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We suggest that state 
policy makers begin by 
eliminating those activities 
that are clearly best left to 
federal agencies—drug 
approval and drug 
safety, for example, 
or situations in which 
national health and 
security are at stake, such 
as pandemic preparedness. 
Next, it’s important to 
recognize that federal/
state partnerships make 
considerable sense in 
a wide range of areas, 
including workforce 
development and research infrastructure. 
Academic R&D centers, for example, are often 
built using a combination of federal, state 
and private funds, a system that encourages 
harmonization of local, regional and federal 
priorities.

The most compelling cases for ‘going it 
alone’ with state-based policies and initiatives 
are centered on specific regional strengths. 
States with strong existing clusters in 
bioscience, such as California, Massachusetts 
and Pennsylvania, have all evolved life 
science initiatives that build on the strength 
of the existing R&D and commercial bases. 
California has developed interdisciplinary 
programs at the interface of materials, 
information and biosciences (QB3 initiative). 
Massachusetts has a $20 million Research 
Center Matching Fund that provides funds to 
build research capacity. Pennsylvania invests 
funds from the Master Tobacco Settlement 
into basic research, infrastructure and three 
Life Sciences Greenhouses that specialize in 
commercialization. That is, states that already 
have in place many of the essential elements—

R&D capacity, ongoing 
commercial activity, a 
skilled workforce and 
support infrastructure—
and need only fill readily 
identified gaps are most 
likely to meet with success.

State-sponsored life 
sciences initiatives, 
whether related to 
stem cells or other, less 
politically charged areas 
of research, must be 
carefully crafted to avoid 
the pitfall of attempting 
to do too much with 
too little. Most states 

are constitutionally bound to balance their 
budgets, and thus fiscally and physically 
incapable of keeping pace with scientific 
advancement in all areas of life sciences 
research. Furthermore, it would be unwise to 
abandon promising areas of research in favor 
of only politically or commercially palatable 
ones. Strong and coherent life sciences 
policies are needed to maintain a firm 
balance between state and federal agendas, 
economic development and health needs and 
to maximize the investments made by all in 
the critical area of life sciences.
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The art of gene function prediction
To the editor:
Determining the functions 
of genes and proteins is a 
central problem in biology, 
fundamental to understanding 
the molecular and biochemical 
processes that sustain health 
or cause disease, to identifying 
and validating new drug 
targets and to developing 
reliable diagnostics. Recent 
advances in genomic 
sequencing have generated 

an astounding number of 
new putative genes and 
hypothetical proteins whose 
biological function remains 
a mystery. On average, as 
many as 70% of the genes in a 
genome have poorly known or 
no known functions1.

Many computational 
formalisms have emerged 
for integrating different data 
sources for predicting protein 
function2,3. Although specific 

technical criticisms can be made of each of 
these approaches, a general problem with 
these formalisms is that defining them is still 
largely an art. In this correspondence, we 
respond to a specific method proposed by 
Vazquez et al. (Nat. Biotechnol. 21, 697–700, 
2003). Using well-established ideas in graph 
theory, we present an algorithm that is 
guaranteed to produce a maximally globally 
consistent functional assignment to proteins 
in a protein-protein interaction network. 
Moreover, because the number of edges in a 
protein interaction network is usually linear 
in the number of proteins, our solution runs 
in time quadratic in the size of the network. In 
practice, this algorithm computes an optimal 
solution within seconds for widely available 
protein interaction networks, such as those 
of Drosophila melanogaster, Caenorhabditis 
elegans and human. In contrast, the 
computational solution proposed by Vazquez 
et al. is not guaranteed to provide an optimal 
solution in time sub-exponential in the 
number of nodes in the network. Our novel 
algorithmic formulation allows us for the 
first time to compare the solutions produced 
by the globally optimal method with the 
predictions based on a simple ‘guilt by 
association’ principle. Our study suggests that 
the optimal solutions produced by the global 
methods do not improve significantly on the 
simpler local approaches.

