Where cortical processes
stages in the parietal cortex.

The ARTSCAN model proposes how an object’s surface repre-
sentation in cortical area V4 generates a form-fitting distribution
of spatial attention, or ‘‘attentional shroud’’, in the parietal cortex

of the Where cortical stream. All surface representations dynami-
cally compete for spatial attention to form a shroud. The winning
shroud (or shrouds; see Foley, Grossberg, andMingolla (submitted
for publication) for simulations ofmultifocal attention) remains ac-
tive due to a surface-shroud resonance that persists during active
scanning of the object with eyemovements. The active shroud reg-
ulates eye movements and category learning about the attended
object in the following way.

The first view-specific category to be learned for the attended
object also activates a cell population at a higher processing stage.
This cell population will become a view-invariant object category.
Both types of category are assumed to form in the IT cortex of
the What cortical stream. As the eyes explore different views of
the object, previously active view-specific categories are reset to
enable new view-specific categories to be learned. What prevents
the emerging view-invariant object category from also being
reset? The shroud maintains the activity of the emerging view-
invariant category representation by inhibiting a resetmechanism,
also predicted to be in the parietal cortex, that would otherwise
inhibit the view-invariant category. As a result, all the view-
specific categories can be linked through associative learning to the
emerging view-invariant object category. Indeed, these associative
linkages create the view invariance property.

Shroud collapse disinhibits the reset signal, which in turn
inhibits the active view-invariant category. Then a new shroud,
corresponding to a different object, forms in the Where cortical
stream as new view-specific and view-invariant categories of
the new object are learned in the What cortical stream. The
model hereby mechanistically clarifies basic properties of spatial
attention shifts (engage, move, disengage) and inhibition of return.
As noted in Section 4, the concepts of shroud persistence and reset
clarify traditional ideas about sustained and transient attention,
respectively.

The ARTSCAN model does not, however, explain how
position-invariant object categories are learned and recognized.
The current article proposes what additional brain mechanisms
are needed to learn position-invariant object categories. These
new mechanisms include a new functional role for cells with per-
sistent activity in IT (see Brunel, 2003; Fuster & Jervey, 1981;
Miyashita&Chang, 1988; Tomita, Ohbayashi, Nakahara, Hasegawa,
& Miyashita, 1999) and a competitive learning law whereby more
predictive unambiguous object views learn to have a larger effect
on object recognition than less predictive ambiguous views.

The pARTSCAN model quantitatively simulates the swapping
data by showing how the swapping procedure fools the spatial
attentional shroud mechanism that usually is reset when a new
object is presented, thereby preventing multiple objects from
learning to activate the same invariant object category. The model
predicts that the shroud of the previous object is not reset during
the swap with another object. Persistence of this attentional
shroud across swaps leads to rapid reshaping of IT receptive
fields through unsupervised natural visual experience when it
interacts with IT persistent activity and competitive learning. In
addition to these prediction, which can be tested in monkeys,
a prediction is made in Section 4 about how to test the shroud
hypothesis during a swapping experiment using fMRI in humans.
The same combination of brain mechanisms can also explain how
swapping targets of different sizes can lead to rapid learning of
the corresponding mixtures of object views at different sizes (Li
& DiCarlo, 2010).

2. Results

2.1. Model processing stages

The model consists of the following processing stages. See
Fig. 2. These stages are described heuristically in this section and
mathematically in Section 5.
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Fig. 1. Experimental data and model simulation. (A) The Li and DiCarlo experimental data, which shows that IT neuron selectivity to objects P and N at swap position is
reversed with increasing swap exposures. (B) Left: The selectivity of model IT object category neuron Op to views of objects P and N at the swap position as a function
of swap exposures. These selectivity values are computed as the normalized object category neuron activities that are defined by Eq. (21). They have the same sizes as the
view-to-object connectionweights that are defined by Eq. (22). The selectivity to objects P andN reverses at about 600 swaps, which is consistent with the experimental data
in A. Increasing the learning rate in Eq. (24) will advance the reversal time, and vice versa. Right: A zoom for the first 100 swaps of the model IT neuron. (C) Left: Mean object
selectivity change as a function of the number of swap exposures for experimental IT neurons, ∆(P −N) = (P −N)post-exposure − (P −N)pre-exposure . Right: Normalized object
selectivity change as a function of the number of swap exposures for the model IT object neuron. The normalized object selectivity change is computed by ∆(WP − WN )C ,
whereWP andWN are the connection weights of the model IT object neuron with view integrator neurons of objects P and N , and C is a normalization constant (8.3).
Source: (A) and (C) Left are adapted with permission from Li and DiCarlo (2008).

Contrast normalization and discounting the illuminant. The con-
trasts in each input image are normalized, and background illumi-
nation is discounted, in the simplified model retina and LGN by an
on-center off-surround network whose cells obey membrane, or
shunting, equations (Grossberg & Todorovic, 1988;Werblin, 1971).
This network defines ON cells that are turned on by image lumi-
nance increments. A parallel off-center on-surround network de-
fines OFF cells that are turned on by image luminance decrements.

Cortical magnification. The foveal area is over-represented and
the extra-foveal area under-represented due to the cortical mag-
nification factor whereby outputs from the LGN are represented in
cortical area V1 (Daniel & Whitteridge, 1961; Fischer, 1973; Hor-
ton & Hoyt, 1991; Schwartz, 1980; Tootell, Silverman, Switkes, &
DeValois, 1982; Van Essen, Newsome, & Maunsell, 1984). Cortical
magnification is carried out by a log-polar transform (Schwartz,
1980).



