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Abstract

Tissue engineering and molecular systems biology are inherently interdisci-
plinary fields that have been developed independently so far. In this review,
we first provide a brief introduction to tissue engineering and to molecular
systems biology. Next, we highlight some prominent applications of systems
biology techniques in tissue engineering. Finally, we outline research direc-
tions that can successfully blend these two fields. Through these examples, we
propose that experimental and computational advances in molecular systems
biology can lead to predictive models of bioengineered tissues that enhance
our understanding of bioengineered systems. In turn, the unique challenges
posed by tissue engineering will usher in new experimental techniques and
computational advances in systems biology.
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1. INTRODUCTION

In vitro tissue mimics can serve as reliable models of in vivo structures that can be systematically
probed with a wide range of cues. Because they are engineered, experimentation on such models
is considerably less complex than that needed to probe tissues and organisms in vivo. Currently,
tissue engineers draw heavily from a range of disciplines in order to successfully design tissue or
organ mimics. These fields include cell and molecular biology, biomedical engineering, materials
science, and chemical and mechanical engineering.

Concomitant with the rapid developments in tissue engineering, the genomic revolution of
the past two decades and rapid advances in high-throughput experimental techniques are enabling
measurements of mRNA, protein, and metabolite levels and the detection of molecular interac-
tions on a massive scale. These advances are transforming molecular biology from a reductionist,
hypothesis-driven experimental field into an increasingly data-driven science focused on under-
standing the functioning of the living cell at a systems level. The grand challenges that constitute
the field of molecular systems biology include understanding the complex interactions between
diverse and large bodies of molecules at various levels and inferring the intricate pathways that
govern each biological process.

So far, the inherently interdisciplinary fields of tissue engineering and systems biology have
been developed independently. Through this review, we aim to demonstrate that there is a natural
synergy between the two areas that has not yet been fully explored. After providing a brief in-
troduction to tissue engineering and to molecular systems biology, we highlight some prominent
applications of systems biology techniques in tissue engineering. Finally, we describe how these
fields can be merged using computational science as a driving force (Figure 1).

2. TISSUE ENGINEERING OVERVIEW

Age and disease often result in the deterioration of human tissues and organs. Although changes in
lifestyle and administration of drugs can delay or, in some cases, prevent tissue degradation, organ
failure is an inevitable outcome for a large section of an aging population. Surgical transplantation
can provide relief in some cases. However, the scarcity of viable donors, the difficulty in preventing
an immune response, and rising medical costs can make such treatment options unattainable. An
alternative is tissue engineering, a field of research that attempts to create replacements for living
tissues and organs (1, 2). The goal of tissue engineering is to create organs and tissues that
recapitulate several components of native tissue or to design cellular systems that closely mimic
structures found in vivo (3–5). Researchers typically use natural or nonimmunogenic synthetic
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Figure 1
Illustration of how tissue engineering, systems biology, and computational science can influence, and be
mutually beneficial to, one another.

materials and cells derived from native tissue. To date, research in this field has resulted in a wide
array of engineered tissues. Examples are vascular grafts (6), urinary bladder (7), skin (8), kidney
(9), cornea (10), bone (11), cartilage (11), liver (12), muscle (13), and nerve (14, 15).

Tissue engineers must match the physical, chemical, biological, and structural details of each
tissue (16–23). Because tissue architecture is a complex combination of proteins, proteoglycans,
basement membranes, multiple cell types, and different oxygen requirements, the design space
can be daunting. Furthermore, it is critical that components in engineered tissues be nonimmuno-
genic in vivo, which poses additional challenges in materials synthesis and tissue assembly (15, 22,
24–26). Typically, engineers first work to obtain the optimal chemical composition and match
the mechanical properties of the tissue and then try to optimize its shape and structure. Today,
researchers finely tune the surface topography (23, 27), include chemical and mechanical gradi-
ents (23), and vary the dynamic conditions a tissue experiences in vivo (28). Once an engineered
tissue has been assembled, the next challenge is to measure, understand, analyze, and then modify
intra- and intercellular signals within the engineered construct. Information obtained from the
complex modes by which cells communicate often leads to changes of the assembly, modifica-
tion, and subsequent use of engineered tissues. Finding an optimal solution that combines all
design parameters makes this experimentally reliant research field extremely labor and resource
intensive.