A general formalization of the problem of 
predicting protein function uses a functional 
linkage network (FLN), in which each node 
is a protein and there is an edge between two 
nodes if there is evidence that the nodes may 
share the same function. Typical sources of 
these edges are protein-protein interactions, 
correlations in gene expression profiles, 
literature mining and other experimental 
or computational techniques. A popular 
approach for predicting function based on 
FLNs uses a simple local threshold rule (often 
referred to as ‘guilt-by-association’)4. This 
rule is based on the hypothesis that if at least 
some prespecified fraction of the neighbors 
of a given protein ‘p’ in the FLN are annotated 
with a particular function, we might ‘transfer’ 
this functional annotation to p. We refer to 
this approach and its probabilistic variants as 
local consistency.

Other methods attempt to achieve a 
globally consistent annotation by minimizing 
the number of locally inconsistent functional 
assignments (Vazquez et al. and ref. 3) 
or by maximizing the probability of the 
functional assignments, given all the 
probabilistic constraints in the network5. In 
particular, Vazquez et al. formulate functional 
annotation as a global optimization problem 
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where they seek to assign functional labels 
to the nodes of the graph in such a way that 
the number of inconsistent edges (an edge 
is inconsistent if it is incident on nodes 
with different functional assignments) 
is minimized. The formalism associates 
a state variable ‘xi’ with each node in the 
FLN. Each variable can take the value 1 
(the corresponding protein is assigned the 
function under consideration) or –1 (the 
protein is not assigned the function under 
consideration). An edge between two nodes 
‘i’ and ‘j’ has weight ‘wij’. To minimize the 
number of inconsistent assignments, they 
minimize the energy (‘E’) of a system 
expressed by the equation below:

The approach proposed by Vazquez et 
al. uses simulated annealing to minimize 
the number of inconsistent edges. In many 
FLNs, including the one studied by Vazquez 
et al., all edges have positive weights. In this 
situation, we observe that the minimization 
of global inconsistency above is equivalent 
to the problem of finding a minimum cut in 
an appropriately defined graph. In particular, 
we can optimize E by partitioning the nodes 
of the graph into two sets: a set of nodes with 
state 1, and a set of nodes with state –1, such 
that the weighted sum of edges connecting 
the nodes in the two sets is minimized. This 
problem can be solved optimally in O (nm 
log n) time using a min-cut/max-flow 
algorithm6, where ‘n’ is the number of nodes 
in the network and ‘m’ is the number of 
edges in the network (see Supplementary 
Methods online for the derivation of the 
graph theoretic transformation). While this 
work was in review, Nabieva et al.7 reported a 
similar application of graph cuts to function 
prediction using Munich Information Center 
for Protein Sequences (now the Institute 
for Bioinformatics, Munich) functional 
annotations.

We compared this new formulation with 
the commonly used guilt-by-association 
method and constructed an FLN from the 
protein-protein interactions in budding yeast 
(Saccharomyces cerevisiae) in the General 
Repository for Interaction Datasets (GRID)8. 

We focused our attention on 82 functions 
in the Gene Ontology9 that yielded high 
precision and recall in our previous study3; 
proteins predicted to have these functions 
are good candidates for experimental 
validation. We tested the performance of 
the two methods using leave-one-out cross 
validation (as described in Supplementary 
Methods). To our surprise, our results suggest 
that the global optimization does not provide 
a substantial advantage over the simple guilt-
by-association rule, subject to a number 
of qualifications described below. Table 1 
summarizes the precision and recall of the 
two methods averaged over all the functions 
we studied.