Author's personal copy

Y. Cao et al. / Neural Networks 24 (2011) 1050–1061 1053

Fig. 2. Model processing stages. See the text for details.

Object boundaries. The contrast-normalized and log-polar-
transformed ON and OFF cell outputs are added at each position
to form object boundary representations in the model cortical
area V2 (Peterhans & von der Heydt, 1989; von der Heydt
& Peterhans, 1989; von der Heydt, Peterhans, & Baumgartner,
1984).Many psychophysical studies have supported the prediction
that boundaries and surfaces are the perceptual units of three-
dimensional (3D) vision (Grossberg, 1987). Boundaries are often
sufficient to enable object recognition (Alvarez & Cavanagh, 2008;
Bradski & Grossberg, 1995; Davidoff, 1991; Elder & Zucker, 1998;
Grossberg, 1994; Grossberg & Mingolla, 1985; Lamme, Rodriguez-
Rodriguez, & Spekreijse, 1999; Peterhans & von der Heydt, 1989;
Rogers-Ramachandran & Ramachandran, 1998), and that is the
case for the targeted neurophysiological data.

To quantitatively fit these data, no further boundary processing
beyond contrast-normalized ON and OFF cell outputs is needed.
However, the current simplified model is consistent with the
more sophisticated 3D LAMNART model of how depth-selective
boundaries may be formed, completed, and used to separate
figures from their backgrounds. The currentmodel can consistently
be extended to include these additional mechanisms in cases
wheremore ambiguous natural images require further processing;
see, e.g., Cao and Grossberg (2005), Fang and Grossberg (2009) and
Grossberg and Yazdanbakhsh (2005).

View category learning via top-down attentive matching and
memory search. Accumulating evidence supports the hypothesis
that the inferotemporal (IT) cortex learns to categorize objects.
Some IT cells learn about individual views of an object. These
neurons learn to categorize a seemingly infinite set of views
into finitely many view-specific categories (Bradski & Grossberg,
1995; Bulthoff & Edelman, 1992; Bulthoff, Edelman, & Tarr, 1995;
Carpenter&Ross, 1993; Fazl et al., 2009; Logothetis, Pauls, Bulthoff,
& Poggio, 1994; Poggio & Edelman, 1990; Riesenhuber & Poggio,
2000; Seibert & Waxman, 1992). Each view-specific category can
learn to respond to modest changes in object boundaries due to
different orientations, sizes, and viewpoints. However, if any of
these factors changes too much as the eyes move on an object
surface, or the surface moves relative to the eyes, then an active
view-specific category is reset. As this happens through time,
view-specific category neurons that respond to different views of
the same object learn to activate the same neuronal population,
creating a view-invariant category representation of the object.

In the pARTSCAN model, contrast-normalized, log-polar trans-
formed boundaries are the inputs to the model IT, which rapidly

Fig. 3. View category learning circuit. Top-down expectations are attentively
matched against bottom-up input features. Attended critical features are learned.
A big enough mismatch (i.e., one that does not satisfy the vigilance criterion in
the orienting system O) causes a burst of novelty-sensitive arousal from O that
inhibits the active category and triggers search for and learning of a bettermatching
category. C: biased competition; black arrowheads: excitatory connections; black
disks: inhibitory connections; black semicircles: learned connections.

learns view categories from these individual experiences through
time. In order to ensure the stability of this learning though time,
in addition to bottom-up learning within the adaptive filters that
activate IT view categories, the activated view categories read out
learned top-down expectations whose prototypes are matched
against the boundary feature patterns (Fig. 3; Bhatt, Carpenter, &
Grossberg, 2007; Carpenter & Grossberg, 1987, 1991, 1993; Gross-
berg, 1980, 2007;Miller, Li, & Desimone, 1993). Thismatching pro-
cess focuses object attention on the pattern of critical boundary
features that have been learned by the prototype of the expecta-
tion. This process of focusing attention is realized by a top-down,
modulatory on-center, driving off-surround network (Bhatt et al.,
2007; Carpenter & Grossberg, 1987, 1991), which explains and has
predicted data properties of self-normalizing ‘‘biased competition’’
(Desimone, 1998; Reynolds & Heeger, 2009).

The interactions of these bottom-up and top-down processes
helps to solve the stability–plasticity dilemma (Grossberg, 1980);
that is, to enable brains to learn quickly without causing
catastrophic forgetting. Adaptive resonance theory, or ART,
predicts that this dilemma is solved in the following way. If a top-
down match is good enough, it can cause a synchronous resonance
between the attended critical feature pattern and the selected
category via bottom-up and top-down signal exchanges. Such a
resonance triggers fast learning in the adaptive weights, or long-
term memory traces, that occur in the bottom-up and top-down
pathways that carry the resonant signals between the attended
features and the selected category. Such a resonance embodies
a system-wide consensus that the critical feature patterns are
worthy of being learned, as it simultaneously dynamically buffers
system memories against catastrophic forgetting. If the match is
not good enough, then a mismatch occurs between the learned
top-down expectation and the bottom-up featural inputs. Such a
mismatch triggers a memory search, or bout of hypothesis testing,
that ends in selection and learning of a better-matching category.

