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Dramatic improvements in high throughput sequencing technologies have led to a staggering growth in the number of
predicted genes. However, a large fraction of these newly discovered genes do not have a functional assignment. Fortunately,
a variety of novel high-throughput genome-wide functional screening technologies provide important clues that shed light on
gene function. The integration of heterogeneous data to predict protein function has been shown to improve the accuracy of
automated gene annotation systems. In this paper, we propose and evaluate a probabilistic approach for protein function
prediction that integrates protein-protein interaction (PPI) data, gene expression data, protein motif information, mutant
phenotype data, and protein localization data. First, functional linkage graphs are constructed from PPI data and gene
expression data, in which an edge between nodes (proteins) represents evidence for functional similarity. The assumption here
is that graph neighbors are more likely to share protein function, compared to proteins that are not neighbors. The functional
linkage graph model is then used in concert with protein domain, mutant phenotype and protein localization data to produce
a functional prediction. Our method is applied to the functional prediction of Saccharomyces cerevisiae genes, using Gene
Ontology (GO) terms as the basis of our annotation. In a cross validation study we show that the integrated model increases
recall by 18%, compared to using PPI data alone at the 50% precision. We also show that the integrated predictor is
significantly better than each individual predictor. However, the observed improvement vs. PPI depends on both the new
source of data and the functional category to be predicted. Surprisingly, in some contexts integration hurts overall prediction
accuracy. Lastly, we provide a comprehensive assignment of putative GO terms to 463 proteins that currently have no assigned
function.
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INTRODUCTION
Functional annotation of genes is a fundamental problem in

computational and experimental biology. The problem can be

solved at various levels of resolution ranging from identifying high

level processes where a given protein might be associated with, to

discovery of the cell specific protein-ligand interaction targets of

a protein in different biological conditions. The most established

and reliable methods for protein function prediction are based on

sequence similarity using BLAST [1] and profile methods such as

PFAM [2], and PSI-BLAST [1]. Other still evolving methods that

are too numerous to list include gene fusion information [3], and

phylogenetic profiling [4,5]. Emergent methods that elucidate

function from a variety of high-throughput experimental screens

have become particularly attractive recently due to the reduced

cost of conducting genome-wide functional screens. Genomic and

proteomic data sets, including gene expression and protein-protein

interaction (PPI) data, are becoming increasingly available for

a growing array of organisms. Driven by the hypothesis that co-

expressed genes might participate in related biological processes,

clustering gene expression profiles across diverse conditions can be

used to assign protein function [6–8]. Using PPI data to assign

protein function has been extensively studied. These algorithms

are often based on the ‘‘guilt by association’’ principle that suggests

that interacting neighbors in protein-protein interaction (PPI)

networks might also share a function [9–11]. Since such genome-

wide data sets are inherently noisy, and each type of data captures

only one aspect of cellular activity (e.g. gene expression data

measure mRNA levels of transcriptionally induced genes, and PPI

data suggest a feasible physical interaction between proteins), it is

appealing to combine such heterogeneous data in an effort to

improve the coverage and accuracy of protein function prediction.

Bayesian network methodologies for data integration have been

explored [12–14] in a number of systems for predicting protein-

protein interactions and protein function similarity. These

approaches calculate the posterior probability that each pair of

genes i and j, has a functional relationship, given the various types

of genome-wide data. These algorithms output a functional

linkage graph [3,15] in which an edge between two nodes (genes)

represents functional similarity with a reliability score (probability)

assigned to each edge. However, using these probabilistic networks

to produce a functional assignment remains a hard computational

problem. For instance, one approach for protein function

annotation based on Markov random fields (MRFs) has been

previously investigated [10]. An integrated MRF approach that

includes network structures (PPI network and co-expression

network) and protein domain information to predict protein

function has also been proposed [16]. There, the authors used
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Gibbs sampling to estimate the probability that a protein has

a particular function. Machine learning methods based on support

vector machines have been investigated in several projects [17,18].

In fact, it is rather obvious that if we treat the prediction of

function based on each modality as an expert, then any of the

popular classification methods (decision trees, boosting, and

weighted majority) can in principle be used for ‘‘integration’’ of

these predictions. However, given the currently sparse data using

complex representations for prediction might lead to overfitting.

