
Protein Secondary Structure Modelling withProbabilistic Networks(Extended Abstract)Arthur L. Delcher�Computer Science Dept.Loyola CollegeBaltimore, MD 21210 Simon Kasif �Dept. of Computer ScienceJohns Hopkins UniversityBaltimore, MD 21218 Harry R. GoldbergMind-Brain InstituteJohns Hopkins UniversityBaltimore, MD 21218 William H. HsuDept. of Computer ScienceJohns Hopkins UniversityBaltimore, MD 21218AbstractIn this paper we study the performance of proba-bilistic networks in the context of protein sequenceanalysis in molecular biology. Speci�cally, we re-port the results of our initial experiments apply-ing this framework to the problem of protein sec-ondary structure prediction. One of the main ad-vantages of the probabilistic approach we describehere is our ability to perform detailed experimentswhere we can experiment with di�erent models.We can easily perform local substitutions (muta-tions) and measure (probabilistically) their e�ecton the global structure. Window-based methodsdo not support such experimentation as readily.Our method is e�cient both during training andduring prediction, which is important in order tobe able to perform many experiments with di�er-ent networks. We believe that probabilistic meth-ods are comparable to other methods in predictionquality. In addition, the predictions generated byour methods have precise quantitative semanticswhich is not shared by other classi�cation meth-ods. Speci�cally, all the causal and statistical in-dependence assumptions are made explicit in ournetworks thereby allowing biologists to study andexperiment with di�erent causal models in a con-venient manner.IntroductionIn this paper we discuss several experiments with prob-abilistic networks for predicting the secondary struc-ture of proteins. We believe that the networks thatwe use provide a very convenient medium for sci-entists to experiment with di�erent empirical mod-els and obtain possibly important insights into prob-lems being studied. A number of methods have beenapplied to this problem with various degree of suc-cess [Chou and Fasman, 1978; Garnier et al., 1978;� Supported by NSF DARPA Grant CCR-8908092 andAFOSR Grant AFOSR-89-1151

Holley and Karplus, 1989; Cost and Salzberg, 1993;Qian and Sejnowski, 1988; Maclin and Shavlik, 1992;Zhang et al., 1993; Muggleton and King, 1991]. Inaddition to obtaining experimental results comparableto other methods, there are several theoretically andpractically interesting observations that we have madein experimenting with our systems. The most impor-tant aspect of this approach is that the results obtainedhave a precise probabilistic semantics. Conditional in-dependence assumptions are represented explicitly inour networks by means of causal links.� It has been claimed in several papers that prob-abilistic (statistical) approaches have been outper-formed by neural network methods and memory-based methods by a wide margin. We show thatprobabilistic methods are comparable to other meth-ods in prediction quality. In addition, the predic-tions generated by our methods have precise quan-titative semantics which is not shared by other clas-si�cation methods. Speci�cally, all the causal andstatistical independence assumptions are made ex-plicit in our networks thereby allowing biologists tostudy causal links in a convenient manner. This gen-eralizes correlation studies that are normally used instatistical analysis of data.� Our methods provide very 
exible tools to experi-ment with a variety of modelling strategies. This
exibility allows a biologist to perform many prac-tically important statistical queries which can yieldimportant insight into a problem.� From the theoretical point of view we found that dif-ferent ways to model the domain produce practicallydi�erent results. This is an experience that AI re-searchers encounter repeatedly in many knowledge-representation schemes: di�erent coding of the prob-lem in the architecture results in dramatic di�er-ences in performance. This has been observed inproduction systems, neural networks, constraint net-works and other representations. Our experience re-inforces the thesis that while knowledge representa-tion is a key issue in AI, a knowledge-representation



