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Abstract

Connectionist models currently are being investigated actively by many researchers
in Artificial Intelligence, Information Theory and Computational Neuroscience. These
networks have been shown to be applicable to a wide range of domains such as content
addressable memories, semantic nets, computer vision, natural language parsing,
speech recognition, and approximation schemes for hard optimization problems. In
this paper we address several basic problems in the computational complexity of
discrete Hopfield nets (connectionist networks with symmetric connections).

1 Connectionist Networks

Connectionist models currently are being investigated actively by many researchers in
Artificial Intelligence, Information Theory and Computational Neuroscience. Informally, a
connectionist network is a large collection of computational units (nodes), each with a
finite number of states and elementary computational capabilities (see

[RM86, Fel85, Hop82, FHS83] for an extended list of references on the subject).

A particular well-known connectionist architecture, known as the Hopfield model
[Hop82], is closely related to various problems in several disciplines [Ami89, MR91]. In
Optimization Theory, many problems including the traveling salesman problem can be
modeled along these lines. In Artificial Intelligence, knowledge-representation schemes and
learning systems are based on this model. In physics, such models closely resemble Ising
spin models used extensively in the study of crystal structure. In this paper we are
primarily interested in the computational properties of connectionist networks which
measure their applicability to a range of computational problems.

One key problem that remains largely unsolved is the computational complexity of
finding a locally stable state in connectionist networks. This question has two main
aspects:

1. Given a description of a network of size N, determine the speed of convergence of a
particular descent algorithm applied to that network.
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2. Given a description of a network of size N, find a subexponential-time algorithm
that outputs stable states in the network that correspond to local and global energy
minima (see Section 2 for details).

Note that the two questions are related but will not necessarily yield the same answers. A
good analogy is linear programming that has polynomial-time algorithms, whereas the
Simplex algorithm is exponential in the worst case but has excellent expected behavior.
Similarly, it is plausible that there exist asymptotically fast algorithms for problem 2,
whereas the procedure performed on the network may follow an exponentially long path
to convergence.

In this paper we address these questions in the context of a discrete version of Hopfield
networks. These networks have been advocated as effective means for solving
combinatorial optimization problems [HT85]. The worst case performance of convergence
for discrete Hopfield networks has recently been shown to be exponential in an important
paper by Papadimitriou et al. [PSY90]. The implication of their general result is that
there exists a class of networks such that for each network in this class there exists an
initial state such that the shortest number of moves the network must take to achieve a
locally stable state is exponential. Previous weaker results of this type can be found in
[HL88, God87, PSY90, KBDS87]. However, many open problems remain. For instance, in
all constructions that demonstrate the worst-case performance the edge weights are both
positive and negative. One of our results indicates that this is a necessary condition for
exponential convergence. The main results reported in this paper are as follows: In
Section 4 we restate stability in discrete Hopfield networks in graph-theoretical terms.
This allows us to derive several practical heuristics that have been used effectively in
computer science for AP-hard problems and use them to speed-up the convergence of the
network and improve the quality of the local minima found by the network. In Section 5
we prove an intractability result for clamped networks. In Section 6 we show by a simple
construction that the standard algorithm that achieves local stability in networks has
exponential worst-case complexity. In Section 7 we consider the computational complexity
of finding a locally stable state for a stable network that has been perturbed locally by
modifying one of the edge weights by a small amount. This is very important for both
practical reasons and theoretical reasons. From practical reasons, this is very important
since many believe that memory and learning in the brain work by weight modification.
Our result suggests that weight modification may cause a stable network to take a long
time to converge to a new stable state. This may have important implications for
researchers building neural network simulations of learning processes. From the theoretical
perspective, we show that the computational complexity of the perturbed network
problem is as hard as the computational complexity of local stability in general networks.

In Section 8 we show that for networks with only negative (or only positive) weights
there always exists a short sequence of state transitions that converges to a local minima.
Our result is different from the result by Alon [Alo85] who considered positive-weight
directed networks. Combining our result with the results of [PSY90] yields the corollary
that the exponential lower bound for any path to a local state requires both negative and

positive weights. Similar problems have been addressed by several researchers
[Alo85, LM86, HL8S, God87, PSY90, JPY85]. We compare our results to the previous
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Figure 1: An example of the model

work and discuss their practical significance in the appropriate sections.