In this paper, our contribution is twofold. First, we propose

a simple and relatively transparent probabilistic model for protein

function prediction that allows us to efficiently calculate the post-

erior probability that each gene has a particular function, given

various types of genome-wide data. Second, we analyze the effect

of combining the heterogeneous data sources in a substantially

more comprehensive manner than has been done to date, with the

goal of better understanding just which types of genes benefit most

from the integration of which types of data sources. In particular,

we develop a relatively simple yet useful method to integrate

functional linkage graphs with categorical information. The

functional linkage graphs are constructed from PPI data and gene

expression data. As usual the assumption here is that physically

interacting proteins or co-expressed genes are more likely to share

protein functions than a randomly selected pair of proteins [10].

Categorical features for each protein, including protein motifs,

knockout phenotype, and localization information are captured

based on predictive sources of evidence available from the MIPS

database [19]. Using Bayesian networks framework, this categor-

ical information is then combined with functional linkage graphs

constructed from PPI data and gene expression data to generate

functional predictions. Our method is applied to the functional

prediction of proteins in yeast (Saccharomyces cerevisiae). Our

methodology combines PPI data, gene expression data, protein

motif information, mutant phenotype data, and protein localiza-

tion data, while using Gene Ontology (GO) ‘‘biological processes’’

terms [20] as the basis for functional annotation. The long term

goal of this research is to develop a probabilistic language to

specify which proteins might be active in a given biological process

based on the type of interacting partners they have, protein motifs,

or transcriptional profiles.

By combining five types of data, the number of correctly

recovered known gene-term associations is increased by 18% at

the same precision (50%), compared to using PPI data alone. We

specifically focused on certain points on the ROC curve in our

analysis that we believe are potentially feasible for follow-ups on

the prediction in experimental labs. We show that by adding

different types of genome-wide data, different types of the GO

terms that are specific for the type of information are newly

recovered. Also, by conducting robustness analysis of the in-

tegration model to PPI edge removal, we provide a novel

perspective on the amount of PPI data necessary to obtain high

prediction accuracy by the integration model. In that analysis, we

find some conditions where integration actually hurts performance

rather than improving accuracy. Plausible functions are assigned

to 463 currently unannotated proteins by our method, and we

discuss some of these novel assignments.

METHODS

2.1 Data preparation
2.1.1 Protein-protein interaction data From the GRID

database [21], 31201 non-redundant protein-protein interactions

among 5151 yeast Saccharomyces cerevisiae genes are extracted. We

eliminated self-self interactions and duplicated protein interaction

pairs from the database to construct a PPI functional linkage graph

[3,15], in which an edge between two nodes (proteins) represents

evidence for protein function similarity.

2.1.2 Gene expression data Four types of gene expression

data, the Rosetta compendium data [22], cell cycle data [23],

stress-response data [24], and DNA-damage data [25] are used in

this paper. For each type of gene expression data, Pearson

correlation coefficients for all combinations of genes are

calculated, and gene pairs whose correlation coefficient is larger

than 0.85 are selected as ‘‘co-expressed pairs’’ for each type of

gene expression data. We obtained 1783, 645, 10654 and 31827

gene pairs from the Rosetta data, cell cycle data, stress-response

data and DNA damage data, respectively. The false discovery rate

(FDR) [26,27] for each threshold is less than 10210, indicating that

for each experiment we are only using a set of declared co-

expressed pairs for which a false declaration is exceedingly

unlikely. Finally, 38151 non-redundant gene pairs are obtained

from the combined gene pairs to construct a co-expression

functional linkage graph.

2.1.3 Protein motif information From the MIPS [19]

database, 2678 protein-motif associations (e.g. YCR065W protein

has ‘‘Fork head domain signatures and profile’’ motif) are

extracted, covering 2179 proteins across 992 motif categories. If

a protein has a specific protein motif, this can increase the

probability that the protein has a specific protein function. We

describe how to integrate this category information for protein

function prediction in Section 2.3.

2.1.4 Gene knock-out phenotype data From the MIPS [19]

database, 3013 protein-phenotype associations (e.g. YPR185W

deletion mutant exhibits ‘‘Starvation sensitivity’’) are obtained,

covering 1460 proteins across 175 mutant phenotype categories.

2.1.5 Protein localization data From the MIPS [19]

database, 5191 protein-localization data (e.g. YPR191W protein

localizes at ‘‘Mitochondrial inner membrane’’) are obtained,

covering 4076 proteins across 41 cellular location categories.