system typically provides merely the programminglanguage in which a problem must be expressed.The coding, analogous to an algorithm in procedurallanguages, is perhaps of equally great importance.However, the importance of this issue is grossly un-derestimated and not studied as systematically andrigorously as knowledge representation languages.� Previous methods for protein folding were based onthe window approach. That is, the learning algo-rithm attempted to predict the structure of the cen-tral amino acid in a \window" of k amino acidsresidues. It is well recognized that in the contextof protein folding, very minimal mutations (aminoacid substitutions) often cause signi�cant changesin the secondary structure located far from the mu-tation cite. Our method is aimed at capturing thisbehavior.In this paper we describe out initial experiments,for which we have chosen the simplest possible mod-els. We �rst describe a causal-tree model using Pearl'sbelief updating. Then we describe the application ofthe Viterbi algorithm to this model and compare theresults. We then illustrate the utilitly of probabilisticmodels in the context of modelling the e�ect of mu-tations on secondary structure. Finally, we describean application of Hidden Markov Models to modellingprotein segments with uniform secondary structure(i.e., runs of helices, sheets or coils).Protein FoldingProteins have a central role in essentially all biologicalprocesses. They control cellular growth and develop-ment, they are responsible for cellular defense, theycontrol reaction rates, they are responsible for propa-gating nerve impulses, and they serve as the conduitfor cellular communication. The ability of proteins toperform these tasks, i.e., the function of a protein, isdirectly related to its structure. The results of Chris-tian An�nsen's work in the late 1950's indicated thata protein's unique structure is speci�ed by its amino-acid sequence. This work suggested that a protein'sconformation could be speci�ed if its amino acid se-quence was known, thus de�ning the protein foldingproblem. Unfortunately, nobody has been able to putthis theory into practice.The biomedical importance of solving the proteinfolding problem cannot be overstressed. Our abilityto design genes|the molecular blueprints for speci-fying a protein's amino acid sequence|has been re-�ned. These genes can be implanted into a cell andthis cell can serve as the vector for the production oflarge quantities of the protein. The protein, once iso-lated, potentially can be used in any one of a multitudeof applications|uses ranging from supplementing thehuman defense system to serving as a biological switchfor controlling abnormal cell growth and development.A critical aspect of this process is the ability to spec-

ify the amino acid sequence which de�nes the requiredconformation of the protein.Traditionally, protein structure has been describedat three levels. The �rst level de�nes the protein'samino acid sequence, the second considers local confor-mations of this sequence, i.e., the formation of rod-likestructures called �-helices, planar structures called �-sheets, and intervening sequences often categorized ascoil. The third level of protein structure speci�es theglobal conformation of the protein. Due to limits onour understanding of solutions to the protein foldingproblem, most of the emphasis on structure predictionhas been at the level of secondary structure prediction.There are fundamentally two approaches that havebeen taken to predict the secondary structure of pro-teins. The �rst approach is based on theoretical meth-ods and the second is based on data derived empiri-cally. Theoretical methods rely on our understandingof the rules governing amino acid interactions, theyare mathematically sophisticated and computationallytime-intensive. Conversely, empirically based tech-niques combine a heuristic with a probabilistic schemain determining structure. Empirical approaches havereached prediction rates approaching 70%|the appar-ent limit given our current base of knowledge.The most obvious weakness of empirically based pre-diction schemes is their reliance on exclusively local in-
uences. Typically, a window that can be occupied by9-13 amino acids is passed along the protein's aminoacid sequence. Based on the context of the centralamino acid's sequence neighbors, it is classi�ed as be-longing to a particular structure. The window is thenshifted and the amino acid which now occupies thecentral position of the window is classi�ed. This is aniterative process which continues until the end of theprotein is reached. In reality, the structure of an aminoacid is determined by its local environment. Due to thecoiled nature of a protein, this environment may be in-
uenced by amino acids which are far from the centralamino acid in sequence but not in space. Thus, a pre-diction scheme which considers the in
uence of aminoacids which are, in sequence, far removed from the cen-tral amino acid of the window may improve our abilityto successfully predict a protein's conformation.PreliminariesFor the purpose of this paper, the set of proteins isassumed to be a set of sequences (strings) over an al-phabet of twenty characters (di�erent capital letters)that correspond to di�erent amino acids. With eachprotein sequence of length n we associate a sequenceof secondary structure descriptors of the same length.The structure descriptors take three values: h, e, cthat correspond to �-helix, �-sheet and coil. Thatis, if we have a subsequence of hh : : :h in positionsi; i+1; : : : ; i+k it is assumed that the protein sequencein those positions folded as a helix. The classi�cationproblem is typically stated as follows. Given a protein



