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Abstract

Recent advances in high throughput profiling of gene expression have catalyzed an explosive
growth in functional genomics aimed at the elucidation of genes that are differentially expressed
in various tissue or cell types across a range of experimental conditions. These studies can lead to
the identification of diagnostic genes, classification of genes into functional categories, association
of genes with regulatory pathways, and clustering of genes into modules that are potentially co-
regulated by a group of transcription factors. Traditional clustering methods such as hierarchical
clustering or principal component analysis are difficult to deploy effectively for several of these tasks
since genes rarely exhibit similar expression pattern across a wide range of conditions. Bi-clustering
of gene expression data is a promising methodology for identification of gene groups that show a
coherent expression profile across a subset of conditions. This methodology can be a first step
towards the discovery of co-regulated and co-expressed genes or modules. Although bi-clustering
(also called block clustering) was introduced in statistics in 1974 few robust and efficient solutions
exist for extracting gene expression modules in microarray data. In this paper, we propose a simple
but promising new approach for bi-clustering based on a Gibbs sampling paradigm. Our algorithm
is implemented in the program GEMS (Gene Expression Module Sampler). GEMS has been tested
on synthetic data generated to evaluate the effect of noise on the performance of the algorithm as
well as on published leukemia datasets. In our preliminary studies comparing GEMS with other bi-
clustering software we show that GEMS is a reliable, flexible and computationally efficient approach
for bi-clustering gene expression data.
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1 Introduction

Recent advances in high throughput profiling of gene expression allow simultaneous measurements of
the abundance of mRNA molecules on a genome-wide scale. As an increasing number of large-scale
microarray experiments are carried out, analysis of the expression data produced by these experiments
remains a major challenge. A key step in the analysis of microarray data is the identification of groups
of genes that exhibit similar expression patterns. Canonical clustering methods, such as hierarchical
clustering [3], K-means [7], or SOM (self-organizing maps) [16] assume that genes in a cluster behave
similarly over all the conditions. These clustering methods produce reliable results for microarray
experiments performed on homogeneous conditions. However, this assumption is no longer appropriate
when the conditions of an experiment vary greatly. In contrast with classical clustering that reveals
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genes that behave similarly over all the conditions, bi-clustering of expression data seeks a subset of
genes that are expressed homogeneously across a subset of conditions. The conserved gene subsets are
often regulated by similar mechanisms or by certain sets of transcriptional factors. We refer to groups
of coexpressed genes as gene expression modules. Our gene expression modules are candidates for
further screening required for regulatory module identification, e.g., by ChIP technologies or promoter
identification.

Exhaustively searching for gene expression modules is computationally difficult because of the
large number of possible combinations of genes and samples to examine. Hartigan’s block clustering
algorithm attempts to repeatedly rearrange the rows and columns of the matrix of gene expression
values so that the rearranged matrix contains several disjoint blocks (contiguous sub-matrices) of
highly correlated values [6, 18]. Cheng and Church used a greedy bi-clustering approach and were
the first to apply it to gene expression data [2]. Getz et al. devised a coupled two-way iterative
clustering algorithm to analyze gene microarray data [4]. Lazzeroni and Owen introduced a plaid
model using a form of overlapping two-sided clustering with an embedded ANOVA in each layer [10].
Califano et al. applied a pattern-discovery algorithm called SPLASH initially developed for finding
patterns in strings to gene expression data [1]. Tanay et al. combined bipartite graph theoretic and
statistical considerations and developed the SAMBA algorithm to reduce the bi-clustering problem to
that of finding heaviest subgraphs in a bipartite graph [17]. Kluger et al. use a spectral bi-clustering
method to find a checkerboard structures in expression matrices. The eigenvectors corresponding to
characteristic expression patterns across genes or conditions can be found by linear algebra techniques
[8]. Segal et al. construct “regulatory programs” from DNA microarray data to generate hypotheses
of the form “regulator X regulates gene Y under condition Z”. A regulatory program specifies a gene
module that includes the regulatory genes that control the module, and the mRNA expression profiles
of the module’s regulates as a boolean function of the expression of the module’s regulators [13].

In this paper we develop a new approach to bi-clustering based on Gibbs sampling. Gibbs sampling
is a special Markov Chain Monte Carlo scheme and has been deployed successfully in the discovery of
motifs in DNA and protein sequences [9]. Compared to local search techniques or approaches based
on expectation maximization, Gibbs sampling uses a probabilistic sampling scheme to escape from
local optima. Gibbs sampling has been also implemented by Sheng et al. and applied to bi-clustering
microarray data [14]. They first discretized the expression values of each gene in the microarray
data into fixed number of bins. They observed that finding a conserved module in this discretized
dataset resembles the problem of finding motif subsequences in sequence data. This analogy was also
previously observed by the authors of SPLASH [1].