2.1.6 GO term data From the 06/03/2006 version of the

Yeast SGD database [28], 107636 gene-term GO assignments are

obtained, in which there are 6289 genes and 1965 ‘biological

process’ terms in total. For each gene-term association, we

expanded the label in the GO hierarchy to include all ‘is-a’ and

‘part-of’ ancestors of each GO term. Labels that appear more than

300 times among the 6289 genes are excluded for further analysis,

on the assumption that such terms are too broad for protein

function prediction. Also labels that appear less than five times

among the genes are excluded, since they do not constitute

a sufficiently large enough sample to make reliable predictions.

From PPI data and gene expression data, two different

functional linkage graphs are obtained. Here, an edge in each

functional linkage graph shows that the two nodes (proteins) are

a member of the constructed pairs in each data set. For each GO

label t and for each functional linkage graph l, we calculate p1
(l),

the probability that a protein has label t, given that the interacting

partner has label t. This p1
(l) is expected to be higher than p0

(l), the

probability that the protein has label t, given that the interacting

partner does not have label t. Here, a X2 test was performed to

ensure that p1
(l) and p0

(l) were statistically different using

a Bonferroni-corrected p-value of 0.001/T , where T is the

number of terms tested in each data set.

2.2 Categorical features of proteins
Proteins can be associated with categorical features according to

different types of categorical information. The categorical features

that are used in our predictive methodology are defined below.
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N Protein motif (domain): Random variable di is associated with

a protein where di = 1 if the protein contains domain di, and

di = 0 otherwise. A feature vector d = (d1, d2,…, dqd)
T is defined

for each protein, where qd is the total number of protein motif

features (qd = 992 in our case).

N Phenotype: Random variable pi is associated with a protein

where pi = 1 if the gene knockout exhibits phenotype pi, and

pi = 0 otherwise. A feature vector p = (p1, p2,…, pqp)
T is defined

for each protein, where qp is the total number of phenotype

features (qp = 175 in our case).

N Protein localization: Random variable li is associated with

a protein where li = 1 if the protein localizes in li, and li = 0

otherwise. A feature vector l = (l1, l2,…, lql)
T is defined for each

protein, where ql is the total number of localization features

(ql = 41 in our case).

Naturally, a protein can have several features at the same time.

Our aim is to integrate these sources of evidence in a smooth

fashion to improve the accuracy and coverage of the functional

predictors based on the assumption that if a protein has specific

features, then this can increase the probability to infer specific

protein functions.

2.3 Computing the posterior probability of function

using graphs and features
For each protein i and GO term t, a Boolean random variable Li,t is

associated, where Li,t = 1 if i is labeled with t, and Li,t = 0 otherwise.

We want to calculate the probability of Li,t = 1 for all combinations of

i and t, given the structure of functional linkage graphs constructed

above, and the category features that the protein i has, and all the

assignments of GO terms to the other proteins. We assume that

probability distribution for the labeling Li,t = 1 is conditionally

independent of all other nodes given the functional annotation of the

neighbors and category information of the protein.

We want to calculate the posterior probability given functional

linkage graphs and category features of a protein P(Li,t = 1|Ni
(l),…,

Ni
(m), ki,t

(l),…, ki,t
(m), ci

(l),…, ci
(n)), where Ni

(l)(l = 1,…, m) is the number

of graph neighbors (excluding unannotated neighbors) of gene i in

a functional linkage graph l, ki
(l)(l = 1,…, m) is the number of the

neighbors of gene i which are labeled with term t in the graph l, m is

the number of different types of functional linkage graphs,

ci
(j)(j = 1,…, n) is the feature vector that the gene i has for a category

feature type j, and n is the number of different types of categories (not

the number of features). For example, in this paper, Ni
(1) and ki

(1) is

the number of neighbors of gene i, and the neighbors that have term t

in a PPI network, respectively. Ni
(2) and ki

(2) is the number of the

neighbors and the neighbors that have term t in a co-expression

network, respectively. ci
(1), ci

(2) and ci
(3) are feature vectors that gene i

has for the three types of categories, i.e., protein motif feature vector

d, mutant phenotype feature vector p, and localization feature

vector l, respectively (Section 2.2).