An orienting system regulates memory search by computing
the degree of match between the bottom-up input pattern and
the learned top-down expectation (Fig. 3). In other words, the
orienting system calibrates the degree of novelty of the currently
active input feature pattern relative to the currently active learned
top-down expectation (Otto & Eichenbaum, 1992; Vinogradova,
1975). The criterion for a good enoughmatch can depend upon the
task (Spitzer, Desimone, & Moran, 1998). A task-selective vigilance
parameter in the model determines how strict the matching
criterion is, with higher vigilance requiring a better match to
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trigger resonance and learning (Carpenter&Grossberg, 1987, 1991,
1993). High vigilance leads to the learning of more specific and
concrete categories (e.g., a view category that codes similar poses
of a single face), whereas low vigilance leads to the learning of
more general and abstract categories (e.g., a general face category).

If the current input is too novel to satisfy the vigilance criterion,
then the orienting system sends a burst of nonspecific arousal to
the category learning network, which resets the currently active
category and its top-down expectation, and frees the system to
choose a different, and better-matching category. For reviews of
data supporting how the brain may use such top-down attentive
matching, resonance, and vigilance mechanisms to learn cortical
recognition codes, see Carpenter and Grossberg (1991, 1993),
Engel, Fries, and Singer (2001), Grossberg (2003, 2007), Pollen
(1999) and Raizada and Grossberg (2003).

In a detailed laminar model of thalamocortical interactions,
Grossberg and Versace (2008) have predicted how vigilance may
be controlled by novelty-sensitive corticothalamic mismatches
that activate the nonspecific thalamus, which in turn activates
acetylcholine release via the nucleus basalis of Meynert, thereby
increasing excitability of cortical layer 5 cells, and leading to reset
in layer 4 via layer 5-to-6-to-4 signals. The inability to flexibly alter
vigilance to match task demands has been predicted to occur in
certain mental disorders, such as autism (Grossberg & Seidman,
2006).

View category integrator and persistent activity. One important
new feature of our model is view category integrator neurons,
whose persistent activities are predicted to play a key role in
learning position-invariant object representations. View category
integrator neurons receive input from view-specific category
neurons (Fig. 2). They preserve activity of view category neurons
that are reset as new object views are seen due to either object
motion or eye movements. The properties of these model neurons
are consistent with neurophysiological data about cells with
persistent activity in IT (Brunel, 2003; Fuster & Jervey, 1981;
Miyashita & Chang, 1988; Tomita et al., 1999). This persistent
activity is modeled by a leaky integrator with a slow decay rate.

What functional role in position-invariant object category
learning do view category integrator neurons play? Suppose that
view category integrator neurons do not exist. As shown in
Fig. 4(A), when an object P forms an image in the fovea, the brain
begins to learn a view-specific category V , which then selects a cell
population that will become, as multiple views are associated with
it, a position-invariant and view-invariant object category O. In
Fig. 4(B), the next time when P appears in an extra-foveal position,
the brain begins to learn a new view-specific category V1, which
activates object category O1. A saccade then brings P ’s image to
the fovea (Fig. 4(C)), and activates the previously learned view-
specific category V and object category O. Since view category V1
is shut off with the saccade, it cannot learn to be associated with
object category O. Its learned association to O1 thus persists. As
a result, object P learns two object categories O and O1 for the
two retinal positions. The same reasoning holds when P appears
at any new extra-foveal position in Fig. 4(B), so P will learn a
different object category for each extra-foveal position. Therefore,
no position-invariant object category is learned for P .

View category integrator neurons help to prevent an object
from creating multiple object categories at different positions.
In Fig. 4(D) and (E), view category integrator neurons T and T1
preserve the activities of view categories V and V1 after a saccade
occurs. In Fig. 4(F), although V1 is shut off with the saccade, T1
is still active due to persistent activity. T1 can thus be associated
through learning with object category O. The same is true for P
appearing at any other extra-foveal position. As a result, the brain
can now learn a position-invariant object category O for P .

Regulation of object category learning by spatial attentional
resonance and reset. As shown in Fig. 4(F), object category neurons

Fig. 4. How view category integrator neurons help to learn position-invariant
object categories. Large circles denote retinas; dotted circles denote foveas within
the retinas; filled little squares denote object retinal images; filled little circles
denote active neurons; open little circles denote inactive neurons; lines with black
disks denote inhibitory connections; black semidisc denote learned connections;
black arrowheads denote excitatory unlearned connections; the dotted line with X
denotes that no learned connection can occur; the dotted linewith semidisc denotes
losing learned connection. See the text for details.

receive inputs from view category integrator neurons. When an
object is explored during eye movements, the eyes quickly move
among the salient features on the object surface (Yarbus, 1967).
This exploration leads to the learning of multiple view-specific
categories.

Although view category neurons are reset with each eye
movement, an object category neuron needs to remain active until
the eyes move to examine a different object. When the eyes do
move to inspect a different object, then the previously active object
category neurons need to be reset, so that they are not erroneously
associated with view categories from a different object. In this
way, multiple learned view-specific categories for the same object
can be associatedwith one view-invariant object category through
learning.