In this paper, we propose a simpler Gibbs sampling scheme and expand its application to bi-
clustering continuous gene expression data. Before attempting to describe the algorithm, it is useful
to consider first the desired properties of a gene expression module. Genes in a module should be
expressed homogeneously across the subset of samples, that is, the expression values should be limited
to a small range. Computing one module for a small number of samples makes the representation over-
specific. Therefore, we desire that each module should be matched by a large fraction of the samples
in the dataset. Kach module should contain as many genes as possible. We adopt the following
mathematical definition of gene expression module or a bi-cluster [12]:

Definition 1 Let S be a set of conditions, G be a set of genes, and V(S, G) be the expression matriz.
Given parameters a(0 < a < 1) and w, a gene expression module (C, D), C C S, D C G, is a subset
C of samples, and a subset D of genes that satisfies the following criteria:

1. Size: the number of samples in C is at least an a-fraction of all samples, i.e. |C| > «a|S]

2. Conservation: every gene in D is expressed within a small range w across all samples in C,

i.e. VDL € D, VCZ', Cj eC= ‘V(CZ,Dk) — V(C],Dk)’ < w
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the module contains as many genes as possible. Every gene not in D is not con-

3. Maximality

served across all samples in C, i.e. VDy, ¢ D, 3C;,C; € C = |V(Cy, Dy) — V(Cj, Dy)| > w

Given this definition, the gene expression data may contain many modules. Among all expression
modules, we are interested in the one with the largest number of genes. Intuitively, as fewer samples
are included in the module, more genes will satisfy the conservation criterion (Figure 1). Our algorithm
starts from a subset of samples that match the size criterion, and uses Gibbs sampling to iteratively

update this sample subset to maximize the number of genes in the module. We have implemented

this algorithm in the GEMS (Gene Expression Module Sampler) program. The GEMS program and

its C++ source code are available online at http://genomics10.bu.edu/terrence/gems/.
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Figure 1: Expression modules extracted from a leukemia dataset [5
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2 Methods

2.1 Description of the Algorithm (GEMS)

A gene expression module in this paper is defined by a subset of conditions and a subset of genes.

A specific condition subset directly determines the maximal gene subset that satisfies the width con-

straint; if the difference between maximal and minimal expression values of a gene across the selected

conditions is larger than the predefined w-value, then this gene cannot belong to the module, otherwise

it will be included. Therefore, given a subset of conditions we can easily compute the maximum set
of genes that are contained in the module defined by these conditions, thus reducing the problem of

computing modules to the problem of search on subsets of conditions. Given a subset X of conditions,
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whose size is an a-fraction of the number of samples, our algorithm consists of two steps. In the first
step we deploy a Gibbs sampler on X and in the second step we refine the solution using a local search.

We first sketch our randomized algorithm based on a Gibbs sampling methodology. The goal
of our Gibbs sampler is to optimize the chosen condition subset so that the number of conserved
genes across these conditions is the largest. Suppose there are d conditions in a selected subset
X, X =(x1, ---, xa) where each x; refers to a condition in S. A systematic-scan scheme is used such
that the elements in X are sequentially updated from i to xg at each iteration [11]. Let X be the
set of conditions that are not in X. At each single update step, one element x; is chosen and the
condition assigned to it is removed from X. The sampler tries to draw a condition from X and assign
it to the selected element y;. The sampling probability for every candidate condition is proportional
to a scoring function f(X) equal to the number of conserved genes if this condition is added to X.
A condition contributing to larger score has higher probability to be assigned to X. As the sampling
process progresses, this procedure aims to increase f(X). After a sufficiently large number of iterations,
the subset X should optimize f(X), i.e., the number of conserved genes across all conditions in X.
Although f(X) is asymptotically and stochastically increasing, it is possible that f(X) decreases in
some iterations. This is characteristic of any stochastic process that attempts to escape from local
minima. Consequently, we keep track of the largest score f(X;,q4.) and its corresponding subset of
conditions X,,4,. In our current implementation we use a heuristic stopping condition which checks
if this “best record” has not increased for a predefined number of iterations.