Applying Bayes’ theorem, the posterior probability that gene i

has function t P(Li,t = 1|Ni
(1),…, Ni

(m), ki,t
(1),…, ki,t

(m), ci
(1),…, ci

(n))

can be rewritten (with omitting subscript i and t) as:

P(LjN (1),:::,N(m) ,k(1),:::,k(m) ,c(1) ,:::,c(n))

~
P(k(1) ,:::,k(m) ,c(1),:::,c(n) jL,N(1) ,:::,N(m)):P(LjN(1) ,:::,N(m))

P(k(1) ,:::,k(m) ,c(1) ,:::,c(n)jN (1),:::,N (m))

~

P
m

l~1
P(k(l) jL,N(1) ,:::,N(m)):P

n

j~1
P(c(j) jL,N(1) ,:::,N(m)):P(L)

P(L):P(k(1) ,:::,k(m) ,c(1),:::,c(n) jL,N(1) ,:::,N(m))zP(L):P(k(1) ,:::,k(m) ,c(1) ,:::,c(n)jL,N(1) ,:::,N (m))

~

P
m

l~1
P(k(l)jL,N (l) ):P

n

j~1
P(c(j)jL):P(L)

P(L):P
m

l~1
P(k(l)jL,N (l)):P

n

j~1
P(c(j)jL)zP(L):P

m

l~1
P(k(l)jL,N (l) ):P

n

j~1
P(c(j)jL)

:

ð1Þ

Here, we assume that the probability distribution of Li,t is

independent of the number of graph neighbors N(1),…, N(m), hence

P(L|N(1), …, N(m)) = P(L). Also, we assume that k(1),…, k(m), c(1),…,

c(n) are conditionally independent of each other, given L and

N(1),…, N(m). This assumption is similar to the case in a Naive

Bayes classifier. It is natural to assume that k(l) is conditionally

independent of N(1),…, N(m) except N(l), given L. Also, c(j) is

conditionally independent of N(1),…, N(m), given L. Now we need to

calculate each decomposed product in (1).

P(k(l)|L,N(l)) is the probability that k(l) neighbors are labeled with t

out of N(l) neighbors in a graph l, given that the gene i is labeled

with t. Here we assume a binomial distribution [10] and calculate

this probability as P(k(l)jL,N(l))~B(N(l) ,k(l) ,p
(l)
1 )~

N (l)

k(l)

� �
:(p(l)

1 )k(l) :(1{p
(l)
1 )N(l){k(l)

,

where p1
(l) is the probability that a protein i has label t, given that

an interacting partner has label t within a functional linkage graph

l, which is pre-calculated by training data (Section 2.1.6). Simi-

larly, P(k(l)jL,N(l))~B(N (l),k(l),p
(l)
0 )~

N(l)

k(l)

� �
:(p(l)

0 )k(l) :(1{p
(l)
0 )N (l){k(l)

,

where p0
(l) is the probability that a protein i has label t, given

that an interacting partner does not have label t within a functional

linkage graph l.

P(c(j)|L) is the probability that a gene i has feature vector c(j)

given that the gene i has term t. P(L) is the prior probability that

the gene i has term t. This is calculated as P(L) = f, where f is the

frequency of term t among genes.

Hence the neighborhood function (1) becomes:

(1)~
f :P

m

l~1
B(N (l),k(l),p

(l)
1 ):P

n

j~1
P(c(j)jL)

f :P
m

l~1
B(N(l),k(l),p

(l)
1 ):P

n

j~1
P(c(j)jL)zf :P

m

l~1
B(N(l),k(l),p

(l)
0 ):P

n

j~1
P(c(j)jL)

~

f :P
m

l~1

B(N(l),k(l),p
(l)
1 )

B(N(l),k(l),p
(l)
0 )
:P

n

j~1

P(c(j)jL)

P(c(j)jL)

f :P
m

l~1

B(N(l),k(l),p
(l)
1 )

B(N(l),k(l),p
(l)
0 )
:P

n

j~1

P(c(j)jL)

P(c(j)jL)
zf

~
f :P

m

l~1
a(l):P

n

j~1
b(j)

f :P
m

l~1
a(l):P

n

j~1
b(j)zf

,

ð2Þ

where a(l)~B(N (l),k(l),p
(l)
1 )=B(N (l),k(l),p

(l)
0 ), and

b(j)~
P(c(j)jL)

P(c(j)jL)
~P

x

P(c(j)
x jL)

P(c
(j)
x jL)

, assuming conditional independence

between the feature vectors. Here, P(cx
(j) = 1|L) = (# of t-labeled

genes that have a feature cx
(j))/(# of t-labeled genes), and

P(cx
(j) = 1|L̄) = (# of genes that are not labeled with t and have

a feature cx
(j))/(# of genes that are not labeled with t). Since we do

not want lack of information to affect protein function prediction,

we assume
P(Ljc(j)

x ~0)

P(Ljc(j)
x ~0)

~
P(c(j)

x ~0jL)

P(c
(j)
x ~0jL)

:P(L)

P(L)
~

P(L)

P(L)
, hence

P(cx
(j) = 0| L)/P(cx

(j) = 0|L̄) = 1. For example, suppose that the

current genome-wide data do not contain information that

a protein is localized in mitochondria. However, this does not

necessary mean that the protein does not localize in mitochondria.