In the past, studies focused primarily on the design of two-dimensional (2D) tissues (29–31).
Such approaches included a biomaterial in contact with either a single cell type (monolayer) or
multiple cell types (2D cocultures). The choice of the biomaterial and its properties played a
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critical role in maintaining cellular phenotype and physiological functions. In such systems, either
primary or genetically modified cells taken from the native tissue were cultured as monolayers or
in the presence of other tissue-specific cells.

Tissue engineers have benefited from advances in stem cell research that have opened up
numerous possibilities in their ability to control tissue composition and function (32–35). In order
to obtain multiple cell types, pluripotent, embryonic, or mesenchymal stem cells (MSCs) (32–37)
are used. Although stem cells can radically change research strategies for tissue engineering, they
require careful manipulation with respect to their rates of proliferation, presentation of chemical
signals (e.g., growth factors), and tuning of chemical and mechanical properties of the biomaterial
scaffold. Today, researchers are placing more emphasis on the size and spatial specifications of
embryoid bodies, the incorporation of different extracellular matrix (ECM) proteins, and the
presentation of morphogens and growth factors (38–41). With new opportunities, stem cells also
bring forth challenges in eliciting and maintaining cellular function and preventing the formation
of cancerous tissues over longer time periods (42).

The field of tissue engineering has made rapid strides in past decades. From simple cell-
biomaterial systems, the field has evolved toward smart materials, stem cells, and sophisticated
analytical methods. Despite tremendous progress, this rapidly evolving research field is often
based on empirical evidence and intensive experimentation. For these reasons, it is difficult to fully
explore the design space or to test a wide range of conditions and treatments. These shortcomings
could result in experimentalists missing important insights into signaling molecules, metabolites,
and pathways. Therefore, tissue engineers could benefit from a systems approach that combines
computational predictions followed by experimental validations.

3. SYSTEMS BIOLOGY OVERVIEW

Cells, tissues, organs, and organisms are systems of components whose interactions have been
defined, refined, and optimized over hundreds of millions of years of evolution. Molecular sys-
tems biology is a field that works toward a comprehensive and unified understanding of cells
by integrating experimental and computational approaches in order to answer the following key
questions: What are the basic structures and properties of the biological networks in a living
cell? How does a cell function over time under various conditions? How does a cell maintain its
robustness and stability? How can we modify or construct biological systems to achieve desired
properties? The explosive progress of genome sequencing projects and the massive amounts of
data that high-throughput experiments in DNA microarrays, proteomics, and metabolomics yield
drive advances in this field. Sophisticated computational ideas process these data sources in an
effort to systematically analyze and unravel the complex biological phenomena that take place
in a cell. Experimental and computational approaches used in systems biology fall along a con-
tinuum between high-level, or top-down, and low-level, or bottom-up, analyses (43). Top-down
approaches reveal and analyze large-scale, high-throughput data sets for interactions or correla-
tions that are relevant to a specific cell behavior. They provide a more global and less biased view
of regulatory networks and can often uncover connections that may have escaped the attention
of more focused methods. In contrast, bottom-up approaches include detailed kinetic models of
cellular systems, enabling quantitative predictions about the dynamical properties of regulatory
networks. Typically, these models are relatively small and handcrafted. Although we recognize the
importance of both approaches to systems biology, we focus our attention on top-down methods
in this review.
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3.1. Systems Biology Data Sets

A fundamental tenet of systems biology is that studying the cell as a whole will lead to discoveries
that were not possible through studying individual components (44, 45). This paradigm necessi-
tates measuring the state of a cell along multiple modalities and dimensions. In this section, we
describe the diverse types of data sets used by systems biologists.

3.1.1. ‘Omics technologies. The Encyclopedia of DNA Elements (ENCODE) Project has re-
cently published and analyzed a large number of data sets that discover and define the functional
elements encoded in the human genome (46). The elements include genes, transcripts, and re-
gions that regulate transcription, as well as the chromatin states and DNA methylation patterns
of these regions. Efforts are underway to apply the same analysis pipeline to the mouse genome
(47). These data promise to usher in a new chapter in our understanding of mammalian genomes.
Among more mature ‘omics approaches, transcriptome analysis has been most reproducibly per-
formed on a genomewide scale using DNA microarrays, and next generation sequencing has
rapidly emerged as a reliable method to measure gene-expression levels (48).