Then we invoke a local procedure on X,,q, to further increase (if possible) the number of genes
in the module. Let X’ be the best condition subset detected by the Gibbs Sampler (X' = X142 ),
and be the subset of conditions that are not in X’. At each single update step, one element x| is
chosen from X'. By fixing all the other elements, we test all possible assignments to x;. The score for
every candidate condition is computed using the same scoring function as before. Instead of sampling
conditions from a probability distribution, the candidate with largest score is assigned to x}. In case
of a tie, the first one is used. We then iterate over all x/ until there are no further changes during an
entire iteration. The local search procedure terminates when X’ converges. Let D be the subset of
genes that satisfy the width constraint across X’ (that is, the range of expression of each gene in D
across the conditions in X’ has width at most w). The gene expression module (X', D) is optimal in
the sense that the size of D cannot be improved by a single change on X"’.

The last step of our approach tries to increase the number of conditions in a module by scanning
every condition not in X’ to see if this condition can be recruited and added to the module without
violating conservation criterion. The details of the module discovery procedure are given in Figure 2.

2.2 Statistical Significance by Permutation Test

In order to evaluate the significance of clusters produced by GEMS, we devised a permutation test.
The permutation test relies on a “density” measure and roughly measures the number of genes included
in a gene expression module of a given width computed by GEMS on a randomly shuffled variant of
the expression dataset. After extracting a module from gene expression data, we randomly shuffled
the values within each row to create a permuted variant of the dataset. This step was repeated to
generate 100 shuffled datasets. GEMS was applied to these shuffled datasets with the same values
of @ and w to compute the average number of conserved genes found in a GEMS-cluster by chance.
The frequency that GEMS extracted a module from these permuted datasets with as many conserved
genes as from the real dataset is the p-value for permutation test.

2.3 Statistical Significance Using Fisher’s Exact Test

To test whether GEMS can identify samples from the same class without being given the class labels,
we evaluated the quality of modules extracted by GEMS in terms of the proportion of homogeneously
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Algorithm: (C,D)=GEMS(V(S,Q)),a,w)

Input:
S = the set of all conditions = {S1, Sa, ..., Sn}
G = the set of all genes = {G1, G, ..., Gy}
V (S, G) = expression matrix that V (s, g) is the expression level of gene g at condition s.
« = size criterion
w = conservation criterion
Output:
A gene expression module (C, D) from (S, G) with the largest |D|.
Definition:
d = ceiling(aN) is the required number of conditions in module
X = (x1y ---, Xd) is a subset of conditions, X C S.
f(X) = the number of genes that expressed within the width bound w across all conditions in X.
Xmaz = a condition subset corresponding to the largest score ever computed.
Stepl: Randomly generate an initial condition subset X ().

Choose X(© = (Xgo), cee Xéo)) uniformly at random as initial condition subset, X4, = X ),
Step2: Systematic scan Gibbs sampler for every component in X ()
Let X® = (XY), ce xff)) for iteration t. At iteration ¢ + 1, we conduct the following steps:
for i =1 to d,
for j =1to N,
o { 0 if S;eX;
Tl SGU{SH/E S ¢ X
where X; = (thﬂ), ceey XZ(t_Jrll), xﬁ)l, sy Xét))

F' is a constant that makes Sm; =1
if £(X; U (XY = 551) > F(Xmae) then Xppar = X; U {x\T) = 5;}

2

end j;
Draw XEHI) from {S1, ..., Sy} according to the conditional probability distribution
= (71, ..., TN).
end i;

Repeat Step 2 unless X4, had been kept unchanged for at least L iterations.

Step3: Local search step starts from the best condition subset detected by the Gibbs Sampler
Let X'© = X0

Step4: Perform local search scheme

Let X'®) = (Xll(t), e X;(t)) for iteration ¢. At iteration ¢ 4+ 1, we conduct the following steps:
fori=1tod,
Find Xi(tﬂ) in{s|se€Sands¢ X;/} to maximize f(X’)
where X;f = (X;(Hl), e X;(f;rl), X;(Jf)l, cee de(t))
"(t+1 "(t+1 (¢ (t
and X,:(Xl( )aaxz( )angr)l’axcl())
end i;

Repeat Step 4 until X'® = x'(t+1),

Step5: Find the subset D of genes that satisfy the width constraint across X"’.
Greedily add every condition to X’ that does not violate the conservation constraint.
Let C be the expanded condition subset. Output (C, D)

Figure 2: The procedures deployed by GEMS for discovery of gene expression modules.
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labeled samples, that is, the observed clusters are enriched in specific phenotypes more than we expect
by chance. The statistical significance is given by a two-sided Fisher’s exact test. Suppose there are
n samples in the data with m belonging to a particular class C, and we a find a module containing n’
samples, of which m’ belong to class C. Then the probability that randomly selected n’ samples will
contain at least m’ samples from class C is given by the tail of a hypergeometric distribution:

Class C Others o m n—m

min(n’,m) . ’ .