2 The Discrete Hopfield Network (DHN)

A discrete Hopfield network (DHN) with n nodes is modeled by a simple undirected graph
G = (V, E) on n vertices. (Since network nodes are formally represented by graph vertices,
we shall use the words “node” and “vertex” interchangeably.) Each edge e ¢ £ has a
real-valued weight w, associated with it. The edges represent the interconnections
between the various nodes. The weight w;; of edge (¢, 7)€ E (which could be negative)
represents the strength of the synaptic connection between the two nodes ¢ and j. Note
that if nodes ¢ and j are not connected in GG then the weight between them can be
assumed to be identically zero. Also note that since G is a simple undirected graph,

w;; = wy; and wy; = 0, for all 2,7 € V. Node 7 can be in one of two states: z; = +1 = “on”
or z; = —1 = “off”. Hopfield and Tank describe an analog version of the above where the
state-transition function of each neuron (node) is a continuous sigmoid. An example of
the model is shown in Figure 1.

Let W = {w;;} represent the n X n weighted adjacency matrix of the graph G. Let &
represent the n X 1 state vector, whose ™ entry is x;, the state of vertex i.

Let the quadratic cost function J be defined by:

n n

J(@) = = Y > wijaiz; = —FWF

=1 j7=1
where #7T is the transpose of Z.

Now consider the following two problems:



Local Minimum

Input: W, the weight matrix of G
Output: & e{+1,—1}" such that

n
- fowija:;gO, for1<i<n
i=1

where z7 is the £*" component of the vector #*.

Global Minimum

Input: W, the weight matrix of G
Output: @ e {+1,—1}" such that

J(7) < J(F), VTe{+1,-1}"

Clearly a solution exists for both of these problems. In practice, the following
algorithm is used to find local minimum and typically use it as a first approximation for
the global minimum.

3 The Sequential (Asynchronous) Algorithm

The dynamic behavior of a connectionist network can be explained through the concept of
firing, i.e., the change of state of a node when proper conditions are met. We define the
behavior of the system as follows:

Consider a single node ¢ being fired. Let 2 represent the state of node j before node 1

is fired, and x;" the state after ¢ fires. Then if 7 # ¢, Ty = x;" and

+1 if Z =1 Wij ]_
e =4 -1 if Y impwijr; <0
zy A0 37T wij Ty

We call this rule for a node to change state the threshold law. Stated another way, node ¢
is stable (does not change state) if

n
T; E w;;r; >0
i=1
i.€., the local energy state is zero or negative.

We do not consider node threshold values other than zero, since these can be simulated
by adding additional nodes and clamping their states.

This threshold law provides the basis of the following sequential algorithm for finding a
local optimum.



algorithm Sequential
begin
Let & be any vector in {4+1,—1}"
Joew — T"WEZ
repeat
Joa = Juew
for + — 1tondo
if z; E?:l Wwi; T < 0
then =z, « —x;
Joow — TTWZT
until  J4 = Joew
end

Z is the local minimum

Figure 2: Algorithm 1—The Sequential Algorithm

Algorithm 1—The Sequential Algorithm

Input: W, the weight matrix of G
Output: " e{+1,—1}", a solution to the Local Minimum problem
Method: Tterate until the quadratic cost function J does not change. Each
iteration is a sequential scan of all vertices to see if any one should
change state in accordance with the threshold law. A schematic
description of the algorithm is given in Figure 2.

It is well-known that Algorithm 1 terminates in a finite number of steps. At each
iteration either the value in J,., decreases by at least

.Ir.l)lgE{lwz’jl}

’

or else the algorithm terminates. Since the J values are bounded below by

—XR:ZH:IWH

=1 j7=1

the algorithm eventually must terminate.

