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ABSTRACT
Summary: RankGene is a program for analyzing gene
expression data and computing diagnostic genes based on
their predictive power in distinguishing between different
types of samples. The program integrates into one system
a variety of popular ranking criteria, ranging from the
traditional t-statistic to one-dimensional support vector
machines. This flexibility makes RankGene a useful tool
in gene expression analysis and feature selection.
Availability: http://genomics10.bu.edu/yangsu/rankgene
Contact: murali@bu.edu

Recent research has successfully demonstrated the utility
of DNA microarray-based gene expression data in cancer
classification (Golub et al., 1999; Ramaswamy et al.,
2001). Microarrays can identify genes that are good
diagnostic indicators. Intuitively, a gene is likely to be
diagnostic if its expression value in a disease state is
different from its expression value in a normal state. In
other words, the gene’s predictive power to distinguish
between different classes (e.g. normal versus cancer) is
high.

The RankGene program that we have developed ranks
and selects genes based upon their ability to distinguish
between various classes of samples, such as types of
diseases or diseased and healthy states. The input to
RankGene is a data set containing the gene expression
profiles for a set of tissues or samples and the class label
for each sample. For each gene, RankGene computes a
value that measures the ability of the gene to distinguish
between the classes. It outputs the best k genes according
to this measure, where k is specified by the user. Note that
our method can miss dependencies between genes that act
in subtle combinations in response to disease.

There are various means of quantifying a gene’s ability
to distinguish between classes. RankGene supports the
following eight measures:
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(i) t-statistic (Golub et al., 1999): RankGene sorts the
genes in decreasing order of the absolute value of the t-
statistic for each gene.

(ii)–(vii) Twoing rule, information gain, gini index,
max minority, sum minority, and sum of variances: these
measures are widely used in the literature, have been
tested experimentally, and have well-documented features
and properties (Breiman et al., 1984; Murthy et al.,
1994; Murthy, 1998). These measures are often called
statistical impurity measures in statistical learning theory.
(This notion of impurity is not related to the impurity
of an RNA sample.) Each of these measures attempts to
quantify the best possible class predictability that we can
obtain by dividing the full range of expression of a given
gene into two disjoint intervals corresponding to the up-
regulation and the down-regulation of the gene. We predict
all samples in one interval to belong to one class (e.g.
normal) and all samples in the other interval to belong
to the other class (e.g. cancer). Each measure quantifies
the error in this prediction in a different manner. For
example, the sum minority rule counts the total number
of errors, assuming that the largest predicted class in
each partition is correctly predicted. The information gain
rule measures the reduction in class entropy resulting
from the partitioning. The RankGene web page displays
the formula for each of these measures. For a given
choice of measure, RankGene minimizes the error over
all possible thresholds that partition the gene into two
intervals.

(viii) One-dimensional support vector machine (SVM):
The utility of SVMs in classifying samples based on gene
expression data is well-documented (Brown et al., 2000;
Ramaswamy et al., 2001). We train a one-dimensional
SVM on each gene’s expression values. The gene’s
measure is the function optimized by the SVM training
algorithm. Standard SVM training algorithms run in
O(n3) time, where n is the number of training samples.
We have developed and implemented an algorithm for
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Fig. 1. Comparison of the measures. The leftmost column shows
the best 20 genes selected by the t-test measure. Every other
column corresponds to one of the other measures. In a column for
a particular measure, each entry is a colour ranging from white
to blue, indicating the difference in the ranks of the gene for that
measure and for the t-test. The abbreviations used are: t-test (TT),
information gain (IG), sum of variances (SV), twoing rule (TR),
gini index (GI), sum minority (SM), max-minority (MM), and one-
dimensional SVM (1S).

training one-dimensional SVMs with linear kernels that
runs in O(n log n) time (Su et al., 2003).

The RankGene software is written in C++. It has been
tested on Linux and other Unix-like operating systems
using the gcc compiler. The current version is aimed to be
a simple screen for genes that might be interesting targets
for further studies. In this version, we have primarily
experimented with two-class prediction problems. Future
versions of our software will attach statistical significance
to each of the selected genes and will improve the
robustness of the software for multi-class data.

Different measures can yield different lists of genes. In
Figure 1, we compare the performance of the measures
on the ALL/AML data set (Golub et al., 1999). The user
can examine, compare, and collate the results of each
measure in a similar manner. This ability gives RankGene
the potential to be a powerful yet flexible tool in gene
expression analysis.
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