The reason might be that just lack of the currently available data.

RESULTS
The integration algorithm described in the Methods section is

evaluated on the task of predicting protein functions for

Saccharomyces cerevisiae. The algorithm fuses probabilities obtained

from diverse data sources including PPI, gene expression, protein

motif information, gene knock-out phenotype, and protein

localization. The functional annotations used to train our models

are based on the GO category and are obtained from Yeast SGD

database [28]. The algorithm is first validated on known protein-

ð1Þ
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term associations by a 5-fold cross validation methodology. We

also conduct robustness analysis to understand the effect of

removal of PPI edges on the accuracy of the prediction with one or

more data sources. Finally, we predict protein function of

unannotated genes.

3.1 Cross Validation Analysis of Prediction Accuracy
First, we attempted to predict known protein-term associations by

5-fold cross validation. For each gene g and term t, the probability

that gene g has term t is calculated based on equation (2), given

that we know every other gene-term associations in the training

set. It is predicted that gene g has term t if the probability exceeds

a specified threshold. A positive g-t association set is obtained from

the GO ‘‘biological processes’’ data, and negative g-t association

set is defined as follows: If the association is not in the positive set,

and g is annotated with at least one biological process t, and t is

neither ancestor nor descendant of the known function in the GO

hierarchy. Figure 1 presents a ROC curve of function prediction

by different combinations of each data sources. Sensitivity is

defined as #TP/(#TP+#FN), which corresponds to recall, and

specificity is defined as #TN/(#FP+#TN), which corresponds to

precision. For varying posterior probability cut-off, 1-specificity

and sensitivity is plotted. The result shows that by combining the

five specific types of data described above, protein functions can be

predicted more accurately, compared to each data source alone.

Figure 2 summarizes the impact that data integration has on

protein function prediction sensitivity at a fixed precision (50% and

80%). The error bar shows the standard deviation of 10 independent

cross-validation experiments. At the 50% precision, 14906 known

protein-term associations can be recovered on average by combining

five types of data. On the other hand, when we use PPI data alone,

12662 associations can be recovered on average. Our integrated

method thus realizes an 18% increase in the number of functional

predictions for genes at the 50% precision. At the 80% precision, the

combination of all data (PPI, gene expression, protein motif, mutant

phenotype, and protein localization) works better than any other

combinations and other single source of data. However, at the 80%

precision, combining PPI data with one other data source shows

a little improvement in predictive accuracy, suggesting that PPI data

is particularly informative.

These two levels of precision, i.e., 50% and 80%, were chosen

as being reasonably representative of the range of possible

improvements observed in our study. In addition to the perfor-

mance characteristics just described, we also examined the issue of

falsely predicted proteins, as a function of the threshold applied to

posterior probabilities. Using the method of [29], the rate of false

discoveries, for the classifier integrating all data sources, was

estimated to be 0.13 and 8.461026, respectively, at the 50% and

80% precision levels.

Next, we analyzed whether prediction accuracy depends upon

the functional category to be predicted. It is expected that the

prediction performance of specific GO terms depends on what

kinds of data sources one uses. Table S1 (in Supporting

Information) shows the list of GO terms, which are improved by

adding gene expression data in addition to PPI data at the 50%

precision for each GO term prediction. Here GO terms are listed,

of which the number of #TP is increased by at least 10, compared

to that of using PPI data alone. We can see from the result that

many of the improved terms are metabolism related (e.g. ‘‘amino

acid and derivative metabolism’’, ‘‘nitrogen compound biosynthe-

sis’’, and etc.). Since metabolic reactions are often interactions

between enzymes and compounds, and such proteins (enzymes) do

not necessarily have protein-protein interactions between enzymes

in a same pathway, it might be difficult to reconstruct and hence

predict such metabolic pathways by using PPI data alone. In this

sense, measuring gene expression of enzymes and identifying co-

expressed genes will be supplementary information for capturing

functionally related genes. Here, the result suggests that the gene

expression data actually helps to identify such metabolic

components that are working in a same pathway. Table S2 shows

the list of GO terms, which are improved by adding protein motif

information in addition to PPI data. Here, it is interesting to see
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that GO terms ‘‘phosphorylation’’ and ‘‘phosphate metabolism’’