In module m’ n -m’ n’ P — Z /) n' —1
Unselected | m-m’ |n-m-n"4+m’ | n-n’ "= Rl n
m n-m N e n

For two-sided Fisher’s exact test, the above probability should double. For example, there are 47
Acute Lymphocytic Leukemia (ALL) samples and 25 Acute Myelogenous Leukemia (AML) samples
in the leukemia dataset [5]. In the case of one of the results reported in Table la, we identified a
module with 29 ALL samples and 7 AML samples. The p-value of the two-sided Fisher’s exact test is
two times the exact probability of obtaining a phenotypic enrichment of 29 ALL samples or more in

a given module:
47 25
3 i 36 — i

2 x Pr(extracted ALL = 29) =2 x Z

i>=29 72
36

= 0.013

For other modules the computation is similar.

3 Results

3.1 Synthetic Data

Synthetic data were created with a pseudo-module generator program (programmed in Perl) to eval-
uate the performance of the algorithm on noisy data. The procedure systematically embeds modules
with a defined number of genes, conditions and width into a randomly generated background. The
noise was generated by a uniform probability on a hyper-rectangular volume. All values in the syn-
thetic dataset are in the range between 0 and 1. We applied GEMS on a 200x100 dataset in which
a 100x40 module (width 0.3) was embedded. The summary of results is shown in Table 1b. The
procedure was repeated with different parameters. All modules extracted by GEMS were statistically
significant in both permutation test and Fisher’s exact test. The embedded module was successfully
extracted in the majority of cases. If the required modular size is larger than the size of embedded
module, no modules were extracted. The significance of all modules extracted from the synthetic
dataset using the permutation test was better than 0.01.

3.2 Leukemia Data

We applied GEMS to a leukemia dataset; see Golub et al. [5] for a detailed description of the data.
This dataset consists of expression data from Affymetrix Genechips for 7,129 genes collected from
72 leukemia patients, of whom 47 were diagnosed with ALL, and 25 were AML patients. For each
gene, we rescaled the expression values across conditions to range from —1 to 1 for standardization.
Modules were extracted for different settings of @ and w. Because small modules with few genes are
not of interest, a threshold of 10 was put on the number of genes in modules. The summary of results
is shown in Table 1a. The number of genes in every extracted module is statistically significant in the
permutation test. The Fisher’s exact probabilities for sample clustering are less than 0.01 in most of
the cases, but they tended to increase as « value and width became larger.
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3.3 Comparison with xMotif

We compared the performance of GEMS with another published bi-clustering algorithm: xMotif
(version 2.0) [12]. The dataset used are the leukemia dataset having 7129 genes, and a reduced leukemia
dataset consisting of 72 samples and 200 genes. We reduced the dimensionality (number of genes) to
test the performance of the algorithms on both the full set and a smaller problem. The dimension
reduction was implemented by identifying 200 genes that were selected by Rankgene [15] based on
their ability to distinguish between ALL and AML samples. Reducing the number of genes simplifies
the clustering problem. The performance results are illustrated in Table 2. Our main conclusion from
this study is that GEMS and xMotif demonstrate comparable ability to cluster samples, i.e., group
samples from one category into a single bi-cluster. Their efficiency (running time of the algorithm)
appears to be similar as well.

Table 1: Modules extracted by GEMS from AML-ALL data (1a) and synthetic data (1b).