4 Complexity Problems and Graph-Theoretic
Reformulation

Let w,,,, be defined by



Winax = max {|w;|}
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If w,,,, is polynomially bounded in n, then Algorithm 1 takes a polynomial number of
steps to converge to a local minimum. If any edge weight in the graph G requires O(n)
bits for its binary representation, w,,., will be exponential in n. Thus, it is theoretically
possible that Algorithm 1 will require exponential time to converge.

It is relatively easy to see that the local and global minimum problems have direct
analogies to similar graph theoretical questions. While this in not a deep observation and
seems to be well-known in the theoretical computer science community, it is often ignored
by connectionists. The graph theoretical framework is useful for both theoretical and
practical reasons since it allows us to use graph theory techniques to derive upper and
lower bounds on the complexity of our problem. Additionally, it allows us to adapt a
variety of useful heuristics that have been used successfully in the context of graph
partitioning problems.

First, observe that by multiplying all the weights by —1 we can convert a minimization
problem into an equivalent maximization problem. In order to correspond more closely to
graph theoretic methodology we prefer to assume that initially we have multiplied all the
weights by —1. The Local Minimum problem corresponds to the following
graph-theoretical problem. Given a graph G, find a bipartition of G (i.e., a partition of
the nodes of G into two distinct sets) such that for each node the weighted sum of edges
adjacent to it across the bipartition is bigger or equal than the weighted sum of adjacent
edges inside the bipartition. In other words, for each node z, the weighted sum of edges
connecting z to nodes in the other set is larger or equal to the weighted sum of edges
connecting the node to nodes in its own set. Any bipartition of the nodes of G into two
sets is uniquely defined by the set of edges H connecting nodes that belong to different
sets. Therefore, we can restate the definition of Local Minimum given in Section 2 as
follows (see Appendix for more details).

Local Minimum

Input:  Edge-weighted graph G
Output: A bipartition H of G such that

V?J€Vy Z Wyy 2 % Z Wyy

(u,v) e H (u,v) e G

The Global Minimum problem corresponds to the problem of finding a bipartition that
maximizes this difference, i.e., the problem of finding a bipartition with the greatest
interpartition sum. The MAX-CUT problem (see [Kar72]) is a restricted version of this
problem in which all the weights are non-negative integers. The exact derivation of the
reduction is given in the Appendix. Note that in the graph-theoretical context, both the
Local and the Global Minimum problems have trivial solutions when all the edges are
negative: Just put all nodes in the same bipartition. From now on we will use the
graph-theoretical framework to present our results. In the next sections we exploit this
framework to derive several new complexity results and heuristics for DHNs.



Figure 3: Network equivalent of PARTITION problem

5 Local Minimum in Clamped Networks

In most applications [HT85], the networks are presented with an input, i.e., a designated
set of nodes is clamped to a given set of values. The next proposition states that this
version is intractable in the worst case.

Proposition 1 Given a network G and two marked nodes s and t, the problem of
determining whether there exists a local minimum in which node s is in state +1 and node
t is in state —1 is NP-complete.

Proof: We reduce from the PARTITION problem, namely, can a given collection of
positive integers w;, 1 < ¢ < n, be bipartitioned such that the sum of values in each
subset is the same [GJ79]. We assign the given values as weights in the network
shown in Figure 3. It is easy to see that the w; values can be bipartitioned into
equal-sum subsets iff the network has a local minimum. Since the problem is clearly
in AP, we have the desired result. O

6 Exponential Lower Bound for the Greedy Algorithm

In this section we address some negative results on the worst case complexity of the
network. Qur main purpose in this section is identifying the class of networks that will
exhibit such behavior. The greedy sequential algorithm for local stability in a network
appears to work well in practice. In fact, we ran the algorithm for weeks on randomly
generated nets and they always converged after a linear (in the number of nodes in the
network) number of steps (switches from one partition to another). Thus, the results
reported in this section are particularly surprising.