Protein levels in cells or tissues can be determined by mass spectrometry or by protein arrays.
Multiple reaction monitoring enables mass spectrometric techniques to be targeted at specific
peptides (49–51). By contrast, unbiased and global methods (52, 53) are more likely to detect more
abundant proteins. Commercially available arrays are useful in the identification of multiple classes
of proteins, such as those involved in cell signaling, including cytokines and kinases. However,
because antibodies can cross-react, arrays often result in several false positives. An additional
complication in mammalian systems is that protein expression is cell-type specific (54). In contrast
to mRNA, proteins are difficult to amplify, raising additional challenges in this field.

3.1.2. Protein-protein interactions. Direct physical interactions between proteins are often
necessary for the proteins to carry out their biological functions. Such protein-protein interactions
(PPIs) play important roles in virtually every biological process. A number of methods, such as yeast
two-hybrid screening, coimmunoprecipitation, and tandem-affinity precipitation followed by mass
spectrometry to identify proteins, have been developed to detect these interactions. Systematic,
unbiased, and high-throughput experimental strategies have incorporated these techniques to
discover interactions at the scale of whole genomes or proteomes (55). Databases storing these
interactions have proliferated (56). Despite numerous systematic efforts to chart the landscape of
PPIs in mammalian cells, our knowledge of these interactions remains sparse (57), with human
PPIs being the most investigated and research on other mammals lagging behind.

3.1.3. Regulatory interactions. Genes and proteins regulate each other to coordinate cellular
processes. Such interactions include transcription factors (TFs) binding to regulatory sequences
on DNA to govern the expression of target genes and kinases, or phosphatases conferring post-
translation modifications such as (de)phosphorylation on their substrates. Chromatin immuno-
precipitation (ChIP) is widely used to detect TF-DNA interactions (58). Such experiments must
be performed for each TF and in each cell type of interest, as a TF’s targets can vary dramatically
from cell to cell (59). By and large, regulatory interactions are much less comprehensively known
than PPIs.

3.1.4. Biochemical and signaling pathways. Biochemical and signaling pathway databases are
another important source of information about gene and protein function. Here, we use the term
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pathway to refer to a network of physical and regulatory interactions between genes and gene
products that together perform a specific biological function. This definition is to be contrasted
with the notion of a pathway simply as a set of genes that perform some discrete function. Numer-
ous databases contain biochemical and signaling pathways manually curated from the literature
(60–64). Among mammalian organisms, Homo sapiens is best represented in these databases. Many
sources also store mappings to interaction pathways in other organisms based on sequence and
structural homology.

3.1.5. Interactome prediction. To complement these experimentally derived interaction data
sets, numerous computational approaches can predict physical (65, 66), regulatory (67), or func-
tional interactions (68) or simultaneously predict all these types (69). Here, a functional interaction
or association is a specific interaction between two genes that jointly contribute to the same bio-
logical process. Apart from incorporating experimental interaction data, these approaches use
multiple modalities of orthogonal information including sequence orthology, similar transcrip-
tional response across a variety of conditions (coexpression), text-mining, and gene families that
share above-random similarities in their evolutionary histories. They include schemes to score
each predicted interaction against a common reference of well-curated gold standard interac-
tions. Reverse-engineering regulatory interactions among genes from large compendia of gene-
expression profiles (70, 71) constitute another class of powerful approaches for discovering net-
works from high-throughput data.

3.1.6. Functional annotations. To take optimal advantage of systems biology data sets, infor-
mation about the functions of genes and other cellular components needs to be described by a
well-structured set of standardized terms, amenable to computational analysis. The Gene Ontol-
ogy (GO) (72) provides a widely used, standardized, and organism-independent set of terms to
describe biological processes, molecular functions, and cellular components. Each of these three
ontologies consists of a hierarchical arrangement of terms with precise definitions and interrela-
tionships. Specifically, the hierarchy is a directed acyclic graph (DAG) that connects less-specific
parent terms to their more-specific child terms. By construction, genes annotated to a term are
also annotated to the term’s parents. The GO also includes a set of evidence codes that charac-
terize the reasoning behind a particular annotation. As the GO is organism independent, genes
with similar functions in different organisms can be annotated to the same term even when there
is little sequence similarity among the genes. The GO Consortium oversees the development
and refinement of the ontologies, and individual genome databases are responsible for assigning
annotations of genes to appropriate GO terms.