Structure segment:� � � Evidence segment:� � � �� ���� ���� ��PSi�1 PSi PSi+1- - - -? ? ?�� ���� ���� ��Ei�1 Ei Ei+1 � � �� � �Figure 1: Causal tree model.sequence of length n, generate a sequence of structurepredictions of length n which describes the secondarystructure of the protein sequence. Almost without ex-ception all previous approaches to the problem haveused the following approach. The classi�er receives awindow of length 2K + 1 (typically K < 12) of aminoacids. The classi�er then predicts the secondary struc-ture of the central amino acid (i.e., the amino acid inposition K) in the window.A Probabilistic Framework for ProteinAnalysisWhen making decisions in the presence of uncertainty,it is well-known that Bayes rule provides an optimaldecision procedure, assuming we are given all priorand conditional probabilities. There are two majordi�culties with using the approach in practice. Theproblem of reasoning in general Bayes networks is NP-complete, and we often do not have accurate estimatesof the probabilities. However, it is known that whenthe structure of the network has a special form it ispossible to perform a complete probabilistic analysise�ciently. In this section we show how to model proba-bilistic analysis of the structure of protein sequences asbelief propagation in causal trees. In the full version ofthe paper we also describe how we dealt with problemssuch as undersampling and regularization. The generalschema we advocate has the following form. The setof nodes in the networks are either protein-structurenodes (PS-nodes) or evidence nodes (E-nodes). EachPS-node in the network is a discrete random variableXi that can take values which correspond to descrip-tors of secondary structure, i.e., segments of h's, e'sand c's. With each such node we associate an evidencenode that again can assume any of a set of discretevalues. Typically, an evidence node would correspondto an occurrence of a particular subsequence of aminoacids at a particular location in the protein. With eachedge in the network we will associate a matrix of con-ditional probabilities. The simplest possible exampleof a network is given in Figure 1.We assume that all conditional dependencies are rep-resented by a causal tree. This assumption violates

�� ���� ���� ��cc ch hh- -? ? ?�� ���� ���� ��GS SA ATFigure 2: Example of causal tree model using pairs,showing protein segment GSAT with correspondingsecondary structure cchhsome of our knowledge of the real-world problem, butprovides an approximation that allows us to performan e�cient computation. For an exact de�nition of acausal tree see Pearl [Pearl, 1988]. Causal belief net-works can be considered as a generalization of classicalMarkov chains that have found many useful applica-tions in modelling.Protein Modeling Using CausalNetworksAs mentioned above, the network is comprised of a setof protein-structure nodes and a set of evidence nodes.Protein-structure nodes are �nite strings over the al-phabet fh; e; cg. For example the string hhhhhh isa string of six residues in an �-helical conformation,while eecc is a string of two residues in a �-sheet con-formation followed by two residues folded as a coil. Ev-idence nodes are nodes that contain information abouta particular region of the protein. Thus, the main ideais to represent physical and statistical rules in the formof a probabilistic network. We note that the main pointof this paper is advocating the framework of causal net-works as an experimental tool for molecular biologyapplications rather than focusing on a particular net-work. The framework allows us 
exibility to test causaltheories by orienting edges in the causal network.In our �rst set of experiments we converged on thefollowing model that seems to match in performancemany existing approaches. The network looks like a setof PS-nodes connected as a chain. To each such nodewe connect a single evidence node. In our experimentsthe PS-nodes are strings of length two or three over thealphabet fh; e; cg and the evidence nodes are stringsof the same length over the set of amino acids. Thefollowing example clari�es our representation. Assumewe have a string of amino acids GSAT . We modelthe string as a network comprised of three evidencenodes GS, SA, AT and three PS-nodes. The networkis shown in Figure 2. A correct prediction will assignthe values cc, ch, and hh to the PS-nodes as shown inthe �gure.
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-AAAAAAAAAAUBBBBBBBBBBBBBBBNk = n�1v v-v@@@@@R...vBBBBBBBBBBBBBBBNk = nFigure 3: Modelling the Viterbi algorithm as a shortest path problem.Let X0; X1; : : : ; Xn be a set of PS-nodes connectedas in Figure 1. Generally, speaking the distributionfor the variable Xi in the causal network as below canbe computed using the following formulae. Let e�Xi =ei; ei+1; : : : ; en denote the set of evidence nodes to theright of Xi, and let e+Xi = e1; e2; : : : ; ei�1 be the set ofevidence nodes to the left of Xi. By the assumption ofindependence explicit in the network we haveP (XijXi�1; e+Xi) = P (XijXi�1)Thus, P (Xije+Xi ; e�Xi) = �P (e�Xi jXi)P (Xije+Xi)where � is some normalizing constant. For length con-sideration we will not describe the algorithm to com-pute the probabilities. The reader is referred to Pearlfor a detailed description [Pearl, 1988]. Pearl gives ane�cient procedure to compute the belief distributionof every node in such a tree. Most importantly, thisprocedure operates by a simple e�cient propagationmechanism that operates in linear time.Protein Modeling Using the ViterbiAlgorithmIn this section we describe an alternative model forprediction. This model has been heavily used inspeech understanding systems, and indeed was sug-gested to us by Kai Fu Lee whose system using simi-lar ideas achieves remarkable performance on speaker-independent continuous speech understanding.We implemented the Viterbi algorithm and compareits performance to the method outlines above. Webrie
y describe the method here. We follow the dis-cussion by Forney [Forney, 1973].