are most strikingly improved. Also, among newly recovered genes

that have the GO term ‘‘transcription from RNA polymerase II

promoter’’ by adding motif information, nine proteins have

a protein motif ‘‘Zinc finger, C2H2 type, domain’’. Since protein

kinases and transcription factors often have specific binding

domains, protein motif information are particularly useful for

predicting these terms. Table S3 shows the list of GO terms, which

are improved by adding phenotype data in addition to PPI data.

Among the improved GO terms, ‘‘cell wall organization and

biogenesis’’, ‘‘cell budding’’, ‘‘reproduction’’, and ‘‘external encap-

sulating structure organization and biogenesis’’ might be related to

phenotypes of a cell, and only listed in this table. Table S4 shows

the list of GO terms, which are improved by adding localization

data in addition to PPI data. Among the improved GO terms, ‘‘ion

transport’’, ‘‘Golgi vesicle transport’’, and ‘‘vesicle-mediated tran-

sport’’ are cellular location specific GO terms, and these terms are

only listed in this table. We can conclude from these results that by

adding different types of genome-wide data, different types of GO

terms that are specific for the data type can newly be predicted.

Here is an example how the combination of different types of data

helps to predict protein function more specifically. Genes

YKR055W, YIL118W and YJL128C have a GO term ‘‘intracellular

signaling cascade’’, but neither the PPI data nor the protein motif

information alone can predict the GO term for the proteins. When

PPI data alone is used, a GO term ‘‘signal transduction’’, which is

a parent of ‘‘intracellular signaling cascade’’ in the GO hierarchy

and hence a broader term, can be predicted. However, when both

PPI data and protein motif information are used, the GO term can

be predicted correctly. In this case, information that the proteins

have a protein motif ‘‘protein kinases signatures and profile’’ or

‘‘prenyl group binding site’’ helps to predict more specific term

‘‘intracellular signaling cascade’’ correctly.

3.2 Robustness analysis of the integration model
In the recall experiment in Section 3.1, we showed that PPI data is

the strongest source of evidence for protein function prediction in

our model, compared to other data sources. Here, we want to

know whether our integration model works well or not when the

amount of PPI data is limited. In this experiment, a certain

fraction of the PPI edges are randomly removed from the original

PPI network, and then protein function is predicted using our

integration model. Figure 3 shows the result of prediction at 50%

precision (left) and 80% precision (right). Here, x-axis shows how

much of PPI edges are present, compared to the original PPI

network. For example, at x = 50, half of PPI edges are randomly

removed from the original PPI network. The error bar shows the

standard deviation of 10 independent experiments. At 50%

precision, the integration model always wins, regardless of the

number of PPI edges present. However, interestingly, at 80%

precision, the integration model wins only when more than 50% of

PPI edges are present. In other words, in order to obtain high

prediction accuracy (80% precision) by the integration model,

certain amount of PPI data is necessary (more than 50% of

original PPI edges in this case). This result suggests that the

combination of gene expression, protein motif, mutant phenotype

and protein localization data is still a weak indicator of protein

function, and hence need to have certain amount of PPI

information (strong indicator of protein function) in order to

obtain high prediction accuracy (80% precision).

3.3 Prediction of function unknown proteins
By integrating five types of data, we assign plausible GO terms to

463 proteins among 1481 currently unannotated yeast Saccharo-

myces cerevisiae proteins (complete list available in Supporting

Information, Table S5). The threshold probability for function

annotation is 0.470, in which we expect 50% precision for the

protein function prediction from the cross validation experiment in

Section 3.1.

Among the predicted function of unannotated proteins, recent

literature reported [30] that YBL028C, YBR271W, YCR016W,

YJR003C, YDL167C, YDR361C, YIL096C, YIL127C,

YLR449W, YMR310C, YNL022C, YNL132W, YNL175C,

YGR187C, YGR283C and YOR021C as rRNA and ribosome

biosynthesis (RRB) regulon. It has also been reported [31] that

YLR051C encodes a protein involved in pre-rRNA processing,

confirming our prediction of ‘‘ribosome biogenesis’’ (or related

terms). Other than ribosomal proteins, recent literature reported
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that YAL053W participates in a cell wall biosynthesis process [32].