3.2. Systems Biology Algorithms

In this section, we describe state-of-the-art algorithms that integrate genomic, proteomics,
metabolomics, and pathway databases to obtain meaningful information at the cellular and tissue
levels. A number of approaches have been developed to integrate diverse types of ‘omics data sets
(45, 71, 73, 74) to discover gene modules, infer gene networks, and predict functional links and
gene functions. We focus on methods that have been applied primarily to mammals, rather than
to single-celled or to other less complex organisms.

3.2.1. Functional modules. Specific cellular functions are carried out by sets of genes and pro-
teins and interactions among them. A functional module may be defined as a set of molecules
that interact to produce a discrete biological function. For example, protein synthesis is a discrete
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function carried out by the ribosome and its associated proteins. A signal transduction cascade
transmits a signal initiated by the binding of a specific chemical to a receptor protein into the nu-
cleus. Biochemical pathways exist that synthesize specific amino acids. Over the past many decades,
hypothesis-driven experiments have yielded numerous instances of such modules. In their seminal
paper, Hartwell et al. (75) issued a call for shifting the focus of cell biology from molecules to mod-
ules. Since then, a vast number of approaches have been developed to dissect complex molecular
networks into modules or communities (76–80). Other methods have computed gene modules
by integrating gene-expression data across multiple cellular conditions (77, 81–83). Such gene
modules can reveal similarities and differences between multiple cellular conditions (84, 85), for
instance by characterizing gene-expression profiles in specific (sets of ) tumors as a combination
of activated and deactivated modules (84).

3.2.2. Response networks. An intricate network of molecular interactions governs a cell’s re-
sponse to its environment. These interactions dynamically change in response to a myriad of cues.
Therefore, discovering the set of molecular interactions that are active in a given cellular context
is a fundamental question in systems biology (74). A number of techniques compute the response
network of interactions perturbed in a given condition by integrating gene-expression data with
interaction networks (86–91). Recently, attention has turned to combining transcriptional and
proteomic measurements within the context of interaction networks (92, 93). Lack of correlation
between mRNA and protein levels can complicate such analyses (94, 95).

3.2.3. Prediction and analysis of signaling pathways. Another line of research exploits interac-
tion networks as a scaffold to find subnetworks that can suggest connections between causes (e.g.,
genes that are knocked out or located near single nucleotide polymorphisms) and effects (e.g., dif-
ferentially expressed genes) (96, 97) or to discover hidden components of signaling networks from
transcriptomic and proteomic data sets (98, 99). These methods have been used to recover known
signaling pathways, for example, those that start at a membrane protein and end at a transcription
factor in baker’s yeast (100). Methods have been developed to encode expert knowledge about a
well-understood pathway into a logical model (101) and propose experiments to clarify regulatory
relationships that are downstream of the pathway (102).

3.2.4. Gene function prediction. Diverse large-scale functional and structural genomic data
sets create the potential to compute quantified, testable predictions of the functions of poorly
characterized genes. Predicting gene function based on sequence similarity (103) offers limited
benefits, as this method provides clear and unambiguous annotations for only about 30–50% of
genes in an organism (104); the remaining genes have unknown, tentative, or marginal annotations.
Annotations may also be incorrect, as they are transmitted from one gene to another via weak
chains of inference (105), a problem that can be propagated throughout public databases (105,
106), contaminating future functional predictions.

The functional association or linkage networks (FLNs) described above provide a useful basis
for predicting gene function (107–109). For instance, two genes may have similar functions if
their protein products interact or if they have very similar patterns of gene expression. Because
FLNs by themselves do not predict GO terms for genes of unknown function, many methods have
emerged to explicitly propagate functional evidence across FLNs in order to predict the functions
of uncharacterized genes (107, 110–112). These methods can exploit both local and long-distance
connections in the FLN in a controlled manner in order to provide predictions with quantifiable
estimates of reliability.
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4. APPLICATIONS OF SYSTEMS BIOLOGY IN TISSUE ENGINEERING

Engineered tissues are assembled on biomaterial scaffolds that can support adhesion, locomotion,
and timely colonization of cells. In a recent study, Wu et al. (113) used a multilevel approach to
control cell speed and persistence in order to optimize the mean free path of motile multipotent
stromal cells. The authors measured cell motility properties and the phosphorylation levels of
several activities of important signaling molecules on 19 polymeric substrates. By training decision
trees on these measurements, they identified the appropriate combinations of growth factors and
ECM proteins that resulted in both high speed and directional persistence. This combination of
experimental and computational methods enables systematic identification of a small group of
molecules and specific substrate conditions that yield optimal cellular responses.