We assume a Markov process which is characterizedby a �nite set of state transitions. That is, we assumethe process at time k can be described by a randomvariable Xk that assumes a discrete number of val-ues (states) 1; : : : ;M . The process is Markov, i.e., theprobability P (Xk+1jX0; : : :Xk) = P (Xk+1jXk). Wedenote the process by the sequence X = X0; : : : ; Xk.We are given a set of observations Z = Z0; : : : ; Zk suchthat Zi depends only on the transition Ti = (Xi+1; Xi).Speci�cally, P (ZjX) = Qnk=0(ZijXi). The Viterbi al-gorithm is a solution to the maximum aposteriori esti-mation of X given Z. In other words we are seeking asequence of states X for which P (ZjX) is maximized.An intuitive way to understand the problem is ingraph theoretic terms. We build a n-level graph thatcontains nM nodes (see Figure 3). With each transi-tion we associate an edge. Thus, any sequence of stateshas a corresponding path in the graph. Given the setof observations Z with any path in the graph we as-sociate a length L = � lnP (X;Z). We are seeking ashortest path in the graph. However, sinceP (X;Z) = P (X)P (ZjX)= n�1Yk=0P (Xk+1jXk) n�1Yk=0P (ZkjXk+1; Xk)if we de�ne �(Tk) = � lnP (XK+1jXK) � lnP (ZkjTk)we obtain that � lnP (Z;X) =Pn�1k=0 �k.Now we can compute the shortest path through thisgraph by a standard application of shortest path algo-rithms specialized to directed acyclic graphs. For eachtime step i we simply maintainM paths which are theshortest path to each of the possible states we could bein at time i. To extend the path to time step i + 1 we



simply compute the lengths of all the paths extendedby one time unit and maintain the shortest path toeach one of the M possible states at time i+ 1.Our experimentation with the Viterbi algorithmwascompleted in Spring 1992. We recently learned thatDavid Haussler [Haussler et al., 1992] and his groupsuggested the Viterbi algorithm framework for pro-tein analysis as well. They experimented on a verydi�erent problem and also obtain interesting results.We document the performance of Viterbi on our prob-lem even though, as described below, the causal-treemethod outperformed Viterbi. The di�erence betweenthe methods is that the Viterbi algorithm predicts themost likely complete sequence of structure elements,whereas the causal-tree method makes separate pre-dictions about individual PS-nodes.ExperimentsThe experiments we conducted were performed to al-low us to make a direct comparison with previousmethods that have been applied to this problem. Wefollowed the methodology described in [Zhang et al.,1993; Maclin and Shavlik, 1992] which did a thor-ough cross-validated testing of various classi�ers forthis problem. Since it is known that two proteins thatare homologous (similar in chemical structure) tend tofold similarly and therefore generate accuracies of pre-dictions that are often overly optimistic, it is importantto document the precise degree of homology betweenthe training set and the testing set. In our experimentsthe set of proteins was divided into eight subsets. Weperform eight experiments in which we train the net-work on seven subsets and then predict on the remain-ing subset. The accuracies are averaged over all eightexperiments. This methodology is referred to as k-waycross validation.Experimental ResultsWe report the accuracy of prediction on individualresidues and also on predicting runs of helices andsheets. Table 1 shows the prediction accuracy of ourmethods using the causal network method for each oneof the eight trials in our 8-way cross-validation study.In the pairs column we document the performance ofthe causal network described earlier using PS-nodesand E-nodes that represent protein segments of length2. The triples column gives the results for the samenetwork with segments of length 3. The decrease inaccuracy for triples is a result of undersampling.Table 2 shows the performance of our method inpredicting the secondary structure at each amino acidposition in comparison with other methods. In Table 3we report the performance of our method on predictingruns of helices and sheets and compare those with othermethods that were applied to this problem. A typicaloutput of our experiments is shown in Figure 4To summarize, our method yields performance com-parable to other methods on predicting runs of helices