(la) ALL-AML: 7129 genes x 72 samples. (1b) Synthetic data: 200 genes x 100 samples
containing one 200x100 module with width 0.3.

w | a #Genes #ALL #AML Prp Time|| w | a #Genes #TP #FP Pgp Time
(min) (sec)
0.1/0.1 95 8 0 0.044 2 0.1(0.1 54 10 0 <0.001 10
0.2 57 15 0 0.001 2 02 42 24 0 <0.001 16
03 33 23 0 <0.001 4 0.3 42 32 0 <0.001 32
04 14 31 5 <0.001 4 04 32 40 0 <0.001 44
05 12 38 3 <0.001 9 0.5 0 0 0 56
0.2/0.1 305 8 0 0.044 1 0.2/0.1 99 10 0 <0.001 16
0.2 140 15 0 0.001 2 0.2 93 21 0 <0.001 13
03 97 22 0 <0.001 4 03 87 32 0 <0.001 20
04 54 26 3 <0.001 7 04 81 40 0 <0.001 25
0.5 33 26 10 0.216 3 0.5 0 0 0 36
0.3/0.1 698 8 0 0.044 1 0.3/0.1 102 11 0 <0.001 15
0.2 260 15 0 0.001 3 0.2 100 40 0 <0.001 15
0.3 169 22 0 <0.001 2 0.3 100 40 0 <0.001 17
04 130 29 0 <0.001 2 04 100 40 0 <0.001 20
05 71 29 7 0.013 3 0.5 0 0 0 25
0.4]10.1 1359 8 0 0.044 3 0.4|0.1 103 11 0 <0.001 11
0.2 490 15 0 0.001 2 0.2 100 40 0 <0.001 17
0.3 285 22 0 <0.001 3 0.3 100 40 0 <0.001 13
04 214 29 0 <0.001 3 04 100 40 0 <0.001 16
0.5 124 28 8 0.047 10 0.5 0 0 0 82
0.5|10.1 2234 8 0 0.044 7 0.5(0.1 108 10 0 <0.001 18
0.2 830 15 0 0.001 4 0.2 100 40 0 <0.001 10
0.3 463 22 0 <0.001 7 0.3 100 40 0 <0.001 21
04 301 29 0 <0.001 4 0.4 100 40 0 <0.001 45
0.5 204 33 3 <0.001 5 0.5 0 0 0 40

Keys: PF, p-values from two-sided Fisher’s exact test; # TP, number of extracted samples that really
came from embedded module; #FP, number of extracted samples that were not in embedded module.
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Table 2: The comparison between GEMS and xMotif in leukemia datasets.

#Genes #Samples ALL AML Running time

Leukemia data
with 7129 genes
GEMS 54 29 26 3 269 sec
xMotif 52 40 32 8 245 sec
( Settings: o = 0.4, w = 0.2)
Leukemia data
with 200 genes
GEMS 46 29 29 0 21 sec
xMotif 54 34 34 0 19 sec
( Settings: o = 0.4, w = 0.4)

4 Discussion

In this paper we have described a new bi-clustering algorithm based on a Gibbs sampling framework.
The algorithm identifies statistically significant expression modules in microarray data. We tested the
performance of the algorithm to discover phenotypically distinct cell types on the publicly available
leukemia dataset. The procedure effectively discovered modules composed of samples mostly from one
disease category (the class labels of each sample was not available to the algorithm).

Our definition of expression module is a subset of genes and a subset of conditions such that the
expression values of each gene are conserved across the conditions. However, the results of microarray
experiments are always noisy, and a clustering algorithm should tolerate some fraction of potential
outliers in an expression module. Therefore, we tested whether the algorithm could recover modules
embedded in noisy synthetic data generated by a random process. Our algorithm GEMS successfully
extracted the embedded module with different parameter settings. The resulting clusters were shown
significant using two statistical tests. In particular, for many of the clusters the application of Fisher’s
exact test, yielded two-sided p-values lower than 0.01. Naturally, for modules with a small number of
conditions it is difficult to demonstrate statistical significance even for optimal clusters. At the high
end of « or w values, the p-values consequently increased dramatically, since larger amount of noise
was introduced. GEMS was also demonstrated to be relatively efficient. The program was tested on
a Pentium IV 1.8GHz Linux platform. For the leukemia dataset with 7,129 genes and 72 conditions,
the running time varied at different parameter settings, but never surpassed 10 minutes (Table 1a).
One of the major factors affecting efficiency is the number of iterations in Gibbs sampling step. More
sampling iterations will raise the likelihood to reach globally optimal results. Users are allowed to
adjust the number of iterations balancing efficiency or performance as appropriate.

GEMS is also capable of detecting multiple modules. This feature is supported by masking the
samples associated with the detected modules and rerunning the algorithm on the rest of the data.
Additional modules can be extracted iteratively until no additional significant modules are generated
from the unmasked portion of the data.

GEMS is an effective and relatively efficient procedure for the discovery of modules of co-expressed
genes. The module information generated might be valuable for further analysis such as functional
annotation, transcription factor binding site identification, and regulatory network analysis.
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