Once an engineered construct has been implanted, its long-term success depends on its ability
to integrate with tissue in vivo. Toward this goal, Sun et al. (114) used a combinatorial approach
to deliver cytokines from hydrogels to obtain a desired bone density upon the implantation of a
tissue-engineered bone graft (114). The authors modeled the dynamics of the balance between
bone regeneration and resorption by a mixture of ordinary (for intracellular signaling pathways)
and stochastic (for intercellular signaling pathways and cell populations) differential equations.
Their simulations suggested combinations of cytokines, for example, Wnt/BMP2, and optimal
dose ratios of these combinations that would provide the most benefit during bone remodeling.

Stem cell research is a vast, expanding field. A comprehensive overview of this research is
beyond the scope of this review. From the viewpoint of tissue engineering, stem cells present
tremendous potential in the design of implants, for which the source of cells can often play a
decisive role in a positive outcome. We highlight DNA microarray–based analyses that provide
the tissue engineering community with important information on stem cell sourcing. Transcrip-
tional data on embryonic-, mesenchymal-, and umbilical cord–derived cells are leading to an
improved understanding of the similarities and differences bewteen these different types of stem
cells. Microarray studies have been conducted on mouse embryonic versus adult stem cells (34).
Comparisons have also been made between human embryonic stem cells and differentiated cells
(115, 116). Ivanova et al. (115) observed that several gene products and regulatory pathways were
conserved between murine embryonic and hematopoietic stem cells. Tanaka and coworkers (116)
found that fewer embryonic stem cell genes and more tropoblast-related genes were found in ma-
terials derived from embryos at different stages, although only the embryonic stem cells contained
the Esg-1 gene associated with pluripotency. Sperger et al. (117) compared the transcriptional
profiles between human pluripotent and germ cell teratomas. Using hierarchical clustering, the
authors identified similarities between different human embryonic stem cells and embryonal car-
cinoma. One of the many outcomes of this study is the ability to test the candidate genes that can
potentially transform stem cells into their cancerous counterparts.

In some cases, due to the unavailability of embryonic stem cells, researchers have relied on
MSCs. MSCs can also be sourced from different tissues. For example, MSCs are most commonly
obtained from adult bone marrow, but other sources such as fetal amniotic fluid, term pregnancy
amniotic membrane, and term pregnancy umbilical cord blood are also utilized. Recent studies
have analyzed detailed gene-expression profiles of MSCs derived from different sources (118, 119).
These studies have discovered that a core set of gene-expression profiles was maintained in all
four cell types. When the gene expressions of MSCs were compared with those of fetal organs, the
authors discovered similarities in regulation of ECM proteins, in Wnt signaling, and in TGF-β
(transforming growth factor-beta) receptor signaling. They also discovered variations between
MSCs obtained from each of the four tissues. Their findings could prove to be a powerful resource
to tissue engineers embarking on the use of MSCs for implants and therapeutic applications.
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Figure 2
(a) Illustration of an engineered tissue with three cell types. (b) The three cell types exchange signals to maintain their phenotype.
(c) Systems biology experiments and computational analysis help to decipher the exchanged signals and the internal cellular responses.

5. DEFINING A NEW SYNTHESIS BETWEEN TISSUE
ENGINEERING AND SYSTEMS BIOLOGY

In this section, we describe several examples of how tissue engineering and systems biology can
inspire each other to solve the next generation of challenges in both fields. As described in earlier
sections, biomedical engineers and scientists currently design in vitro tissue mimics by combining
and integrating available knowledge on cellular behavior, tissue organization, and experimental
capabilities. So far, predictive models have not played a major role in tissue engineering. More
specifically, current approaches to tissue engineering have not yet effectively tapped into the
information about cellular systems that is rapidly accumulating with the advent of systems biology.
Conversely, systems biology approaches have so far primarily been used to study model organisms
and human diseases such as cancer. They have not been utilized to tackle the challenging question
of how different cell types could be organized into complex engineered tissues. Adding the tools
of systems biology to the repertoire of biomedical engineers and scientists can revolutionize the
development of in vitro tissue mimics and accelerate translation of these engineered tissues into
applications for human health.