It is possible that approaches for 
functional annotation that either annotate 
FLN edges with experimentally derived 
measures of confidence10 or integrate 
diverse multimodal sources of experimental 
evidence11–13 might prove that sophisticated 
technical approaches lead to substantial 
improvement in accuracy of prediction. In 
the meantime, our study suggests a critical 
need for developing commonly accepted 
annotation benchmarks and evaluation 
methodologies for the growing number 
of functional prediction systems. These 
methodologies might be modeled after 
competitions, such as Critical Assessment of 
Techniques for Protein Structure Prediction 
(CASP), that evaluate protein structure 
prediction systems. It is also necessary 
that function prediction engines and the 
predictions themselves be made available to 
the research community14. Perhaps more 
importantly, our results underscore the need 
for community-wide experimental initiatives 
for validating computationally predicted 
functional annotations, as proposed by 
Roberts15, 16. Such efforts will enable a more 
direct exchange of functional predictions 
between experimental and computational 
scientists that will drive the next generation 
of predictions and experimental validations.

Note: Supplementary information is available on the 
Nature Biotechnology website.
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Vazquez et al. respond:
The correlation between protein-protein 
interactions and protein function can 
be exploited to make protein function 
predictions of unclassified proteins. Kasif 
and colleagues revisit the protein function 
prediction method proposed in our paper, 
which exploits this correlation to provide 
functional annotations to unclassified 
proteins. Kasif and colleagues claim that 
methods based on global consistency do 
not perform better than local approaches 
based on the guilt-by-association method.

The method investigated by Kasif and 
colleagues, however, differs from the 
one studied in our paper. Their method 
analyzes one function at a time, assigning 
or unassigning unclassified proteins to the 
particular function under consideration. 
In contrast, the method developed by us 
considers all functions simultaneously, 
assigning unclassified proteins to different 
functional classes.

Kasif and colleagues use ‘leave-one-out’ 
cross-validation to quantify whether the 
performance of their global method is better 
than a local method. They conclude that 

Table 1  Comparison of precision and recall
Algorithm Precision Recall

Local (guilt by association) 76.2% 77.5%

Global (minimum cut) 77.3% 75.2%

E = – Σ Σ w
ij 
x

i 
x

j
i j

CORRESPONDENCE
©

20
06

 N
at

ur
e 

P
ub

lis
hi

ng
 G

ro
up

  
ht

tp
://

w
w

w
.n

at
ur

e.
co

m
/n

at
ur

eb
io

te
ch

no
lo

gy



1476 VOLUME 24   NUMBER 12   DECEMBER 2006   NATURE BIOTECHNOLOGY

both methods have a similar performance. 
In contrast, the cross-validation used in our 
paper was the ‘leave-a percent-out’, where 
a percent of the proteins with functional 
annotations is assumed unclassified. In this 
way, we conclude that the globally consistent 
method results in a noticeable performance 
increase over a local method based on a 
majority rule.

In summary, the authors propose a 
different functional assignment method 
and use a different cross-validation 
method than those used in our paper. We 
conclude, therefore, that further analysis 
of the performance of global versus local 
method is warranted before generalizable 
conclusions about the superiority of one 
approach over another can be made.

Reproducibility Probability 
Score—incorporating 
measurement variability across 
laboratories for gene selection
To the editor:
In the September issue, a paper entitled 
“The MicroArray Quality Control (MAQC) 
project shows interplatform 
reproducibility of gene 
expression measurements” 
(Shi, L. et al., Nat. Biotechnol. 
24, 1151–1161, 2006) 
authored by us and others 
highlighted the need for 
a statistical metric to 
account for interlaboratory 
measurement variability in 
the selection of differentially 
expressed genes from 
microarray data. Here, we 
describe a novel metric 
(Supplementary Methods 1 online) called 
the Reproducibility Probability Score (RPS), 
which is computed from gene expression 
data from a single laboratory. A gene with 
a higher RPS is evidence for differential 
expression that is more reproducible by 
other laboratories. We also provide a free, 
open source program (http://biocomp.
bioen.uiuc.edu/rps) for computing the RPS 
to identify differentially expressed genes. 
Currently, the RPS program is capable 
of analyzing data from five commonly 
used microarray platforms—the Human 
Genome Survey Microarray v2.0 (Applied 
Biosystems, Foster City, CA, USA), the 
HG-U133 Plus 2.0 GeneChip (Affymetrix, 
Santa Clara, CA, USA), the Whole Human 
Genome Oligo Microarray G4112A (Agilent, 
Palo Alto, CA, USA), the CodeLink Human 
Whole Genome (GE Healthcare, Chalfont 
St. Giles, UK) and the Human-6 BeadChip 
48K v1.0 (Illumina, San Diego)—and it can 

be extended to analyze other microarray 
platforms.