We first observe that even a simple chain network such as the one in Figure 4 may
exhibit quadratic worst-case behavior. We number the nodes from left to right



Figure 4: A simple chain network

Zg,T1, ... ,Tn, and initially allocate all nodes to the same bipartition subset. The
quadratic length sequence of flips from one partition to another is as follows:

(.fo),(.’El,.’EO),(.fg,.fl,.fo),(.’E3,.’E2,TE1,$0), 7(xn—17'rn—27 7:E0)

Note that here we are choosing the worst sequence of moves. However, in a totally
asynchronous environment this particular behavior is possible. If we change the “firing”
rule, e.g., if the most “unhappy” node fires first, this particular chain network can
converge in n moves. It is of course easy to design a linear time algorithm that finds
locally (globally) stable states in acyclic networks such as chains or trees.

We now describe a network that can take an exponential number of steps to converge
to a locally stable state. The idea is to construct an n-layer network where nodes on the
top layer move once, those on the second layer move twice, and in general, nodes on level ¢
move 2° times. The network is shown in Figure 5.

Proposition 2 In the worst case Algorithm 1 takes an exponential number of steps to
converge to a local minimum.

Proof: Apply Algorithm 1 to the network of Figure 5, assuming all nodes initially are
contained in V7 with V; empty. Consider the nodes in the order defined by the
following recursive calls:

Move (Ag, Vi) = Consider (Ay),
= Move (A1, V1),
= Move (Rj_1, V1)

Move (R, V1) = Consider (Ry),
= Consider (Zx_1),
= Move (Ry_1, V2),
= Move (A1, V2)

Move (R, V,) = Consider (Ry),
= Move (A1, V1),
= Move (Rj_1, V1)
Move (A, V2) = Consider (Ay),
= Move (Ry_1, V2),
= Move (Ay_1, V2),
= Consider (Z_1)

with initial calls of
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Figure 5: An exponential time network



Move (A, V1), Move (R, V1)

An easy induction shows that the total number of node moves is ont2 4 on 3, O

Note that we again rely strongly on choosing a particular sequence of node movements
from one partition to another. As before, if we always move the “most unhappy” node
(i.e., the neuron with most local energy) this network empirically seems to converge in a
linear number of steps. A similar result to the one in Proposition 2 was proved
independently by Haken & Luby [HL88] using a different construction. A stronger
theoretical result has been shown in [PSY90]. In fact, they exhibit a class of networks
such that for each such network there exists an initial state such that the shortest set of
transitions to a local minimum is exponential in length. Our construction above is
relatively simple and indicates in an intuitive fashion how to construct exponential lower
bounds for such problems which are believed highly efficient in practice. We think it is
important to have a large collection of methods to exhibit worst case behaviors for such
networks.

7 Incremental Local Stability and the Stability of Locally
Perturbed Networks

In this section we discuss another important approach for finding locally stable states in
discrete Hopfield nets. This discussion also sheds light on the stability of locally perturbed
networks. Consider a network that is currently in a stable state. We change one of the
weights w, in the network by adding one to it and consider the problem of finding a new
stable state. We refer to this problem as the Incremental Local Stability problem (ILS).
Intuitively, one feels that since the newly constructed network is very similar to the
previous one, a new locally stable state could be found in a small number of steps. The
next proposition shows that if we could solve this problem in polynomial time, we also
could solve the problem of finding locally stable sets in polynomial time.

Proposition 3 The problem of achieving local stability is polynomial-time reducible to

1LS.

Proof: Let G be a DHN with edges ey, €3, ... ,er where the weight values
wy, Wy, ... ,wy associated with these edges are given by n-dimensional bit vectors.
Let Gy be a DHN where the weights are constructed by considering only the most
significant bit of each weight vector in G. We first find a locally stable set for Gy.
Since —2|K?| < J < 2|K?| the solution can be found in polynomial time by running
Algorithm 1. Now, create a network GGy from Gy by the following procedure: Let Gy
initially be the same as Gy, but with all edge weights doubled. Clearly, G; has the
same locally stable state. Now, for each edge e;, if the second significant bit of the
original w; is one (1), add one to the corresponding edge weight in Gy and invoke the
procedure for ILS to find a new stable state for network G; otherwise, GGy is not

modified.