As outlined in Section 1, the ARTSCAN model of Fazl et al.
(2009) proposes how the brain prevents an emerging view-
invariant category from being reset, even while its individual view
categories are reset, by using an attentional signal from the parietal
cortex. This attentional signal arises when an object’s surface
representation, say in cortical area V4, resonates with a form-
fitting distribution of spatial attention in the parietal cortex. Such a
form-fitting distribution of spatial attention is called an attentional
shroud (Tyler & Kontsevich, 1995). The ARTSCAN model explains
how a shroud remains activewhile the observer attends the object,
even while the observer’s eye movements actively explore the
object to inspect new views. An active shroud inhibits reset of an
object category (Fig. 2), thereby enabling the object category to
be associated with multiple learned view categories of the same
object. In this way, the object category becomes a view-invariant
category. When the eyes move to a different object, the previously
active shroud is shut off and the corresponding object category
neuron is inhibited, or reset, to enable a new object to be attended
and its object category to be learned.

When a view-specific category focuses attention on its salient
boundary features (Fig. 2), this is accomplished by object attention
in the What cortical stream. Thus, the ARTSCAN model proposes
how spatial attention in the Where cortical processing stream
regulates object attention in the What cortical processing stream.

The coordinated interaction between spatial attention and
object category learning and attention prevents view categories
that correspond to different objects from mistakenly being
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associated with the same object category during unsupervised
scanning and learning about the world. The ARTSCAN prediction
that a spatial attention shift (shroud collapse) causes a transient
reset burst in the parietal cortex that, in turn, causes a shift in
categorization rules (new object category activation) has been
supported by experiments using rapid event-related fMRI (Chiu &
Yantis, 2009). These and related results (e.g., Cabeza, Ciaramelli,
Olson, & Moscovitch, 2008; Corbetta, Kincade, Ollinger, McAvoy, &
Shulman, 2000; Yantis et al., 2002) suggest that different regions
of the parietal cortex maintain sustained attention to a currently
attended object (shroud) and control transient attention switching
(reset burst) to a different object.

When a new object is surreptitiously swapped with a previous
itemduring a saccadic eyemovement, the shroud resetmechanism
is fooled and does not reset. This property helps to explain
how more than one object can learn to activate the same
invariant object category. The ARTSCAN model hereby predicts
that swapping views of different objects at the same position
can rapidly reshape invariant object representations. However,
ARTSCAN cannot explain the Li and DiCarlo (2008) swapping
experiment, because this experiment also involves changes of
object position across space.

In order to explain how object categories can learn to become
position-invariant as well as view-invariant, the pARTSCAN
model further predicts that view category integrator neurons are
interpolated between view category neurons and object category
neurons, and that the view integrator neurons are reset when
a shift of spatial attention occurs—that is, when an attentional
shroud collapses—at the same time that object category neurons
are reset (Fig. 2). Then the effects of swaps that exchange object
positions, sizes, and views can all be explained by the same
combination of model mechanisms.

A complete simulation of the dynamics of shroud formation and
reset is given in Fazl et al. (2009). For simplicity, the current model
assumes that the shroud is reset at the appropriate times.

Ambiguous views and learning of object categories. When looked
at from certain viewpoints, different objects can sometimes form
the same or very similar images in the retina. This causes an
ambiguous view problem: a single view category can be associated
with more than one object category. An object with ambiguous
views can be identified by adding distinguishable views through
active exploration with eye movements.

In the pARTSCAN model, view category integrator neurons
activate object category neurons via signals that are gated
by learned weights, or long-term memory traces (Fig. 2). The
active view category integrator neurons learn to strengthen their
connection weights to the winning object category neuron, while
weakening their connection weights with losing object category
neurons. This is achieved in the model by a combination of
normalizing competition among the object category neurons,
and a view-to-object learning law called the outstar learning
rule (Grossberg, 1968, 1980) that together enable distinguishable
views to learn stronger learned connections with associated object
category neurons than ambiguous views (see the Ambiguous
View Learning Theorem in the Appendix). This sort of normalized
learning, when embedded within the model circuitry, is also
sufficient to simulate the Li and DiCarlo data property that an IT
neuron which is initially strongly selective to object P loses its
selectivity to P with increasing swaps at the swap position (Fig. 1).
Without these model mechanisms, the IT neuron’s selectivity to P
would remain unchanged even at the swap position. See Section 3
for more details. This learning law differs from the instar learning
law, variants of which are used to learn self-organizing maps and
view-specific categories (Carpenter & Grossberg, 1987, 1991; Fazl
et al., 2009; Grossberg, 1976, 1980; Kohonen, 1989).

Fig. 5. How the model explains the Li and DiCarlo data. Filled little squares: object
P ’s retinal images; filled little triangles: objectN ’s retinal images. The other symbols
are the same as in Fig. 4. See the text for details.

3. Model simulations

The swapping simulations used the two objects, boat (‘‘P ’’)
and bowl (‘‘N ’’), as stimuli that were used in the Li and DiCarlo
experiment. In the simulated retina, an above-foveal position
was predefined as the swap position and a below-foveal position
was predefined as the non-swap position. In order to simulate
normal daily experience, the two objects were first learned at
three positions (the predefined swap position, non-swap position,
and fovea) by 10,000 normal exposures. This experience led to
learning of two object categories, each associated with three
learned view categories via view category integrators (Fig. 5(A) and
(B)). Next, following the procedure described in the Li and DiCarlo
experiment, the swap exposure phase was simulated with 1000
swaps at the swap position, which was equally divided into 500 P-
to-N swaps and 500 N-to-P swaps. The two types of swaps were
presented alternately.

