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Abstract

Motivation: The main goal in this paper is to develop
accurate probabilistic models for important functional
regions in DNA sequences (e.g. splice junctions that signal
the beginning and end of transcription in human DNA).
These methods can subsequently be utilized to improve
the performance of gene-finding systems. The models
built here attempt to model long-distance dependencies
between non-adjacent bases.

Results: An efficient modeling method is described which
models biological data more accurately than a first-order
Markov model without increasing the number of param-
eters. Intuitively, a small number of parameters helps a
learning system to avoid overfitting. Several experiments
with the model are presented, which show a small im-
provement in the average accuracy as compared with a
simple Markov model. These experiments suggest that sin-
gle long distance dependencies do not help the recognition
problem, thus confirming several previous studies which
have used more heuristic modeling techniques.
Availability: This software is available for download and
as a web resource at http://www.ai.uic.edu/software
Contact: kasif@eecs.uic.edu

Introduction

Recent advances in biotechnology have triggered the
generation of massive amounts of biological data. The
size and complexity of biological sequence databases
suggest that automated systems for sequence modeling
and analysis will be essential for extracting scientific
knowledge from biological sequence data. Such systems
have already begun to demonstrate their importance in
the process of biological discovery. As an example, the
GLIMMER (Salzberg et al., 1998) system for micro-
bial gene finding has been adopted by several genome
sequencing projects, and has already been used to find
thousands of genes in the bacterium that causes Lyme
disease, as well as other bacteria. Several gene-finding
systems have also been built for gene finding in human
DNA sequences (Kulp er al., 1996; Burge and Karlin,

1997; Henderson et al., 1997; Xu and Uberbacher, 1997).

A critical component in these systems is an effective
model of splice junctions. These regulatory regions
represent the interface between introns and exons and
provide signals for nuclear machinery in the form of
snRNA-proteins to excise the intron segments from pre-
mRNA. The resulting ligand consists only of exons, the
actual protein coding regions of the RNA transcript. From
the biological standpoint, the splicing action is necessarily
specific; otherwise protein consistency would be poor. It
follows that the splice site must exhibit strong features
which facilitate a particularly high specificity between the
signal-detecting protein and the pre-mRNA. Indeed this
is the case as the majority of the gene-finding systems
rely heavily on splice site signals as compared with other
potential signals in the DNA template.

This paper describes an application of Bayes networks
in the form of trees to the problem of modeling DNA
regulatory regions, in particular, those DNA segments that
signal mRNA splice junction positions. These positions,
commonly known as acceptor (5" splice site) and donor
(3’ splice site) sites, exhibit certain properties which
facilitate their recognition by snRNA-proteins (snRNP)
in the pre-mRNA splicing process. Tree networks can
capture distant dependencies in DNA segments that may
be omitted by other models such as conventional Markov
and hidden Markov models. This paper generalizes the
work reported in Salzberg (1997) (also see Reese et al.,
1997) where first-order Markov models were used to
learn the probability distribution characterizing acceptor
and donor sites. The main contribution of this paper
is providing an efficient method to model biological
data more accurately than a first-order model without
increasing the number of parameters. The number of
parameters used in automated learning systems is often
critical for obtaining good generalization capability and
consequently strong predictive accuracy. Intuitively, a
small number of parameters helps a learning system to
avoid overfitting.

The method reported in this paper learns the best model
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Fig. 1. First-order Markov chain model.

from a family of models (Bayes tree networks) in the
sense of maximizing the likelihood of the training data
given the model. Since this family of models includes first-
order Markov models it is guaranteed to be at least as
good as a first-order model. If, however, the best model
is a standard first-order Markov model then the algorithm
will produce that as its output. Tree models use the same
number of parameters as first-order Markov models. As a
result, the algorithm can be expected to achieve equal or
better predictive accuracy.

Tree networks

An informal introduction to probabilistic tree networks in
the context of DNA sequence analysis is provided here.
For a more thorough coverage of probabilistic networks
the reader is referred to Pearl (1991).

In order to model a DNA sequence of length N,
a discrete random variable X; is associated with each
position i in a sequence. Each random variable X; takes
values from the set {A, C, G, T}. Recall that a first-
order Markov model assumes that the joint probability
distribution is based on the following assumption of
conditional independence:

LX) = p(XD)p(XalX1) ... p(XnlXnet)

ey
That is, the probability distribution of bases in position
i depends only on the previous base in position i — 1.
Figure 1 shows this dependency.