10



Now, repeat the above procedure for the second most significant bit of each edge to

create G5 from Gy using the procedure or ILS to update the partition for each 1-bit.
Continuing in this fashion we find a locally stable state for each G;, 1 < i < n. Since
G, = G we have the desired locally stable state, and since the procedure for ILS gets
invoked kn times, our reduction is polynomial in the size of the binary representation

of G. O

An immediate corollary of Proposition 3 is:

Corollary 4 If the ILS problem can be solved in polynomial time, then we can solve the
local stabilily problem in polynomial time.

The results above suggest that the problem of finding a locally stable state for a
network is very sensitive to small perturbations. Specifically, if we are given a network in
a locally stable state and we modify one of the weights by one bit, the problem of finding
a new locally stable state may be as difficult as finding a locally stable state without
additional information. This result, while relatively easy to prove is very important in
practice. It indicates a strong likelihood that after a small perturbation of the inputs, the
network may take an exponential number of steps to converge. Otherwise, the class of
problems which are polynomially local search complete or PLS-complete [JPY85, PSY90]
can be solved in polynomial time. An interesting open problem would be to show a class
of networks for which a small perturbation from a locally stable set generates an initial
state that must take an exponential number of moves (as in the previous section or
[HL88, PSY90]). This study is very important since many believe that memory and
learning in the brain works by weight modification. Our result suggests that weight
modification may cause a stable network to take a long time to converge to a new stable
state.

8 Linear-Time Convergence for All-Positive and
All-Negative Weight Networks

In this section we can address the question of whether there exists a short sequence of
legal node flips from one bipartition to the other that achieves a locally stable state.
Recall that a node is allowed to change state (move from one bipartition to another) if the
node is unstable. In this section we consider this problem for the class of networks with
weights that are either all-positive or all-negative. We remind the reader again that since
we multiplied all the edge weights by —1, all-positive edge graphs correspond to networks
with all-negative weight networks in the original formulation of Hopfied networks. The
computational complexity of all-negative undirected graphs is trivial since we can just
move all the “unhappy” (unstable) nodes to one partition. A more interesting case is
discussed in [Alo85]. The question for all-positive (all-negative) edge weights is
particularly interesting in the context of the recent negative results (achieved after this
work was completed) due to Papadimitriou et al. [PSY90] which indicate that for any
local search problem in the class PLS-complete (local stability has been shown to be
PLS-complete by Krentel ) there are initial states that will take an exponential number of

11



moves (node firings) to achieve a locally stable state (independently of the sequence
chosen). This, and all previous constructions that demonstrate the exponential lower
bound on convergence, rely on using edge weights that are both positive and negative.
Our result shows that exponential lower bounds for all paths (shortest path) to a stable
state hold only for networks with both positive and negative edge weights. This question
was suggested to us by Rao Kosaraju.

Proposition 5 Let G be a DHN with n nodes and only positive edge weights. If all nodes
initially are assigned to the same bipartition, then there is a sequence of at most n node
moves that achieves a globally stable state.

Proof: Let L and R (left and right) denote the current bipartition of nodes, and
without loss of generality, assume all nodes initially are allocated to L. Let L and R
denote the bipartition that achieves the global state, and call the nodes in these sets
L-nodes and R-nodes respectively. Our procedure will be simply to move R-nodes
from L to R. As long as any R-node is still in L and is unstable, we can do this. We
have to show that this process can continue until a global stable state is achieved.

Suppose, to the contrary, that we “get stuck” in a locally stable state. Let M be the
set of R-nodes still in L (so that L = LUM and R = R\ M). Let Wy be the sum of
the weights of edges between nodes in L and R; Wy g the same sum for edges
between M and R; and Wy, the same sum for edges between L and M. Since all
nodes in M are currently stable, we conclude that

Wur > Wiy (1)

This is true since for each node in M the sum of external weights is larger than the
sum of internal weights. Wjsg is the total sum of all external weights for nodes in M,
and Wy, is smaller than the total sum of all internal weights for nodes in M.
However, since the partition of nodes into L and R constitutes a globally stable state,
Wir + Wias is an upper bound for the external sum of any state. Thus, we have:

Wir+ Wur < Wip+ Wiy
or
War < W (2)

Combining inequalities (1) and (2), we conclude that either the current bipartition
(L, R) is also a global stable state, or else we have a contradiction. O

This result immediately suggests many interesting theoretical questions. The most
obvious one is whether there exists a deterministic strategy that moves the nodes from left
to right and achieves a locally stable state. We just showed that such a movement is
possible, indicating that achieving local stability may be simpler for these networks than
general networks. Another interesting practical corollary for networks with all-positive
weights is given below.