Each time,whenobject P (‘‘boat’’) appeared at the swapposition
(Fig. 5(C)), it activated prelearned object category Op through view
category Vpa and associated view category integrator Tpa. During a
saccade, P was replaced by object N . This brought N ’s image to the
fovea, and activated the prelearned view category Vnf , associated
view category integrator Tnf , and object category On of object N .
SinceOn receives input from the fovea, itwins the competitionwith
Op. Although view category Vpa shuts off with the saccade, view
category integrator Tpa stays active due to its persistent activity.
The view category integrator Tpa can thus strengthen its learned
connection with the winning object category On, and weaken its
connection with the losing object category Op. As a result, the
selectivity, or learned weight, of object category neuron Op for
object P at the swap position decreases.

Similarly, for every N-to-P swap where object N (‘‘bowl’’)
appeared at the above-fovea swap position (Fig. 5(D)), the view
category integrator Tna learns to strengthen its connection with
the winning object category Op, and weaken its connection with
the losing object category On. The selectivity (or learned weight)
of object category neuron Op for object N at the swap position
hereby increases. As a result, the selectivity of object category
neuron Op for objects P and N at the swap position is gradually
reversed. Fig. 1(B) shows how the selectivity of neuron Op at the
swap position reverses with swaps. This is consistent with the
experimental data (Fig. 1(A)), where the reversal occurs at about
600 swaps. Fig. 1(C) shows how object selectivity changes as a
function of the number of swap exposures in both experimental
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Fig. 6. Learned connection weights of six view category integrator neurons. Blacks denote weight strengths associated to object category P , and grays denote weight
strengths associated to object category N . (A) Initially, object P ’s views on all three retinal positions (Swap, Fovea, and NonSwap) are associated with object category P , and
object N ’s views on all three retinal positions are associated with object category N . (B) After 1000 swaps, the weights for both objects at swap positions (P Swap and N
Swap) are greatly altered, while the weights at foveal and non-swap positions remain unchanged.

and simulated IT neurons. In comparison, 1000 normal exposures
for the control non-swap position were also simulated. The
selectivities of both neurons Op and On at non-swap position show
no visible change (Fig. 6).

In the Li and DiCarlo experiment, when the saccade brings
an object’s image to the fovea from an extra-foveal position,
attention does not switch to other objects. The attentional shroud
of an object remains active during an eye movement towards a
stationary object because the shroud corresponding to the object is
computed in head-centered coordinates. Thus, the shroud remains
on during each individual normal or swap exposure. As a result, in
the simulations, the shroud turned onwhen an exposure starts and
off when an exposure ends.

4. Discussion

Target swapping fools the reset mechanism. The pARTSCAN
model proposes how the brain can learn object categories that
are invariant across object positions, sizes, and views. Key model
mechanisms that enable position-invariant object learning enable
the model to quantitatively simulate the Li and DiCarlo (2008)
swapping data. In effect, the Li and DiCarlo (2008) experiments
bypass the mechanism whereby attentional shrouds normally get
reset when one object is replaced by another one. Their results
illustrate a failure both of position-invariant and view-invariant
category learning.

Attentional shrouds can also combine the views of an object
as it is seen at different distances, thereby creating images of
different sizes on the retina. An attentional shroud for the object
will remain active during these continuous changes in the object’s
retinal image, and thereby enable views that vary in size to be
combined through learning at the same invariant object category.
Indeed, Li and DiCarlo (2010) have recently described a variant of
the target swapping experiment in which targets of different sizes
are swapped and the correspondingmixtures of objects are learned
that would be expected from fooling the shroud mechanisms once
again.

fMRI test of reset mechanism during target swapping in humans.
Target swapping experiments can also be carried out in humans.
If the swapping procedure does indeed fool the shroud reset
mechanisms, and if the Chiu and Yantis (2009) fMRI data on
transient parietal reset bursts reflects shroud and category reset,
then no reset burst should occur in swapping tasks that can

recode object categories. In addition, inserting large enough delays
between the swapped objects should again cause such transient
reset bursts to occur, as well as the learning of separable object
categories. Thus, variations of the swapping paradigm can be used
to dissociate the parietal regions that maintain sustained spatial
attention on an object, using shrouds, versus those that shift
attention to new objects, using transient reset bursts (Corbetta
et al., 2000; Yantis et al., 2002). The predicted interactions between
these two types of mechanism, and their interpretation in the
swapping paradigm, can provide a newexperimental probe in both
monkeys and humans for studying the role of the parietal cortex
in episodic memory and memory retrieval (Cabeza et al., 2008;
Ciaramelli, Grady, & Moscovitch, 2008).

Reversible disabling of reset mechanism using TMS. It would be
of interest if the shroud reset mechanism could be reversibly
inactivated, say by transcranial magnetic stimulation, or TMS,
leading to learned merging of view categories from more than
one object into a single object category in cases that these view
categories would otherwise be separated into distinct object
categories.

A learning mechanism for survival of unexpected dangers. One
might imagine that themostmemory-savingmethod for recording
position-invariant object information might be for the brain to
somehow automatically transfer extra-foveal views into the fovea
to learn invariant object categories. Then only foveal views would
need to be learned. The Li and DiCarlo data shows that this is not
true. Position-specific information has to be learned. Otherwise,
there would be no difference between the swap and non-swap
positions in the Li and Dicarlo data.