Probabilistic tree networks generalize the first-order
Markov model by allowing position i to depend on any
position j. If the probability of variable i depends on
variable j, then variable j will be referred to as the
parent of i. Probabilistic tree networks allow arbitrary
pairwise dependencies as long as each variable has
at most one parent in the dependency tree. In other
words, each position is allowed to ‘depend’ on a single
position. However, a single position can ‘influence’
more than one position. For instance, Figure 2 gives a
simple probabilistic network that describes a probability
distribution in the form of a tree. This probabilistic model
implies that the joint probability distribution on seven
variables p(Xo, X1, X2, X3, X4, X5, Xg) has a simple
form. Specifically, it can be factored as a product:

P(X1, Xo, ..

p(Xo, X1, X2, X3, X4, X5, X6) =
p(Xo)p(X11X0) p(X21X0)p(X31X1) ... (2)
p(X41X1)p(X5|X2) p(X6l|X2)

g

Fig. 2. Tree model.

Learning probabilistic tree models

The method for learning probabilistic tree models used
here relies on a classical result by Chow and Liu (1968),
who proposed a simple method of computing the best
probabilistic tree from the data, in the sense of maximizing
the likelihood of data given the model. The procedure to
compute this tree is as follows:

e Compute the mutual information M(i, j) be-
tween every pair of variables i and j. M(i, j) =
Xy yp(x, y)log p(x, y)/p(x)p(y), where x and y
are the set of values taken by variables i and j,
respectively.

e Construct a weighted graph G = (V, E) where
node i of the graph corresponds to random variable X;
(position i in the sequence). The edge between nodes
i and j is associated with weight W (i, j) = M(, j),
the mutual information between positions i and j in
the sequence.

e Construct a maximum spanning tree of the graph G.
A maximum spanning tree of a graph is an acyclic
subgraph (i.e. a tree) that contains all nodes of the
graph, where the sum of the edge weights included in
the tree is maximized. Maximum spanning trees can be
computed simply and efficiently using several standard
algorithms (Cormen et al., 1990).

e Orient the tree by choosing variable X as the root of
the tree and orienting all edges away from the root.

e For each pair of variables X; and X; such that X; is
the parent of X ; compute the conditional probability of
p(X;1X;). That is, approximate conditional probabili-
ties by recording the empirical frequencies observed in
the data.
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Fig. 3. Tree models for acceptor and donor sites using 15 and 25 base window sizes. Node numbers denote position in the sequence.
(a) Acceptor model at window size 15. (b) Acceptor model at window size 25. (c) Donor model at window size 15. (d) Donor model at

window size 25.

It is possible to prove (Pearl, 1991) that the above
construction maximizes the probability of the data given a
tree model. Since the first-order Markov chain is a special
case of the tree model, it remains a possible solution of
this algorithm assuming it is, in fact, the best model of the
data.

The maximal spanning tree is unoriented, thus in order
to determine the probability of a particular sequence being
generated by the tree model, the tree must first be oriented.
The orientation of the tree is arbitrary since relationships
between nodes remain constant regardless of how the
tree is oriented; orientation merely facilitates the scoring
process. For consistency, the variable associated with the
first position of the sequence is chosen to be the root of the
tree.

Given an oriented tree network as in Figure 2, it is easy
to compute the probability that a particular sequence was
generated by model M by multiplying the appropriate
conditional probabilities. For instance, in order to score
a particular sequence (xo, X1, X2, X3, X4, X5, Xg), simply

multiply the conditional probabilities as follows:

p(xo0, X1, X2, X3, X4, X5, X6|M) =
p(x0) p(x11x0) p(x2]x0) p(x31x1) p(x4]x1) p(x5]X2)
p(x6lx2) 3)

where p(x;|x;) refers to the conditional probability (as
approximated by the empirical frequency in the data) of
nucleotide x; in position i given nucleotide x; in position
J-

Experiments

The procedures used here generally follow the experi-
mental methodology outlined in Salzberg (1997). A set
of donor/acceptor sequences and a large set of non-splice
junction DNA were extracted from the Genie database,
available at http://www.ucsc.edu.

The set of true splice sites was partitioned into 80%
training data and 20% testing data while the set of false
splice sites was partitioned into 20% training data and
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80% testing data, due to its size. Each set of training
data is then used to train two different models: a model
for true sites, Mt, and a model for false sites, Mg. An
unknown sequence S can then be classified by calculating
the probability ratio:

p(S|Mr)
p(S|Mp)

and subsequently comparing this with an empirically
determined threshold value. The algorithm then varies
the threshold in fixed increments. For each given value
of a threshold as determined using the training set, the
algorithm computes the false negative and false positive
rate on the testing set.