The RPS for a gene is defined as the 
probability that this 
gene is selected as being 
differentially expressed 
from the data generated 
by a typical laboratory. A 
typical laboratory is either 
the original laboratory that 
generated the microarray 
data or a hypothetical 
laboratory that prudently 
follows the same protocol 
to study the same biological 
materials as the original 
laboratory. To compute the 

RPS for a gene, the user needs to choose 
a traditional gene selection procedure, 
denoted by Θ > θ, where Θ is a statistic, 
such as the P value (or its inverse, if > in 
the gene selection procedure is interpreted 
literally), or a set of statistics, and θ is its 
corresponding threshold(s). The RPS for a 
gene is:

RPS = Prob (this gene is selected by a typical 
laboratory) = Ek {I [Θk > θ]} (1)

where k is the index of typical laboratories 
(k = 0,1,2,…), with k = 0 denoting the 
original laboratory and k > 0 denoting 
the hypothetical laboratories. Ek {•} is the 
expectation over k. I[•] is the 0–1 indicator 
function, and Θk is the user-chosen metric 
computed from the data from the kth 
laboratory. If there were a perfect correlation 
in the interlaboratory measurements, 
equation (1) would reduce into:

RPS = I [Θ0 > θ] (2)

which is identical to gene selection based 
on the user-specified procedure on the data 
from the original laboratory.

The RPS program uses simulation 
to generate data for the hypothetical 
laboratories in the computation of the RPS. 
Two sets of data are used in the simulation. 
The first set is the data generated from 
the original laboratory, also referred to as 
the new data. The second set is a reference 
data set. Currently, the RPS program uses 
the data from the Shi et al. as the reference 
data set, and it provides an option for the 
use of other reference data. The reference 
data and the new data have to be generated 
on the same microarray platform, and the 
reference data have to be generated by more 
than one laboratory. However, the reference 
data do not have to be generated by the 
same laboratory or originate from the same 
biological samples as the new data.

The workflow of the RPS program is 
as follows (Fig. 1 and Supplementary 
Methods 2 online). First, the RPS program 
applies a mixed-effects model to the 
reference data to estimate interlaboratory 
correlation for each probe (set). By default 
the MAQC data are preloaded as the 
reference data, but if the new data to be 
analyzed come from a microarray platform 
with no preloaded data, the user should 
provide appropriate reference data. Second, 
the RPS program reads in the new data to be 
analyzed. It uses the new data together with 
the estimated interlaboratory correlations 
to simulate the data for the hypothetical 
laboratories. Finally, the program uses the 
new data and the simulated data to compute 
an RPS for each gene, and ranks the genes by 
their RPS values.

To demonstrate the merit of the RPS 
algorithm, we have generated microarray 
data from five colorectal adenocarcinomas 
and matched normal colonic tissues. The 
RNA was first hybridized onto Affymetrix 
HG-U133-Plus-2.0 arrays in the Stanford 
Genome Technology Center (SGTC; Palo 
Alto, CA, USA). The RPS program and 
some other commonly used programs 
or procedures were used to identify 
differentially expressed genes. The other 
programs and procedures included 
MAANOVA1, BayesAnova2, FDR (Benjamini 
& Hocheberg procedure3 on the two sample 
t-test), P value from the two sample t-test 
(computed by dChip4) and fold-change.

The same biological materials were then 
processed for hybridization in a different 
laboratory (the PAN facility on the Stanford 
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