Why does the brain not use the potentially most memory-
saving recoding method? It may be due to survival demands
in a dangerous world. Transferring views takes time. Direct and
rapid recognition of invariant object categories by extra-foveal
views may save an animal’s life in case a dangerous enemy
is approaching. The model suggests that extra machinery is
needed to learn position-invariant object categories and to learn
stronger associations with more predictive unambiguous object
views than less predictive ambiguous views, above and beyond
the spatial attentional modulation that is needed to learn view-
invariant object categories located at or near the fovea. View
integrator neurons and competitive outstar learning are predicted
to contribute to these additional competences. Indeed, in the Li and
DiCarlo (2008) experiment, objects P and N become ‘‘ambiguous
views’’ in the swap position (see Fig. 6(B)).
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Various methods have been suggested for modeling neurons
with persistent activities (Brunel, 2003; Durstewitz, Seamans, &
Sejnowski, 2000; McCormick, 2001; Mongillo, Amit, & Brunel,
2003; Mongillo, Barak, & Tsodyks, 2008; Wang, 2001). We have
used the simplest model, a leaky integrator with slow decay.
Shunting dynamics with slow decay has the conceptual advantage
that neuron activity has a fixed upper bound, but the result will not
change for the simulation of the Li and DiCarlo data.

These results suggest that any object recognition model which
does not have processes such as invariant object category reset
by spatial attentional collapse, persistent activity in IT, and
competitive outstar learning may have difficulty in explaining
the Li and DiCarlo data, assuming that such a model carries
out unsupervised incremental learning in real time, and does
not impose biologically unrealistic hypotheses. For example, the
HMAX model (Riesenhuber & Poggio, 1999; Serre, Kreiman et al.,
2007; Serre, Oliva, & Poggio, 2007), which uses a MAX operation
through several cortical regions to derive position invariance,
has none of these features. It will be of interest to explore
alternative possible explanations of swapping data, and their
different predictions.

The current model is also being applied to image processing
applications using naturally occurring objects. For example,
preliminary results describe a neuralmodel for solving theWhere’s
Waldo problem (Chang, Cao, & Grossberg, 2009), or how the brain
can efficiently search for, and learn to recognize, a desired target in
a cluttered natural scene.

5. Methods

5.1. Model equations

Retina/LGN: discounting the illuminant and contrast normaliza-
tion. The luminance of the retinal input image Ipq at position (p, q)
is preprocessed by the model retina/LGN to discount the illumi-
nant and contrast-normalize the image using shunting on-center
off-surround networks (Grossberg & Todorovic, 1988). The equilib-
rium output signals X+

ij and X−

ij of ON and OFF cells, respectively,
at position (i, j) are defined by

X+

ij =

Xij − 0.05

+
, (1)

X−

ij =

−Xij − 0.05

+
, (2)

where

Xij =
4(Cij − Sij)

10−5 + Cij + Sij
, (3)

notation [w]+ = max(w, 0) defines a threshold-linear output
signal function, Cij is the Gaussian on-center input:

Cij =

−
pq

IpqGc
pqij, (4)

Sij is the Gaussian off-surround input:

Sij =

−
pq

IpqGs
pqij, (5)

and Gv
pqij is a Gaussian kernel:

Gv
pqij = Nv exp


−

(p − i)2 + (q − j)2

2σ 2
v


, v = c, s. (6)

ConstantNv in (6) is chosen so thatNv
∑

pq G
v
pqij = 1. Thewidth

of the on-center and the off-surround are determined in (6) by
σc = 0.3 and σs = 2, respectively.

Cortical magnification using a log-polar transformation. The ON
and OFF cell output signals in (1) and (2) undergo a log-polar
transformation that maps from retina position (p, q) to cortex
position (x, y), defined by

M = 7 log(Z + 0.3), (7)

whereM and Z are complex numbers such thatM = x+iy, and Z =

p + iq. Eq. (7) transforms the retinal image into polar coordinates,
and models the cortical magnification factor in humans and other
primates (Schwartz, 1980). The outputs of this operation are log-
polar maps L+ and L−.

Object boundary. Object boundaries are represented by complex
cells in the primary visual cortex. The model computes the object
boundary activity Bij at position (i, j) by

Bij = L+

ij + L−

ij , (8)

where L+

ij and L−

ij are the log-polar transformed ON and OFF cell
output signals.

View category learning. View category neurons receive input
from object boundary neurons, and learn to respond to changes
in position, size, and view. View categories are learned using
mechanisms of Adaptive Resonance Theory, or ART (Carpenter
& Grossberg, 1987, 1991; Grossberg, 1980). In particular, fuzzy
ART (Carpenter, Grossberg, Markuzon, Reynolds, & Rosen, 1992;
Carpenter, Grossberg, & Rosen, 1991) was chosen to simulate
the learning of view category neurons because it simplifies the
nonlinear dynamics of neural category learning into a more easily
computable algorithm.