Tissue mimics that incorporate multiple types of cells (120) offer a promising and controlled
environment for studying intercellular signaling. For instance, liver models often include at least
one cell type in addition to hepatocytes (120, 121). Analysis of transcriptional measurements in
hepatocytes in the models may point to cellular pathways that are perturbed in response to signals
from the other cell type(s). Algorithms for predicting signaling pathways can then be applied to
prioritize proteins for further delineation of intercellular communication networks (Figure 2).
In this scenario, tissue engineering provides an ideal system (the in vitro liver model) to study a
fundamental question in cell biology (signaling between cells in a tissue) and spurs developments
in novel algorithms for pathway prediction. In turn, these algorithms help to prioritize proteins
that can be further studied using new experimental techniques in systems biology. The resulting
data can lead to algorithmic improvements, to incorporation into refined computational models of
intercellular signaling, and ultimately to better design of the tissue engineered systems themselves.

Microfluidics offers another avenue for the integration of tissue engineering with systems
biology. Microfluidic devices can mimic flows that perfuse tissues and organs in vivo (122–125).
Moreover, they can be engineered to generate well-defined and controllable flows. The low flow
rates they facilitate permit the direct analysis of media samples using mass spectrometric techniques
(126, 127). Culturing tissue mimics inside microfluidic systems coupled to mass spectrometers
opens up the possibility of real-time measurements of the extracellular protein and metabolite
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pool. These data can be combined with measurements of intercellular molecules. Analysis of
these dense temporal data sets may require the development of new systems biology algorithms.
Applying these approaches to these data can produce phenomenological and predictive models
of how the cell receives external signals and processes them internally to produce its responses.
These approaches can also be used to study organs connected by microfluidics and cultured on
a chip (128–130), leading to improved systemic models of how organs network and interact with
each other in the body.

The topography of biomaterials on which cells are cultured can play an important role in elic-
iting specific cellular responses (131). Unadkat et al. (132) developed an approach to construct a
library of nonbiased, random combinations of simple surface topographies. The authors showed
that novel surface topographies could cause human mesenchymal stromal cells to proliferate or
undergo osteogenic differentiation. They were also able to correlate parameters of the algorithms
used to generate the topographies to cellular responses. In the future, such methods can be in-
tegrated with systems biology ideas to unearth the intra- and intercellular molecular machinery
that transduces changes in biomaterial properties into cellular responses.

Although systems biology approaches have been widely used to investigate cancer, they have
not been utilized from a tissue engineering perspective. In the past several years, there has been a
major effort to develop tissue-engineered tumor microenvironments (133–137). Engineered tu-
mor models that mimic the three-dimensional (3D) environment found in vivo are increasingly
being used for elucidating cancer cell behavior because the underlying cellular and molecular
mechanisms have been shown to be different in 2D and 3D cultures (137). However, given the
inherent complexity of the signaling pathways within each type of cancer and the wide range of
cancers, the computational approaches could serve to unearth regulatory pathways of interest for
further experimental analysis. For example, large-scale data sets on the expression of genes, the
levels and activities of proteins, and the synthesis of intermediate metabolites can enable the iden-
tification of key signaling molecules whose dysregulation may lead to cancer (138). Incorporating
these approaches in the study of tissue-engineered tumor microenvironments may lead to the
identification of new drug targets, predict the side effects of drugs, and bring down the costs and
time associated with experimental aspects of this area of research (139).

The research directions and opportunities presented by the natural synergy between tissue
engineering and systems biology are virtually unlimited. Scientific explorations at the synthesis of
these fields will likely unearth new combinations of experimental and computational approaches
to design the next generation of implants. In the future, systems biology approaches will underlie
predictive computational models of engineered tissues and drive their novel experimental analysis.
Simultaneously, the demands of tissue engineering will inspire new experimental methodologies
in systems biology and novel analysis frameworks in computational science. Eventually, seam-
lessly intertwined computational and experimental models will drive future advances in tissue
engineering and in systems biology.
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