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Although wholc-genome sequencing of many organisms has been completed, numerous ncwly 
discovered genes arc still functionally unknown. Using high-throughput data such as protein-protein 
interaction (PPI) information to assign putative protein function to the unknown genes has bccn 
proposed, since in many cases it is not feasible to annotate the newly discovered genes by sequcnce- 
based approachcs alone. In addition to PPI data, information such as protein localization within a cell 
may be employed to improve protein function prediction in two ways: 1) By using such localization 
information as a direct indicator of protein function (e.g. nucleolus localized proteins might be 
involved in ribosome biogenesis), and 2) by refining noisy PPI data by localization information. In 
the latter case, localization information may be used to distinguish different types of PPIs: Namely, 
interactions between co-localized proteins (more reliable), and interactions between differently 
localized proteins (potentially less reliable). In this paper, wc propose a probabilistic method to 
predict protein function from PPI data and localization information. A Bayesian network is used to 
model dependencies between protein function, PPI data and localization information. We showed in 
our cross-validation experiment that in some cases, our method (conditioning PPI data by 
localization information) significantly improves prediction precision, as compared to a simple Naive 
Bayes method that assumes PPI data and localization information are conditionally independent 
given protein function. Finally, we predicted 57 unknown genes as “ribosome biogcncsis” proteins. 

Keywords: protein function prediction; protein-protcin interaction; Bayesian networks 

1. Introduction 

One of the challenges in computational biology is to annotate the thousands of unknown 
genes that are gleaned from the newly sequenced genome of many organisms. Sequence 
similarity based methods such as BLAST [l] ,  and protein motif (domain) based 
approaches such as PFAM [2] have been widely used for protein function prediction. 
However, these sequence-based approaches often fail, when applied to the unknown 
proteins due to lack of orthologous proteins in other organisms or weak sequence 
similarity to other known proteins. Recently, high-throughput technologies have 
produced massive amount of genomic information, such as protein-protein interactions 
(PPIs), protein localization, and gene expression data. Several types of methods have 
been proposed to use these genome-wide data to predict protein function. One successful 
method uses PPI data to assign protein function, based on the assumption that interacting 
proteins tend to share the same function [3,4]. However, since PPI data produced from 
high-throughput analyses is known to be noisy, combining other types of genome-wide 
data may additionally improve protein function prediction methods. 
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Bayesian network methodologies have been proposed for integrating multiple types of 
genome-wide data, such as localization information, gene expression data, and co- 
essentiality to predict PPIs [5]. Moreover, combining such heterogeneous data to predict 
a functional linkage graph [6], in which an edge between two nodes (genes) represents 
functional similarity with a reliability score, has been extensively studied [3,7-lo]. 
Instead of producing a functional linkage graph, assigning protein functions to each gene 
directly from genome-wide data has also been proposed, such as the methods based on 
Markov random fields (MRFs) [4,11], and other machine learning methods such as 
support vector machines [12]. A Bayesian method to combine different types of 
functional linkage graphs and other genomic features (e.g. protein localization, protein 
motif, etc.) has been shown to improve prediction coverage and accuracy significantly 
compared to using single source of data [13]. However, the majority of these Bayesian 
networks methodologies assume conditional independence between genomic features (i.e. 
PPI data, gene expression data, localization information, and protein motifs) given a class 
label (i.e. protein function). 

In this paper, we use a more sophisticated Bayesian network structure to capture 
dependencies between genomic features (PPI data and localization information) and class 
label (protein function) for protein function prediction. Fig. 1 represents the difference 
between the proposed Bayesian network and Naive Bayes structure. In our context 
specific Bayesian network model, we condition PPI data by localization information. In 
other words, we differentiate PPIs into two types: 1) PPIs between co-localized proteins, 
and 2 )  PPIs between differently localized proteins. The assumption here is that PPIs 
between co-localized proteins should be more reliable than PPIs between differently 
localized proteins (which might be false positives). Hence, in our model, we can assign 
different weights probabilistically according to the PPI type when predicting protein 
function given localization information and interacting proteins (and their functions). Our 
method is applied to protein function prediction in the yeast Saccharomyces cerevisiae. 
In order to assign protein functions, we use the Gene Ontology [ 141 “biological process” 
terms as function labels. We show in our 5-fold cross-validation study that our method 
works significantly better than the Naive Bayes method, when predicting certain 
functional classes, such as the “ribosome biogenesis” GO term. However, in other cases 
such as the “mitotic cell cycle” GO term, we find that the simple Naive Bayes method 
works equally well or even much better than our proposed method. We analyze the 
results and hypothesize that the more sophisticated model works better when the 
assumptions made in our model are biologically appropriate for a specific function of 
interest: For example, when PPI patterns in a subset of co-localized proteins are 
characterized by a distinct topology or probability of interaction (e.g. “ribosome 
biogenesis” proteins tend to have PPIs within same localization). Finally, we annotated 
57 unknown genes as “ribosome biogenesis” at the estimated precision of 50% (a 
complete gene list is available in Supplementary Information and available online at 
http://genomics lO.bu.edu/nariai/contextl). 
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Naive Bayes model Our model 

Fig, 1, Context specific protein function prediction: Naive Baycs model (left) and our proposed model (right). In 
our modcl, there is a dependency bctwecn PPI data and localization information. In the equations, 1, and f 
represent localization and function, respectively. 