Given a training data set D comprised of K sequences,
each of length n, the goal is to compute the probability
distribution P that best fits D. Results obtained by
applying probabilistic tree networks to the problem of
modeling acceptor and donor sites in DNA sequences are
summarized below.

The experimental results are summarized in Tables 1
and 2. These tables compare the predictive accuracy of
three different models: the above-described tree model
(Tree); a conventional first-order Markov chain model
(Chain); and a model using independent probabilities for
each position in the sequence (Independent). Each table
shows the percentage of false positives and false negatives
in the testing set for sequences of lengths 15, 20 and 25
bases around the splice site. Table 1 shows results for
acceptor sites, and Table 2 shows corresponding results for
donor sites. The trees used by the tree model are shown in
Figure 3 for both donor and acceptor sites using sequences
lengths of 15 and 25 bases. Figures 4 and 5 plot the
tradeoff between false negatives and false positives for the
three models.

In Table 3 we provide the results of running a variant of
the model developed by Burge and Karlin (1997) on our
data. This model is based on probabilistic decision trees
which support high-order Markov models. For instance, a
full tree of depth three (64 leaves) can express a third-order
model. The model proposed in Burge and Karlin (1997) is
a carefully designed model that focuses only on some of
the most prominent dependencies in the data. It appears
that the model is providing a slightly better false positive
rate than both the chain model and the tree model when no
false negatives are allowed in the training set. It is slightly
inferior to the chain model in the false negative category as
it missed 2/355 donors on average. For the other settings of
the threshold the results are somewhat incomparable. We
comment that because different models are attached to the
leaves of the maximal dependence decomposition (MDD)
model it is somewhat difficult to define thresholds for each
model to provide a proper comparison with the single
model used in the other methods.
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Fig. 4. Comparison of the three acceptor models.
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Fig. 5. Comparison of the three donor models.

These results confirm that simple first-order Markov
chains are surpisingly effective for modeling splice sites.
In general the variations are very small. It is important
to observe that a better classification accuracy on a static
classification problem is not a guarantee of improving
gene recognition if the splice-site model is used in a
general system such as Genscan (Burge and Karlin, 1997).

Conclusion

This paper has described a new model of splice sites
in DNA sequences. In particular, the new model is
capable of capturing distant dependencies between non-
neighboring bases in DNA signals. These neighboring
and non-neighboring dependencies are captured through a
tree structure of conditional probabilities. This approach
provides a generalization of previously published work
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Table 1. Comparison of acceptor tree models at window sizes 15, 20 and 25 (FN = false negatives, FP = false positives)

Window Size

15 20 25
Model Training True testing False testing True testing False testing True testing False testing
EN (%) EN (%) FP (%) EN (%) FP (%) FN (%) FP (%)

Tree 0 0.85 3.15 0.85 2.92 0.56 2.84
1 1.69 1.77 1.41 1.52 1.13 1.31

2.5 3.94 1.19 3.66 1.01 423 0.936

5 6.2 0.882 6.76 0.702 8.45 0.657

10 15.5 0.524 13.2 0.455 14.4 0.413

20 27.9 0.313 27 0.253 27.6 0.231

25 324 0.251 34.1 0.2 35.8 0.158

30 36.3 0.205 39.7 0.158 41.1 0.128
Chain 0 1.13 3.15 1.41 291 1.13 291
1 1.97 1.65 1.41 1.39 1.41 1.36

2.5 3.94 1.15 3.66 0.968 3.66 0.912

5 7.32 0.855 6.48 0.708 8.17 0.657

10 13.2 0.55 13.8 0.457 14.6 0.402

20 27.6 0.326 27 0.268 28.2 0.236
25 315 0.263 35.2 0.197 349 0.17

30 383 0.209 38.3 0.157 40.6 0.129
Independent 0 0 6.59 0 6.29 0 5.81
1 1.13 2.21 1.41 2.05 1.41 2.03
2.5 5.07 1.58 4.23 1.37 423 1.37
5 9.01 1.1 8.17 0.97 8.17 0.98
10 13.5 0.735 13.2 0.651 14.9 0.61

20 25.1 0.42 25.6 0.364 23.4 0.344

25 315 0.337 29.9 0.282 28.7 0.272

30 34.6 0.277 34.6 0.233 332 0.213

Data size 1399 355 3719401 355 3719401 355 3719401

for splice site recognition. Moreover, the learning method
described here for modeling splice sites is theoretically
guaranteed to match or outperform previous first-order
Markov-model methods in terms of likelihood of matching
the data given the model.