Correct Using:Trial Positions Pairs Triples1 2339 1518 (64.9%) 1469 (62.8%)2 2624 1567 (59.7%) 1518 (57.9%)3 2488 1479 (59.5%) 1435 (57.7%)4 2537 1666 (65.7%) 1604 (63.2%)5 2352 1437 (61.1%) 1392 (59.2%)6 2450 1510 (61.6%) 1470 (60.0%)7 2392 1489 (62.3%) 1447 (60.5%)8 2621 1656 (63.2%) 1601 (61.1%)All 19803 12322 (62.2%) 11936 (60.3%)Table 1: Causal tree results for 8-way cross-validationusing segments of length 2 and length 3.Method Total Helix Sheet CoilChou-Fasman 57.3% 31.7% 36.9% 76.1%ANN 61.8% 43.6% 18.6% 86.3%w/ state 61.7% 39.2% 24.2% 86.0%FSkbann 63.4% 45.9% 35.1% 81.9%w/o state 62.2% 42.4% 26.3% 84.6%Viterbi 58.5% 48.3% 47.0% 69.3%Chain-Pairs 62.2% 55.9% 51.7% 67.4%Chain-Triples 60.3% 53.0% 45.5% 70.8%Table 2: Overall prediction accuracies for various pre-diction methods. Comparative method results from[Maclin and Shavlik, 1992].and sheets. It seems to have particularly high accuracyin predicting individual helices.Towards Automated Site-Speci�cMuta-genesisAn experiment which is commonly is done in biologylaboratories is a procedure where a particular site in aprotein is changed (i.e., a single amino-acid mutation)and then it is tested whether the protein settles intoa di�erent conformation. In many cases, with over-whelming probability the protein does not change itssecondary structure outside the mutated region. Oneexperiment that is easy to do using our method is thefollowing procedure. We assume the structure of a pro-tein is known anywhere outside a window of length l,l = 1; 2; 3; : : : and try predict the structure inside theunknown window. Table 4 shows the results of suchan experiment.The results above are conservative estimates of theaccuracy of prediction for this type of an experiment



* * * Protein #2:Predicted --- Pair Weights -- --- Trip Weights -- CountsReal Pair Trip h e c h e c Pair TripE c c c 0.0000 0.0000 1.0000 0.0000 0.0000 1.0000 38 4N c c c 0.0034 0.0051 0.9915 0.0059 0.0046 0.9895 64 6L c c c 0.2347 0.1267 0.6386 0.0461 0.0101 0.9439 113 8K c c c 0.2689 0.2714 0.4596 0.0724 0.0478 0.8797 93 6L c c c 0.2817 0.3354 0.3828 0.1056 0.1474 0.7471 85 5G c c c 0.2582 0.3165 0.4253 0.1280 0.1910 0.6809 58 4F e e e 0.2662 0.5115 0.2223 0.1675 0.4686 0.3638 46 4L e e e 0.2607 0.5691 0.1702 0.2066 0.4808 0.3125 105 11V e e e 0.2589 0.5434 0.1976 0.2159 0.4034 0.3807 89 2K c c c 0.2283 0.3629 0.4088 0.2156 0.3189 0.4656 18 2Q c c c 0.2168 0.0927 0.6904 0.2106 0.1199 0.6695 35 3P c c c 0.2250 0.0149 0.7601 0.2085 0.0455 0.7460 65 5E c c c 0.4105 0.0140 0.5754 0.2076 0.0113 0.7811 68 3E c h X c 0.5121 0.0114 0.4765 0.2267 0.0014 0.7719 35 0P c h X c 0.5789 0.0100 0.4111 0.2772 0.0000 0.7228 11 0W c h X h X 0.7637 0.0139 0.2225 0.9953 0.0000 0.0047 7 0F h h h 0.8217 0.0173 0.1610 0.9999 0.0000 0.0001 20 1Q h h h 0.8430 0.0156 0.1414 0.9999 0.0000 0.0001 38 4T h h h 0.8353 0.0100 0.1547 0.9972 0.0000 0.0028 47 1E h h h 0.9240 0.0141 0.0619 0.9961 0.0000 0.0039 19 1W h h h 0.9402 0.0247 0.0351 0.9994 0.0000 0.0006 21 0K h h h 0.9341 0.0254 0.0405 0.9999 0.0000 0.0001 36 1F h h h 0.8908 0.0237 0.0855 0.9944 0.0000 0.0056 43 1A h h h 0.8450 0.0127 0.1423 0.9425 0.0000 0.0575 86 4D h h h 0.7480 0.0033 0.2487 0.9548 0.0000 0.0452 60 6K h h h 0.5636 0.0027 0.4337 0.9528 0.0001 0.0472 132 11A h c X h 0.4406 0.0032 0.5562 0.9373 0.0001 0.0626 134 8G h c X c X 0.1805 0.0032 0.8163 0.0077 0.0001 0.9922 103 8K h c X c X 0.1967 0.0337 0.7696 0.0148 0.0014 0.9838 60 9D h c X c X 0.2192 0.0450 0.7357 0.0155 0.0050 0.9795 71 4Figure 4: Sample output from prediction experiment. The �rst column shows the actual amino-acid sequencewith corresponding correct secondary structure. The next two columns show the predicted value for length-2 andlength-3 segments respectively, with an `X' indicating and incorrect prediction. The next six columns give the beliefvalues for each of the three possible secondary structure types for each of the two segment lengths. Finally therightmost two columns are the number of examples of the same amino-acid segment encountered in training. Theseare used to estimate evidential probabilities in the model.