2. Methods 

2.1. Data preparation 

Physical protein-protein interactions (PPIs) of Saccharomyces cerevisiae are collected 
from the GRID database [ 151, as of 01/03/2007. After eliminating redundant interactions 
and self-self interactions, 3 1202 PPIs among 5151 genes are obtained. Protein 
localization information is obtained from the MIPS database [16], as of 11/14/2005. In 
total, 5 19 1 protein-localization associations are obtained, in which 4076 proteins are 
associated with at least one of 41 cellular localization categories. For each protein, a 
feature vector 1 = (Z,,Z2,...,lL)T is defined, where li is a random variable to show 

localization ( li = 1 if the protein localizes in li , and li = 0 otherwise), and L is the total 
number of localization features (41 in this case). The Gene Ontology (GO) “biological 
process” terms are obtained from the Yeast SGD database [17], as of 06/03/2006. For 
each gene-term association, we expanded and included all ‘is-a’ and ‘part-of ancestors 
of the GO label. In total, 107636 gene-term assignments are obtained, in which 6289 
genes have at least one of 1965 GO terms. GO terms that appear more than 300 times or 
less than 5 times among the 6289 genes are subsequently discarded, since we believe that 
such overly broad or narrow functional terms are not very useful for further experimental 
validation. From the PPI data collected, we construct a hnctional linkage graph [6], in 
which nodes represent genes (proteins) and edges represent PPIs between nodes. From 
the protein localization information, edges (PPIs) can be divided into two types: 1) PPIs 
between proteins that share the same localization, and 2) PPIs between proteins that do 
not share any localization. More precisely, since some proteins do not have localization 
information at all, there is another type of PPIs: 3) neither 1) nor 2) .  We call each type of 
PPIs as 1) co-localized PPIs, 2) cross-localized PPIs, and 3) other PPIs. Generally 
speaking, it is expected that co-localized PPIs are more reliable than others, since it is 
usually the case that PPI occurs within the same localization, and other types of PPI 
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might be rare cases or just false positives from high-throughput analyses. For each type 
of PPI and each GO term t, we calculate pl, the probability that a protein has term t ,  
given that the interacting partner has the label t, andp,, the probability that a protein has 
term t, given that the interacting partner does not have the label t. Here, a x 2  test is 
performed to ensure that pI and po are statistically different using a Bonferroni-corrected 
p-value of 0.001. It is expected that p 1  is higher than po, which we are going to take 
advantage of to make function prediction, given a functional linkage graph. For 
convenience, we use notations p?) and pp) for the co-localized PPI, p,@') and pp) 
for the cross-localized PPI, and p:Orhers) and p r )  for the other PPI. 

- - 

2.2. Posterior probability of function given data 

For each protein and GO term, a Boolean random variabled,, is associated, whered,,= 1 
if the protein i is associated with the GO term t, andA,, = 0 otherwise. We calculate a 
posterior probability for all combinations of proteins and GO terms, given PPI data and 
localization information as P(J;,, = 1 I N j ,  k j , l j )  , where N, is the total number of 

neighbors of protein i in the functional linkage graph (PPI network), ki is the total 
number of neighbors of protein i which are annotated with t, and 1; is a feature vector for 
localization information of protein i. Applying Bayes' theorem (with omitting subscripts), 

where we assume that f and 1 are independent of the number of neighbors N, and hence, 
PVl N) = P(n, and P(1 IL N) =PO IA. 

In the function above, P(k I '9 f ,  N ,  = P(k,o Y kz 7 ko[hers I f 7  N,o 7 NG 7 Norhers) > 

where Nco N z ,  Nothers are the number of co-localized neighbors, cross-localized 

neighbors, and others, respectively (please see Section 2.1. for the notations), and 
k,,,k--,kOthers are the those neighbors that are annotated with t. We assume a 

multinomial distribution and calculate this probability as 
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6 6 

xi 2 0, C Xi = N ,  C e, = 1 .  
i=l i=l 

where P(PPlco I f) ,P(PPZz 1 f) ,P(PPlo,,ers I f) are prior probabilities (fractions) of 

each type of PPI given a term t, which are pre-calculated from a training set. 

Similarly, 

i=l 

Finally, P(1 I f) and P(1 17) are calculated as 

where P(I, I f )  = (# of t -labeled genes that have a localization at I, ) / (# of t -labeled 

genes), P(li I f) = (# of genes that are not labeled with t and have a localization at li ) / 
(# of genes that are not labeled with t ). P( f )  and P(f) are prior probabilities, which 
are fractions of t-labeled genes, and genes that are not labeled with t in a training set, 
respectively. 