12



Corollary 6 Let G be a DHN with N nodes and only posilive edge weights. Assume the
bipartition that achieves the global state is (L, R) as above. Then, any order of moving
R-nodes from left to right will reach a globally stable state.

Proof: In proving Proposition 5 we showed that at any stage before achieving a
globally stable state there exists at least one node z in M that is currently unstable
and will therefore move from left to right. However, since all edge weights are
positive, moving this particular node from left to right only improves the local energy
(i.e., increases the external sum) of every node in M. Thus, we conclude that we
could have moved any of the nodes in M instead of moving z. O

Corollary 6 has an interesting practical implication. If the size of R is relatively large,
there are exponentially many paths to a global state along which there are no locally
stable states.

9 Approximations and Heuristics

For many constraint satisfaction and combinatorial optimization problems it is useful to
improve the quality of the local solutions by first running an approximation algorithm
that will move closer to a globally good solution. For example, in computer vision
applications, where connectionist networks are used for matching (e.g., stereo matching),
one would prefer a globally good solution (a high total satisfaction measure but a few
nodes may be “unhappy”) to a locally good solution (all nodes are “happy”) with a lower
overall global satisfaction measure. We propose a simple approximation scheme which is
guaranteed to achieve a state which is relatively close to a global minimum. If desired, we
can then run the local search procedure that will get us to a locally stable state in that
neighborhood. This approximation scheme is so natural that it is probably known in the
theoretical community for graph partitioning problems. It is not known in the context of
Hopfield networks and is important for practical reasons.

We first introduce the concept of a feasible partition. From the condition for a Local
Minimum in Section 2 and the discussion in the preceding section, it is clear that a
necessary condition for H to correspond to a local minimum is

Sowe> Y w

ec By ee Eg

Any partition of the vertex set V which satisfies this condition is called a feasible
partition. Obviously the set of local minima is a subset of the set of feasible partitions.

Below we present a simple %—approximation algorithm to the global minimum problem.
From the viewpoint of finding a local minimum, this algorithm is important because, in
polynomial time, it provides a good starting vector for Algorithm 1.

13



algorithm Approximation
begin
x, «— +1
fors «— n—1to 1 step —1do
o — o1 T i wie; >0
+1 i 3 wije <0
Ve e {ilas = +1)
Vi — VAV
end

/* causal update */

(Vi,V5) is a feasible partition of vertex set V

Figure 6: Algorithm 2—The Approximation Algorithm

Algorithm 2—The Approximation Algorithm

Input: W, the weight matrix of G

Output: (V*,V5), a feasible partition of the vertex set V.

Method: We use a state vector & to represent a feasible partition. The set
of vertices having the state label +1 constitutes Vj*, and those
with state label —1 form V3. The algorithm considers only the
entries above the diagonal in matrix W and does a causal update
on the state of each vertex, from n down to 1. The details are
presented in Figure 6.

It is clear that Algorithm 2 runs in polynomial time. More importantly, we have the
following:

Proposition 7 Algorithm 2 computes a %-appmxz’matz’on solution to the Global
Mintmum problem.

Proposition 7 means that if H* is a bipartition corresponding to a global minimum,
and H is a partition obtained by Algorithm 2, then

Zwe§22we

ee Bgx ee By

where all weights w, are non-negative integers.

Several other ideas along similar lines can be used to provably improve the quality of
local minima found by Algorithm 1.

14



10 Summary

In this paper we have studied several computational complexity questions in discrete
Hopfield networks. As mentioned in the introduction, computational complexity questions
related to discrete Hopfield networks fall into two broad classes of questions.

1. Can we devise sequential or highly parallel updating procedures that will be
guaranteed to converge to a local minimum?