Description Chain-Pair FSkbann ANN Chou-FasmanAverage length of predicted helix run 9.4 8.52 7.79 8.00Average length of actual helix run 10.3 { { {Percentage of actual helix runs overlappedby predicted helix runs 66% 67% 70% 56%Percentage of predicted helix runs thatoverlap actual helix runs 62% 66% 61% 64%Average length of predicted sheet run 3.8 3.80 2.83 6.02Average length of actual sheet run 5.0 { { {Percentage of actual sheet runs overlappedby predicted sheet runs 56% 54% 35% 46%Percentage of predicted sheet runs thatoverlap actual sheet runs 60% 63% 63% 56%Table 3: Precision of run (segment) predictions. Comparative method results from [Maclin and Shavlik, 1992].Length ofPredictedSegment Amino-Acid PositionsPredicted Correctly1 90.38%2 87.29%3 85.18%4 82.99%6 79.32%8 76.49%12 72.39%16 69.85%20 68.08%24 66.94%Table 4: Accuracy of prediction of a subsegment ofamino acids, given the correct secondary structure in-formation for the remainder of the protein. Results areaveraged over all possible segments of the given lengthin all proteins.and can be easily improved. We are currently checkingwhether, the high accuracy of prediction is just a re-sult of momentum e�ects and the prediction accuracyfor transitions from coil-regions to helices and sheetsremains low.Using the EM algorithmWe now brie
y mention one more set of experimentsthat can be performed with a probabilistic model ofthe type discussed in this paper. (For further details,

see the complete version of the paper.) The idea is verysimple and is strongly in
uenced by the methodologyused in speech recognition. Our goal in this exper-iment is to create a simple probabilistic model thatrecognizes runs of helices. We use the framework ofthe Viterbi algorithm described above. We previouslyde�ned the notion of the most likely path in the prob-abilistic network given all the evidence. This path canbe described as a sequence of nodes (states) in the net-work, i.e., given a particular sequence of amino acids,we want to �nd a sequence of states which has the high-est probability of being followed given the evidence.Alternatively, we can regard the network as a proba-bilistic �nite state machine that generates amino acidoutputs as transitions are made.In this experiment we would like to create the mostlikely model that recognizes/generates sequences of he-lices. Intuitively (and oversimplifying somewhat), wewould like to �nd a network for which the probabili-ties of traversing a path from initial to �nal state givenhelical sequences of amino acids are greater than theprobabilities for non-helical sequences. Figure 5 showthe network that we used.Initially we assigned equal probabilities to everytransition from a given node, and for each transition weset the probabilities of outputting amino acids to therelative frequencies of those amino acids in the trainingdata. We then use the Baum-Welch method (or EM,expectation-modi�cation) [Rabiner, 1989] to adjust theprobabilities in the network to increase its probabilitlyof recognizing the input sequences.We constructed three networks (for helix, sheet andcoil runs) and trained them to recognize their respec-tive runs. All the networks were of the form shown inthe �gure, but were of di�erent lengths, correspond-ing to the average length of the respective type of run.
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Figure 5: Hidden Markov Model used to recognize a seqence of helices. With each edge out of a node, there isan associated probability of taking that transition together with a set of probabilities of generating each of the 20possible amino acids while making that transition. Nodes labelled i allow for the insertion of extra amino acidsfor long chains. Nodes labelled d represent deletion of amino acids thereby permitting the model to generate shortchains. Edges to d-nodes generate no amino acid.Network Trained to Recognize:InputType Helices Sheets CoilsHelix 469 (91.1%) 34 (6.6%) 12 (2.3%)Sheet 231 (28.2%) 344 (42.0%) 244 (29.8%)Coil 433 (33.0%) 114 (8.7%) 766 (58.3%)Table 5: Relative frequencies with which HMM net-works had highest probabilities of generating sequencesof particular type.The helix network had 9 nodes on the bottom level, thesheet network 4, the coil network 6. We then testedthe networks by giving each one the same run sequenceand computing its probability (using the Viterbi algo-rithm) of generating that sequence. Table 5 shows therelative frequency with which each of the 3 networkshad the highest probability of generating each type ofinput sequence. The fact that helices are predicted farmore accurately than sheets is in part attributable tothe fact that the helix network is much larger.By way of comparison, we used the causal tree modelof Figure 2 to predict the same segments, it predictedonly about 20% of helix-run sequences correctly. Thisis not surprising when we consider that most of thesequence examples were coils, which strongly biasedthe model to predict coils.