Since our prediction for YAL053W is ‘‘cell wall organization and

biogenesis’’, we can say that there is an experimental validation for

the prediction. Also, it is reported [33] that YBR280C encodes

a protein, which targets Aah1p for proteasome-dependent

degradation. Here, our prediction for the protein ‘‘SCF-dependent

proteasomal ubiquitin-dependent protein catabolism’’ is quite

consistent with the literature.

It is confirmed here that 20 out of 463 function predictions for

unannotated proteins are quite consistent with the conclusion from

the recent publications. We expect that many of our predictions

will turn out to be true after validation experiments.

All the biological data and a Perl program used in this analysis

are available at: http://genomics10.bu.edu/nariai/yeast_func/.

DISCUSSION
In this paper, we propose a probabilistic method to predict protein

function from multiple types of genome-wide data. Pair-wise

information between proteins, such as PPI data or co-expression

information is converted into a functional linkage graph, in which

an edge between nodes represents evidence for protein function

similarity. Category information, such as protein motif informa-

tion, mutant phenotype data, and protein localization data is

combined with the functional linkage graphs using a unified

probabilistic framework. We showed in our 5-fold cross validation

experiment that our method successfully improved prediction

accuracy and coverage by integrating five types of genome-wide

data. Also, by conducting robustness analysis of the integration

model to PPI edge removal, we showed that there is a certain

amount of PPI data necessary to obtain high prediction accuracy

by the integration model. We proposed functional predictions for

463 currently unannotated proteins. One subjective aspect of our

method is in the choice 0.85 in thresholding the correlation

coefficients in constructing our co-expression functional linkage

graph. However, we have found our results to be quite robust to

this choice; for example, even much higher thresholds yield

qualitatively quite similar results. In principle, a more objective

choice of threshold could be made through the use of cross-

validation, but this would come at the cost of an increased

computational burden. Other limitations are that we assume

probabilistic conditional independence between different types of

functional linkage graphs and each informational category. Of

course, this assumption might not always be correct in a biological

sense. For example, some of physically interacting protein pairs are

also co-expressed. However, previous literature has reported that

Naive Bayes frequently tends to work well, and frequently better

than more sophisticated classifiers, when the data are sparse

compared to the dimensionality of the problem, even when the

features (e.g., in our case, the functional linkage graphs and

category feature vectors) are not truly conditionally independent

[34,35]. Hence, we anticipate that our method may in fact prove

to be a fairly strong contender in competition, for the types of data

we use, with more sophisticated methods that may follow. In

addition, we assume independence between non-ancestral GO

terms. Since the GO terms comprise a hierarchical structure, and

there would be dependencies among the GO terms, one might want

to take the dependency between the nodes into account. Also in our

method, within a functional linkage graph, non-neighbors (two

nodes whose distance are more than one) are not considered for

functional similarity. Application of a Markov Random Field model

in conjunction with belief propagation and/or sampling may address

these limitations and is the subject of on-going investigation.

Although the result presented here is a case study for yeast S.

cerevisiae, we believe that similar advances are possible for fly,

worm, mouse and human where analogous resources are being

compiled.

SUPPORTING INFORMATION

Table S1 Improved GO terms by adding gene expression data

at 50% precision.

Found at: doi:10.1371/journal.pone.0000337.s001 (0.02 MB

XLS)

Table S2 Improved GO terms by adding protein motif data at

50% precision.

Found at: doi:10.1371/journal.pone.0000337.s002 (0.02 MB

XLS)

Table S3 Improved GO terms by adding phenotype data at

50% precision.

Found at: doi:10.1371/journal.pone.0000337.s003 (0.02 MB

XLS)

Table S4 Improved GO terms by adding localization data at

50% precision.

Found at: doi:10.1371/journal.pone.0000337.s004 (0.02 MB

XLS)

Table S5 Prediction result of unannotated genes. N1 is the

number of neighbors in PPI network, k1 is the number of t-labeled

(t is the predicted GO term) neighbors in PPI network, N2 is the

number of neighbors in co-expression network, and k2 is the

number of t-labeled neighbors in co-expression network.

Found at: doi:10.1371/journal.pone.0000337.s005 (0.23 MB

XLS)
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