Normalization. The input boundary vector B =

Bij

is first pre-

processed with complement coding that represents simultaneous
processing by normalized ON and OFF cells:

E =

g(Bij), 1 − g(Bij) : ∀i, j


, (9)

where g is a sigmoid signal function that normalizes all boundary
signals to be less than 1:

g(x) =
x2

0.25 + x2
. (10)

If B is an n-dimensional vector of boundary positions, then E is
a ‘‘complement-coded’’ 2n-dimensional vector of ON and OFF cell
responses to the boundary.

Category choice. A neuron is called committed if it has learned to
code one or more views. Otherwise, it is called uncommitted. The
activity Vj of the jth committed view category neuron in response
to the complement-coded boundary input E obeys:

Vj =

E ∧ W BV
j


10−5 +

W BV
j

 , (11)

where W BV
j is the learned weight vector for the jth view category

neuron, the fuzzy AND operator ∧ is defined by (x ∧ y)i =

min(xi, yi), and the L1 norm |•| is defined by |x| =
∑

i |xi|.
The minimum operation in the numerator may be interpreted as
the expected number of learned sites that are activated by the
input vector E. The most highly activated view category wins the
competition among all active committed view neurons; that is, the
Jth committed neuron is chosen as the winner if

VJ = max
j

{Vj : Vj > 0}. (12)

Resonance or reset. Resonance occurs if the chosen view category
meets the matching criterion:E ∧ W BV

J


|E|

≥ ρ, (13)
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where ρ is the vigilance parameter that determines the network
sensitivity to the match of bottom-up boundary E and the
learned top-downexpectationwithweightsW BV

J . Inequality (13) is
computed in the orienting system (Fig. 3). Itmeans that the amount
of inhibition

E ∧ W BV
J

 from the matched feature-expectation
pattern exceeds the total excitation |E| due to the input pattern
E, multiplied by the vigilance, which plays the role of the gain of
the excitatory input pattern E. In the current simulations, vigilance
is chosen high at the value ρ = 0.99 because the Li and DiCarlo
experimental procedure actively engages a monkey’s attention.

When (13) occurs, the orienting system is inhibited and enables
resonance to occur between the active category and the attended
critical feature pattern, thereby triggering both category learning
and learning of the top-down expectation.

If (13) is not satisfied, mismatch reset occurs. This happens
because excitation from the bottom-up input E exceeds inhibition
from the matched feature-expectation pattern. Then a novelty-
sensitive nonspecific arousal burst occurs from the orienting
system and resets the currently active category (Fig. 3). As a result,
the previously active view neuron J is reset to inactive and a new
winner is chosen by Eq. (12). The search process continues until the
chosen winner satisfies (13).

Learning. If resonance occurs, then thewinning category neuron
J learns to update its weight vector by the equation

W BV (new)
J = β(E ∧ W BV (old)

J ) + (1 − β)W BV (old)
J , (14)

where the learning rate β is set to 1 for fast learning. Otherwise,
if no committed view category is active, an uncommitted view
neuron is chosen as thewinner J , thereby becomes committed, and
learns to update its weight vector by the equation

W BV (new)
J = E. (15)

Output signals. The output signals from view category neurons
to view category integrator neurons are

Vj =


E ∧ W BV (new)

J


10−5 +

W BV (new)
J

 , if j = J,

0, if j ≠ J.

(16)

View category integrator. As described in Section 2, view
category integrator neurons preserve the activities of view
category neurons. View category neurons may shut off when new
views appear due to either object motion or eye movements, but
their corresponding integrator neurons preserve their activities as
long as the attentional shroud is on. The activityUi of the integrator
neuron associated with view category neuron i is defined by

dUi

dt
= −αUi + [Vi]+ − UiR, (17)

where α is a small positive number (α ≈ 0) representing a slow
decay rate, Vi is the activity of view category neuron i, and R is a
reset signal controlled by a spatial attentional shroud (Fazl et al.,
2009), here simply defined by

R =


0, when shroud is on,
R∗, when shroud is off, (18)

where R∗ is chosen large enough to rapidly inhibit the view
category integrator neuron. As noted in Section 2, the shroud turns
onwhen an exposure starts and off when an exposure ends. It does
not shut off during a swap. Approximating α with 0 during each
exposure, (17) can be solved as

Unew
i = Uold

i + τ [Vi]+ , (19)

where τ is the duration that an object image stays on at a particular
retinal position; in other words, the duration that view i is active
between eye movements. In the simulations, τ = 1 when an
object’s image is at the fovea, and τ = 0.5 when it is at an
extra-foveal position. This is consistent with data in the Li and
DiCarlo experiment showing that the monkey foveated an object
approximately twice long as it stays in extra-foveal positions
(about 200 ms versus 100 ms; see the Supplementary Material of
Li and DiCarlo (2008), page 3).

Spatially-invariant object category learning. Each invariant object

category neuron with activity
∧

Oj receives summed inputs from all
active view category integrator neurons:

Ôj =

−
i

λiWUO
ij [Ui]+ , (20)

where λi is a bias parameter to the fovea with λi > 1 (using 10 in
the simulation) when Ui is an input from a foveal image and λi = 1
when Ui is an input from an extra-foveal image,WUO

ij is the learned
weight between view category integrator neuron i and object
category neuron j, and Ui is the activity of view category integrator
neuron i. Object category neurons compete with each other
through a recurrent shunting on-center off-surround network,
which normalizes the activity of each neuron j (Grossberg, 1973).
This rapid normalization process is approximated by

Oj =
Ôj∑

k
Ôk

. (21)

During learning, all weights WUO
ij are updated through an

outstar learning equation (Grossberg, 1968, 1980):

dWUO
ij

dt
= a [Ui]+


f (Oj) − WUO

ij


, (22)

where a is a learning rate parameter, and f is a sigmoid signal
function defined by

f (Oj) =

0, if Oj ≤ 0.1,
Oj, if 0.1 < Oj < 0.9,
1, if Oj ≥ 0.9.