DiscussionIn this paper we have reported several experimentswith probabilistic networks as a framework for theproblem of protein secondary structure prediction.One of the main advantages of the probabilistic ap-proach we described here is our ability to perform de-tailed experiments where we can experiment with dif-ferent probabilistic models. We can easily perform lo-cal substitutions (mutations) and measure (probabilis-tically) their e�ect on the global structure. Window-based methods do not support such experimentationas readily. Our method is e�cient both during train-ing and during prediction, which is important in orderto be able to perform many experiments with di�erentnetworks.Our initial experiments have been done on the sim-plest possible models where we ignore many knowndependencies. For example, it is known that in �-helices hydrogen bonds are formed between every ithand (i + 4)th residue in a chain. This can be incorpo-rated in our model without losing e�ciency. We alsocan improve our method by incorporating additionalcorrelations among particular amino acids as in [Gibratet al., 1987]. We achieve prediction accuracy simi-lar to many other methods such as neural networks.We are con�dent that with su�cient �ne tuning wecan improve our results to equal the best methods.Typically, the current best prediction methods involvecomplex hybrid methods that compute a weighted voteamong several methods using a combiner that learnsthe weights. E.g., the hybrid method described by



[Zhang et al., 1993] combines neural networks, a statis-tical method and memory-based reasoning in a singlesystem and achieves an overall accuracy of 66.4%.We also have used a more sophisticated model in-
uenced by the techniques used in speech recognition.Our networks are trained to recognize sequences of �-helix/beta-sheet/coil runs. Thus, the helix network isdesigned to generate sequences of amino-acids that arelikely to generate runs of helices. A similar approachwas used in the paper by [Haussler et al., 1992] to rec-ognize globins. We reported some preliminary resultsin using such networks for predicting secondary struc-ture. The network that was trained to generate runsof helices did relatively well on identifying such runsduring testing on new sequences of helices.Bayesian classi�cation is a well-studied area andhas been applied frequently to many domains such aspattern recognition, speech understanding and others.Statistical methods also have been used for protein-structure prediction. What characterizes our approachis its simplicity and the explicit modeling of causallinks (conditional independence assumptions). We be-lieve that for scienti�c data analysis it is particularlyimportant to develop tools that clearly display suchassumptions. We showed that probabilistic networksprovide a very convenient medium for scientists to ex-periment with di�erent empirical models which mayyield important insights into problems.To summarize, scienti�c analysis of data is an impor-tant potential application of Arti�cial Intelligence (AI)research. We believe that the ultimate data analysissystem using AI techniques will have a wide range oftools at its disposal and will adaptively choose variousmethods. It will be able to generate simulations auto-matically and verify the model it constructed with thedata generated during these simulations. When themodel does not �t the observed results the system willtry to explain the source of error, conduct additionalexperiments, and choose a di�erent model by modi-fying system parameters. If it needs user assistance,it will produce a simple low-dimensional view of theconstructed model and the data. This will allow theuser to guide the system toward constructing a newmodel and/or generating the next set of experiments.We believe that 
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