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Abstract
Complete and accurate annotation of gene function is an essential starting point for genome
interpretation and a host of systems and synthetic biology endeavors. Detecting errors in existing
annotation now has an important new tool.

The explosion of DNA sequence data has advanced many fields of science, but it has done
so unevenly. There has been no corresponding explosion in our knowledge of gene function.
If one were to sequence a newly discovered microbe today, the percentage of genes of
unknown function would be very similar to that obtained a decade ago. In the near future,
this problem will likely worsen, as the new ultra-high throughput sequencing methods
become more widely used, and “terabase” becomes the relevant unit for most discussion.
The “new sequence” juggernaut stresses our current methods of functional annotation, and
improvements are needed to both enhance the accuracy of predictions and increase the rate
of experimental validation. A new method from Hsiao et al. now comes at this problem from
a different angle: that of correcting mistaken annotations1.

The initial wave of high-throughput genomic annotation methods began as a marriage of
accurate identification of the coding sequences with automated prediction of the function of
their protein products based on homology and sequence similarity to genes of known
function (Fig. 1)2. The second generation of automated annotation systems evolved into a
taxonomic organization of the protein space as clusters, stored in databases such as PFAM3

and NCBI Protein Clusters4, and this led to improved classification accuracy of remotely
homologous proteins.

These state-of-the-art sequence based methods can now annotate a large fraction of genes in
a sequenced genome. Various studies suggest that higher than 40%–60% sequence identity
is required to reliably transfer broad functional annotations. However, detailed functional
assignment and prediction of substrate specificity of a given protein, evaluation remains in
many ways, an art5. In addition these methods fail to classify roughly 30% or more of a
typical microbial orfeome. The third wave of systematic function prediction programs based
on genomic context methods, which use information complementary to sequence homology,
such as phylogenetic profiles, co-expression, chromosomal gene clustering, and protein
fusion, has emerged in the past decade6. As an example, two genes that have adjacent
chromosomal locations in multiple genomes may be predicted to be functionally related.
Different measurements produce different correlations, thus the fourth generation of
functional annotation methods use machine learning methods to train an integrative
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classifier that predicts function using fusion of the correlations to other genes that are
already associated with fully annotated genes7.

An intriguing new direction on genomic context methods is developed by Vitkup and
coworkers, who have devised a new method which recognizes errors in existing metabolic
network annotation by identifying discrepancies in the fused correlation of genes that are
annotated as neighbors in the metabolic network. Such methods are urgently needed as
estimates of annotation error can be high8. The key insight from the new paper is that if two
genes interact in a metabolic network but do not share a significant “fused functional
correlation,” one might suspect an error. For instance, three metabolic genes that are
involved in a metabolic sub-system might form an operon in a genome and therefore should
be expected to be co-expressed and show a strong correlation in their mRNA profiles across
a set of perturbations. The “gene policing” proposal is a new application of the idea that
genome context can be effectively integrated with the local topology of a metabolic network
to accurately predict gene function9

As a proof of concept, they apply their method to correct misannotations in the leucine
degradation pathway of B. subtilis. During sporulation, when nutrients may be limited,
leucine can be degraded to acetyl-CoA and enter into the TCA cycle, providing energy for
the developing spore. Several genes in the yng gene cluster had conflicting and/or disparate
functional annotations, and were identified as having poor genomic correlations with their
network neighbors. Furthermore, their algorithm predicted the functions for three of the
genes (yngI, yngF, and yngE), as participating in leucine degradation, resulting in a
contiguous set of six genes performing six consecutive enzymatic reactions in leucine
degradation. The investigators go on to support these annotations experimentally,
demonstrating that knockouts in any of these genes inhibited the formation of acetyl-CoA
from leucine during sporulation, and impressively, that formation of acetyl-CoA from the
closely related isoleucine was unaffected.

It is especially noteworthy that their approach is capable of highly detailed predictions,
specifying all four components of enzyme commission (EC) numbers. In general, the
majority of prediction methods have been evaluated only in the context of broad functional
assignments, and it remains a relatively open question as to how well computational
methods will perform when being benchmarked by their predictions of detailed metabolic
functions, sub-systems components10 and predicted substrate specificities.

While increasing the accuracy of predictions is essential, so too is the formidable task of
increasing the pace of function validation. While new approaches offer promise, high-
throughput experimental methods, such as transcription profiling with microarrays,
generally provide insufficient information for the definitive assignment of molecular
function, despite proving invaluable for hypothesis generation. How best, then, to accelerate
the biochemical characterization of genes of unknown function, a task that often requires
artisanal attention to minute experimental detail? One potential solution proposes the
establishment of a broad community collaboration between computational biologists and
experimentalists, in which high quality predictions are matched with biochemical
expertise11. Such an effort is now gaining momentum, with a website interchange “SciBay”
destined to appear soon, showcasing carefully vetted functional predictions and offering
modest funds to experimentalists as an incentive to attempt validation. It is probable that
predictions made by Vitkup and collaborators with the method described here, labelled as
“putative erroneous assignments,” would be among the most promising targets for
experimental testing.
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Figure 1.
Overview of gene function prediction methods. The earliest methods were based primarily
on sequence similarity. Newer methods have improved accuracies on proteins with low
sequence similarity by including orthogonal types of genomic data. The method by Vitkup
and coworkers specializes in identifying mistaken annotations, employing a combination of
sequence-based and integrative methods.
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