2. Can we devise sequential or parallel algorithms (not necessarily network algorithms)
to find local minima?

Once the fundamental questions above are resolved there are many interesting
questions that address the range of computations admitted by networks with given
structural (graph-theoretical) properties. Of special interest are planar, bounded-degree
and positive-weight networks. To summarize, we believe that a systematic theoretical
treatment of the computational aspects of massively parallel networks is a necessary
prerequisite for their acceptance as a feasible computational mechanism.
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A Appendix

In this section we show the exact correspondence between local and global minima in
DHN’s and graph theoretical questions. Consider any vector  in {4+1,—1}". Note that
since

J(@) = —F"W & = — (=)W (=) = J(~4)

both the Local Minimum and Global Minimum problems remain invariant if the signs of
all the states are reversed, i.e., if all states with label +1 were changed to a label of —1
and vice versa. Consequently, the problem can be viewed as a problem of partitioning the
vertex set V' of the graph G = (V, F) into two sets V; and V3 (V4 UV, =V and

V1NV, =0), with vertices having the same label being in the same subset. Without loss
of generality, we shall henceforth follow the convention that all vertices with state 4+1 are
in V1 and all vertices with state —1 are in V5. Note that there is a bijection between every
vector @ € {+1,—1}" and every bipartition (V1, V3) of the vertex set V of graph G.

Consider any vector @ € {+1,—1}". The quadratic cost function .J(Z) associated with
this vector can be rewritten in terms of the bipartition (Vi, V3) corresponding to # as:

J(Z) = 42 wuv—QZwe
ueVy ee
veVs
Additionally, observe that by multiplying all the weights by —1 we can convert a

minimization problem into an equivalent maximization problem. In order to correspond
more closely to graph theoretic methodology we prefer to assume that initially we have
multiplied all the weights by —1. Any minimization of the cost function J thus entails a
corresponding maximization of the interpartition sum, ¢.e., the sum of the weights of all
the edges “across” the bipartition. Formally, if H = (V, Ey) is the spanning bipartite
subgraph of G corresponding to the bipartition (V1, V3), where
Ey ={(u,v)e E|ueVy and v e V3}, then the interpartition sum is given by

D, we

ee iy
For simplicity, we shall refer to the subgraph H as a bipartition of G. We now can
reformulate our Local and Global Minimum problems.

Informally, a local minimum problem seeks a bipartition (Vj*, V5*) of the vertex set V'
such that, if we move any one vertex v from one subset to the other, i.e., either from V{*
to V5 or from V5 to V*, the interpartition sum decreases.

It can be shown easily from the following identity
n
Ty wie; = Y wi = Y, wp
7=1 T;=T; TiFry

and our convention about multiplying the weights by —1 that the definition of Local
Minimum given in Section 2 is equivalent to the following reformulation:
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Local Minimum
Input:  Edge-weighted graph G
Output: A bipartition H of G such that

Yo e ‘/, Z Wyy 2
(u,v) e H (u,v) e G\H

Y%
(]
g

g

or equivalently

v

Yo e ‘/, Z Wyv % Z Wyy

(u,v) e H (u,v) e G

Thus, we are seeking a bipartition of vertex set of V into two subsets such that, for
each vertex, the weighted sum of its edges “across” the bipartition is at least as great as
the weighted sum of its edges “inside” the bipartition.

It is clear that minimizing the quadratic cost function J corresponds to maximizing
the interpartition sum. Hence, a global minimum for J corresponds to a global maximum
for the interpartition sum. Consequently, the Global Minimum problem can be
reformulated as follows.

Global Minimum
Input:  Edge-weighted graph G
Output: A bipartition H of G such that for all bipartitions H' of G

doowe> Y we

ee by ee By

or in other words, a Maximum Cut.

It is important to observe that in the graph-theoretical context, Algorithm 1, which
selects some “unhappy” node and changes its state, is simply the well-known
Lin-Kernighan local search method described in [PS82]. For instance, this method has
been used for the MIN-CUT problem, namely finding a bipartition that minimizes the
weighted sum of edges going across the bipartition.

18



