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ABSTRACT

Motivation: Genes with identical patterns of occurrence
across the phyla tend to function together in the same
protein complexes or participate in the same biochemical
pathway. However, the requirement that the profiles be
identical (i) severely restricts the number of functional links
that can be established by such phylogenetic profiling; (ii)
limits detection to very strong functional links, failing to
capture relations between genes that are not in the same
pathway, but nevertheless subserve a common function
and (iii) misses relations between analogous genes. Here
we present and apply a method for relaxing the restriction,
based on the probability that a given arbitrary degree of
similarity between two profiles would occur by chance, with
no biological pressure. Function is then inferred at any
desired level of confidence.

Results: We derive an expression for the probability
distribution of a given number of chance co-occurrences
of a pair of non-homologous orthologs across a set of
genomes. The method is applied to 2905 clusters of
orthologous genes (COGs) from 44 fully sequenced
microbial genomes representing all three domains of life.
Among the results are the following. (1) Of the 51000
annotated intrapathway gene pairs, 8935 are linked at a
level of significance of 0.01. This is over 30-fold greater
than the 271 intrapathway pairs obtained at the same
confidence level when identical profiles are used. (2) Of
the 540000 interpathway genes pairs, some 65000 are
linked at the 0.01 level of significance, some 12 standard
deviations beyond the number expected by chance at
this confidence level. We speculate that many of these
links involve nearest-neighbor path, and discuss some
examples. (3) The difference in the percentage of linked
interpathway and intrapathway genes is highly significant,
consistent with the intuitive expectation that genes in
the same pathway are generally under greater selective
pressure than those that are not. (4) The method appears
to recover well metabolic networks. This is illustrated by
the TCA cycle which is recovered as a highly connected,
weighted edge network of 30 of its 31 COGs. (5) The
fraction of pairs having a common pathway is a symmetric

function of the Hamming distance between their profiles.
This finding, that the functional correlation between
profiles with near maximum Hamming distance is as large
as between profiles with near zero Hamming distance,
and as statistically significant, is plausibly explained if the
former group represents analogous genes.

Contact: delisi@bu.edu

1 INTRODUCTION

In recent years severa high throughput computational
methods have been developed in an effort to begin closing
the sequence-function gap. The methods include the
application of machine learning algorithms to microarray
perturbation experiments (Eisen et al., 1998; Southern et
al., 1999); domain fusion (Enright et al., 1999; Marcotte
et al., 1999; Yana et al., 2001); chromosomal proxim-
ity (Overbeek et al., 1999) and phylogenetic profiling
(Huynen and Bork, 1998; Gaasterland and Ragan, 1998;
Pellegrini et al., 1999). Phylogenetic profiling isespecially
intriguing because it is broadly applicable, permitting in-
ference about human as well as microbial genomes. In its
simplest form however, when only identical profiles pairs
are used to draw inferences, the method has low coverage.

The profile of a gene is the pattern of occurrence of its
orthologs across a set of genomes. In particular, itisavec-
tor of binary digits; a 1 denoting the presence of the gene
in a given genome, a 0, absence. The restriction to genes
with identical profiles can be relaxed in anumber of ways.
One way is to calculate the probability that the relation
observed between two non-identical profiles could have
been obtained purely by chance. Functional links are then
assigned in accordance with the criterion used to reject
the null hypothesis. The restriction can aso be lifted by
calculating a correlation coefficient between two vectors,
or by calculating their mutual information. In order to
provide perspective, we apply these methods as well, and
discuss them in terms of our background distribution.

We apply the method to clusters of orthologous genes
from 44 fully sequenced microbial genomes representing
41 lineages in the three domains of life. We find 51
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thousand annotated intrapathway gene pairs of which
8935 are linked at alevel of confidence of 99%. We also
identify 540 thousand interpathway genes pairs, of which
some 65000 are linked at the 99% level of confidence.
This latter number is some 12 standard deviations beyond
the number expected by chance at this confidence level,
suggesting that the large majority of the genes thus
identified subserve a common function, even though they
are not in the same pathway. We speculate that many of
these links involve intersecting paths (i.e. paths sharing
one of more genes) and discuss some examples. At any
confidence level, the difference between the percentage
of interpathway genes that are linked and intrapathway
genes that are linked is highly significant. In addition,
as confidence level increases, the ratio of intrapathway
to interpathway linked pairs increases. These results are
consistent with the intuitive expectation that genes in
the same pathway are generally under greater selective
pressure than those that are not.

2 METHODS
2.1 Thedata set

We adhere closely to the conventions of the COG database
(http://www.ncbi.nlm.nih.gov/COG/; Tatusov et al., 2001)
and construct profiles only for genes that occur in at
least three lineages. All paralogs are collapsed; i.e. a
set of closely related genes in a given lineage is treated
as a single entity. The collapse of paralogous genes
substantially reducesthe number of links. For example, we
can detect 469129 linked gene pairs among 4289 E.coli
genes at a confidence level of 99% when the paral ogous
genes are not collapsed, as opposed to 158080 pairs
from 1612 COGs, when they are collapsed. However,
the additional links add little information, since paralogs
typically have related functions.