(23)

When a small time step is used, (22) can be written in its
discrete form as

WUO(new)
ij = WUO(old)

ij + α [Ui]+

f (Oj) − WUO(old)

ij


, (24)

whereα is the learning ratewith 0 < α ≤ 1. In the simulation,α =

0.0046 best fits with the experimental data: the object category
neuron (Oj) response to object images P and N at swap position is
reversed at about 600 swaps (see Fig. 1). Increasing the learning
rate will advance the reversal time, and vice versa (see Fig. 7).

Simulation procedure and algorithm. Based on the above model
equations, the following algorithm was used to simulate the
Li and DiCarlo (2008) data. The same procedure also provides
an algorithm to learn spatially-invariant object recognition
categories.

A. Initialization.
Set all weights for view category and object category neurons

to 0.
B. For each normal or swap exposure do steps 1–3:

1. Set all view category integrator neurons and object category
neurons to activity 0.

2. For each retinal image (where the object is in an extra-foveal
position or the fovea), do steps 2.1–2.5:
2.1. Compute the contrast enhancement signals, by Eqs. (1)–(6).
2.2. Do log-polar transformations, by Eq. (7).
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Fig. 7. Model simulations when the learning rate α in (24) varies. (A) Increasing the learning rate to α = 0.006 advances the selectivity reversal time. The selectivity of
model IT object category neuron Op to views of objects P and N at swap position reverses at about 450 swaps. (B) Decreasing the learning rate to α = 0.004 delays the
selectivity reversal time. The selectivity reverses at about 700 swaps now.

2.3. Compute the object boundary map, by Eq. (8).
2.4. Compute the view category neuron activities and up-

date their weights using the fuzzy ART classifier, by
Eqs. (9)–(16).

2.5. Compute the view category integrator neuron activities, by
Eq. (19).

3. Compute the object category activities and update their
weights, by Eqs. (20), (21), (23) and (24). In particular, in Eq.
(20), if Ôj = 0 for all learned object category neurons j, a new
object category neuron J is activated. Its weight is then updated
according to (24) with f (OJ) = 1.
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Appendix

Ambiguous View Learning Theorem. Consider Eqs. (20)–(22),
where signal function f is nonnegative with f (0) = 0, f (1) = 1, and
j = 1, . . . ,N are all object categories to which view i is associated.
(i) If f satisfies

∑
j f (Oj) ≤ f

∑
j Oj

, then 0 ≤

∑
j W

UO
ij ≤ 1 at

equilibrium.
(ii) When f is defined by (23), then 0 ≤

∑
j W

UO
ij ≤ 1 at equilibrium.

(iii) Assuming that f is defined by (23) and N = 2, then
∑

j W
UO
ij = 1

at equilibrium, and furthermore
∑

j W
UO
ij ≡ 1 for all times t if∑

j W
UO
ij = 1 at time 0.

(iv) Assuming that N = 1, then WUO
i1 = 1 at equilibrium.

Proof. (i) According to Eq. (22), we have

d
∑
j
WUO

ij

dt
= a [Ui]+

−
j

f (Oj) −

−
j

WUO
ij


. (A.1)

From Eq. (21),
∑

j Oj = 1. Therefore,
∑

j f (Oj) ≤ f
∑

j Oj


=

f (1) = 1, which implies that, at equilibrium,
∑

j W
UO
ij ≤ 1. It

is obvious that
∑

j W
UO
ij ≥ 0, since f is nonnegative.

(ii) Case A: there is some j such that Oj ≥ 0.9. Then, for all other
j, Oj ≤ 0.1, since

∑
j Oj = 1 by (21). From (23),

∑
j f (Oj) = 1.

This implies that (ii) holds.
Case B: For all j, Oj < 0.9. Then, by (23),

∑
j f (Oj) ≤∑

j Oj = 1. This again implies that (ii) holds.

(iii) Case A: there is some j such that Oj ≥ 0.9. We again have∑
j f (Oj) = 1, as the proof in (ii). Case B: For both j = 1

and 2, Oj < 0.9. This implies that 0.1 < Oj < 0.9 for both
j. Therefore,

∑
j f (Oj) =

∑
j Oj = 1 by (23). As a result,∑

j W
UO
ij = 1 at equilibrium. It is then easy to see that∑

j W
UO
ij ≡ 1 for all time t if

∑
j W

UO
ij = 1 at time 0, since

d
∑

j W
UO
ij

dt = 0.
(iv) Since N = 1, we have O1 = 1 from (21). Thus f (O1) = 1. This

implies that WUO
i1 = 1 at equilibrium from (22). �

Remarks. The Ambiguous View Learning Theorem tells us that,
when an object view is associated with more than one object
category, the sum of all its learned weights cannot be greater
than 1, which is the learned weight when a view is associated to
only one object category. In other words, distinguishable views
learn stronger associations with object category neurons than do
ambiguous views.
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