From a biological perspective the rather surprising
discovery is the result that Markov chains are surprisingly
effective for modeling splice sites. The method described
in the paper is guaranteed to find the best tree network,
thus results suggest that distant pairwise dependencies are
not sufficient for dramatic improvements in splice site
recognition. This is an intriguing result which is also
supported by similar studies (using different methods)
found in Agarwal and Bafna (1998) and Burge and Karlin
(1997).

Tree-based models, however, are likely to have addi-
tional applications in biological sequence modeling such
as transcription factor binding sites where the sparsity of
data precludes the use of a more complex model which has
many more parameters.

While the approach described here is promising, it is

important to note that it is not guaranteed to achieve
a better classification accuracy (e.g. reducing error) on
unseen data. The theoretical reason is simple. Recall that
the original goal was to find the most likely model, M,
given the data D; however, this is not readily maximizable.
Thus, one must resort to using Bayes’ rule to invert the
expression. Now,
P (M)
P(M|D) = P(DIM)——— ®)
P(D)
Since P (D) is constant, and assuming that all tree models
are equally likely, equation (5) implies that P(M|D) can
be maximized by simply maximizing P(D|M). Once
again, this requires the assumption that all tree models
for DNA sequences are uniformly distributed even though
this assumption may be unrealistic. Thus, if chain-like
models are slightly more likely than non-chain models the
improved ability to fit the data might, in fact, be balanced
by the P (M) factor that is ignored in this computation.
In other words, while the number of parameters is the
same as in first-order Markov models the tree model can
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Table 2. Comparison of donor tree models at window sizes 15, 20 and 25 (FN = false negatives, FP = false positives)

Window Size

15 20 25
Model Training True testing False testing True testing False testing True testing False testing
EN (%) EN (%) FP (%) EN (%) FP (%) FN (%) FP (%)
Tree 0 1.13 3.09 1.13 2.95 1.13 2.62
1 1.41 1.07 1.41 0.991 1.41 0.959
2.5 1.97 0.7 2.82 0.608 2.54 0.672
5 4.79 0.431 451 0.46 5.63 0.442
10 11 0.26 12.7 0.27 13.8 0.277
20 24.5 0.144 239 0.147 242 0.147
25 30.1 0.118 324 0.111 32.1 0.113
30 36.1 0.095 39.4 0.088 38 0.092
Chain 0 0 3.65 0.28 3.38 0.28 3.05
1 1.41 0.886 1.13 1.08 1.69 1.11
2.5 2.25 0.617 2.25 0.637 1.97 0.73
5 3.1 0.463 3.94 0.489 4.79 0.505
10 9.58 0.266 12.1 0.293 13.2 0.297
20 23.7 0.146 234 0.152 22.8 0.159
25 30.7 0.11 30.1 0.113 32.1 0.116
30 34.1 0.089 37.2 0.086 37.2 0.095
Independent 0 0.28 39 0 4.15 0.28 3.89
1 0.28 1.17 0.56 1.25 1.13 1.32
2.5 1.69 0.809 2.54 0.8 3.1 0.835
5 5.35 0.577 5.63 0.583 6.48 0.598
10 13 0.375 11.8 0.377 11.3 0.389
20 223 0.205 22 0.21 21.1 0.223
25 27 0.16 26.8 0.168 27.3 0.17
30 324 0.12 33.8 0.12 32.1 0.129
Data size 1399 355 3719401 355 3719401 355 3719401

Table 3. False negative (FN) and false positive (FP) rates using the maximal
dependence decomposition (MDD) method of Burge and Karlin (1997) for
predicting donor sites

Model
Training True testing False testing
FN (%) FN (%) FP (%)
0 0.56 2.31
1 1.97 1.87
2.5 2.82 1.16
5 3.66 0.69
10 9.01 0.41
20 20.0 0.20
25 26.2 0.16
30 313 0.13
Data size 1399 355 3719401

still overfit the training set since it searches for models
over a wider family.

Nevertheless, this is a promising approach for DNA
sequence modeling, which might have additional

applications in other domains such as transcription-factor
binding-site modeling, promoter modeling and protein
modeling.

Finally, it is noted that using tree models it is possible to
generalize the notion of the consensus sequence. Recall
that a consensus matrix as described in many previous
studies (Bucher, 1990; Hertz et al., 1990) is a zeroth-
order Markov chain. The consensus sequence for a zeroth-
order Markov model is given by independently computing
the most likely nucleotide in each position. A similar
computation of consensus sequences using tree models
can also be done efficiently by a simple procedure.

The software used in these experiments is available by
sending an e-mail to kasif@eecs.uic.edu.
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