- 
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3. Results 

We applied our method to Saccharomyces cerevisiae protein function prediction (data 
preparation is described in Section 2.1 .) and evaluate its performance through 5-fold 
cross validation. Since it is expected that the performance varies from one GO term to 
another, we choose “ribosome biogenesis” and “mitotic cell cycle” GO terms for our 
targets. In our 5-fold cross validation experiment, 6289 genes are first divided into five 
equally-sized sets. Following the standard conventions, four gene sets are selected and 
treated as a training set, and the remaining one is used as a test set. This second step is 
repeated until all gene sets have been chosen as a test set. Fig. 2 shows the prediction 
precision, #TP / (#TP+#FP), for varying posterior probability threshold by our method 
(conditioning), Naive Bayes method, and the method using PPI data alone. Error bars in 
graphs show the standard deviation of precision from 10 independent 5-fold cross 
validation experiments. In the case of predicting the “ribosome biogenesis” GO term, our 
method is significantly better than the Naive Bayes method and using PPI data alone (t- 
test, significance < 0.01). However, in the case of the “mitotic cell cycle” GO term, the 
proposed method is significantly worse than other methods (but Naive Bayes method is 
significantly better than using PPI data alone). Other than these cases, we found that for 
predicting the “generation of precursor metabolites and energy” GO term, our method 
works equally well compared to the Naive Bayes method (data not shown). These results 
show that whether our conditioning method works better than a Naive Bayes method or 
not depends on which GO term we are predicting. We explain why the prediction 
performance is so different depending on GO terms. Since our method weights PPI 
differently according to the localization (co-localized PPI, cross-localized PPI, and 
others), our method is most effective when positives (proteins that are annotated with the 
function of interest) have different values of p , @ o ) ,  p ; c c ~ ) ,  p,@rhers) , and tend to have 
consistent frequencies for each type of PPI compared to negatives (proteins that are not 
annotated with the function). Note that p y ) ,  p p ) , p y )  are 0.62, 0.24, 0.41, respectively 
for “ribosome biogenesis”, and 0.25, 0.20, 0.26, respectively for “mitotic cell cycle”. We 
see that these values are quite different from each other for the “ribosome biogenesis” 
GO term, but not for “mitotic cell cycle”. This means that co-localized PPI is more 
reliable for predicting the “ribosome biogenesis” GO term compared to others, hence is 
helpful to improve precision. Fig. 3 shows the number of neighbors annotated with the 
same function (x-axis) and the number of co-localized neighbors annotated with the same 
function (y-axis). A diagonal pattern is apparent for “ribosome biogenesis”, but not for 
the “mitotic cell cycle” GO term. Since proteins annotated with “ribosome biogenesis” 
tend to have more co-localized PPI than other types of PPI compared to negatives, and 
p,‘“) is much higher than p;“ ) ,  our method could successfully distinguish positives from 
negatives better than a Naive Bayes method. 

- 

- 

- 

From Fig. 2, we estimated the threshold probability 0.10 as the 50% precision point. 
We newly annotated 57 unknown genes as “ribosome biogenesis” (a complete gene list is 
available in Supplementary Information, http://genomics 1 O.bu.edu/nariai/context/). 
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4. Discussion 

In this paper, we propose a probabilistic method to predict protein function from PPI data 
and localization information under a Bayesian network structure, in which PPI data is 
conditioned by localization information. The assumption here is that treating PPI data 
differently (co-localized PPI and cross-localized PPI) will lead to better prediction 
performance. We showed in our 5-fold cross validation experiment that our method 
successfully improved prediction precision compared to a simple Naive Bayes method in 
some cases. In other cases, conditioning PPI data by localization did not improve 
prediction performance, However, even in these cases where the method does not 
provide a statistically significant improvement, it allows us to obtain deeper insight into 
gene function. In particular, it allows us to identify proteins that tend to interact in a 
similar fashion across multiple localizations. We analyzed the results and hypothesize 
that if the fraction of co-localized PPI and cross-localized PPI is not consistent for 
proteins annotated with a specific GO term, then a Naive Bayes method may work better 
than the proposed method. One limitation of our method is that we only distinguish 
between two types of PPIs: Co-localized PPIs and cross-localized PPIs. Ideally, every 
type of PPIs should be treated differently according to a specific localization: PPIs 
between a protein localized in A (such as nucleus) and a protein localized in B (such as 
ER). When more PPI data and localization information become available, our method 
can be extended to model additional types of PPIs. It might also be possible to take other 
contextual information into account, such as time (e.g. using time-series gene expression 
data during cell cycle) and biochemical context (e.g. interactions mediated or inhibited 
by specific protein domains or small molecules). We may then be able to determine the 
set of biological contexts [ 181 where PPIs actually take place for a specific functional 
category. We believe that such a tailored prediction model for each functional category is 
a key to improve prediction performance and obtain insights into biology. However, 
learning such a comprehensive context model would require a significant amount of data, 
while the currently available data remains sparse. 
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