We also eliminated from consideration all sets of 20 or
more COGs that share the same profile. There are 261
COGs with seven distinct profiles in this group, leaving
3166 — 261 = 2905 COGs. For example housekeeping
genes have a common profile (present in all or almost al
genomes), but they also have diverse functions; they and
their profiles are therefore eliminated from consideration
at the outset. Such prior screening is important when the
inference criterion is based on identical profiles. In the
more general situation considered here, we will see that
housekeeping and other genes having unusual profiles are
eliminated naturally by the method itself, rather than by an
apriori screen.

Let N = 41 be the total number of lineages over which
we construct profile vectors for R COGs, denoted by X1,
Xo... XR. Each gene X is therefore represented by an
N-component vector describing its pattern of occurrence
across the set of lineages, a component having a value of

1 when the geneis present and O when it is not. Define the
profile vectors X and y for genes X and Y, and let x and y
be the number of lineages in which (orthologs of) gene X
and Y occur (i.e. X and y are the sums of the components
of their profile vectors, sometimes called the Hamming
weight). We further define the variable z as the number of
lineagesinwhich X and Y co-occur. Wewill be comparing
average or first order properties of these vectors. the
chance probability of a given number of co-occurrences,
properly conditioned as described below; the Pearson
correlation coefficient and the Mutual Information. First-
order properties mean that we omit, as in all previous
work, correlations between the genomes themselves (i.e.
variations in phylogenetic distance between genomes).

2.2 Chance co-occurrence probability distribution
(P)

Thedistribution of interestis P(z| N, X, y), the probability
of observing by chance (i.e. no functional pressure) z co-
occurrences of genes X and Y inaset of N lineages, given
that X occursin x lineages, and Y occursin y.

To be specific in the development of the formalism, we
will define x to be the smaller of the two variables (x, y).
Therefore, by definition

In addition, the minimum value of z is constrained by

) x+y—-N x+y=>=N

Define w; as the number of ways to distribute z co-
occurrences over the N lineages, and w; as the number of
ways of distributing the remaining x — z and y — z genes
over the remaining N — z lineages. P(z|N, X, y) is the
number of ways in which x and y can be distributed over
N genomes, given that there are z co-occurrences, divided
by the total number of ways x and y can be distributed
without restriction. The total number of ways in which z
Cco-occurrences can occur, given N, x and y is wz X wz

where
N _ N -2z N —x
o= (8) o= (42) (372)
(N —2)!

- (N+zZ—X—-YIX-2(y—2!

The number of ways, W, of distributing X and Y over N
lineages without restriction is

-

©)

©)

Therefore,
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wherethe arguments of P have been omitted for notational
simplicity.

For future reference we define p1(X) and p2(X) asthe
fraction of lineagesin which gene X is present and absent,
respectively.

p1(X) =X =X/N, p2(X) =1 - p1(X) =1-X. (6)

2.3 Other measures of correlation between
profiles

To provide perspective we consider three standard mea-
sures of profile similarity, the Hamming distance (D), the
Pearson correlation coefficient (r) and mutual information

.

Hamming Distance (D)
Hamming distance as a function of (X, y, z) is

D=x+y—-2z (7)

Pearson Correlation coefficient (r)
With no correlation between phyla, we have

f_ Nz — xy
V(NX = x2)(Ny — y?)

IfXx=y=2zthenD =0andr = 1foral (x,y, z). This
expresses the fact that the Pearson correlation coefficient
cannot discriminate between identical profiles. The state-
ment may seem obvious, but other measures, in particular
mutual information (below) and the probability of chance
occurrence, do make such adistinction. In a similar man-
ner we find that when D = 1, the range of correlation
coefficientsis highly restricted.

The actual number of variables on which r depends
can be seen more clearly by defining mean occurrence
probabilities f; = z/N, fy = y/N, fx = p1(X) = x/N.
Then

(8)

f f,— fxfy ‘ ©)
J = £y — 1)
Mutual Information (1)
The mutual information is
pij (XY)
1(X,Y) = i (X, Y)logy, ————=
(X.Y) ;p”( )log, =5
pij (X,Y)
= i(X,Y)logp ————. (10
2 PiO0IG oy (10

To make the connection with Equation (9) more explicit,
we carry out the sums in Equation (10). In particular,

define
f,
11(X,Y) = f;log, ——;
fy fy
f — f
[2(X,Y) = (fx — f;)log, %;
X -y
f, — f
13(X,Y) = (fy — fz>log2%;
y - IX

1-fx—fy+ )
(1-fo@-fy °

Then

FOXY) = 10K Y) + 120X, Y) + 13(X, Y) + 14(X, Y).
(11)
For identica profiles, the mutual information is zero as
the co-occupancy of lineages becomes complete (z = N)
or non-existent (z = 0), and reaches a maximum of 1
when the co-occupancy of the set of lineagesis 50%. Thus
thereisagreat deal of variation in the mutual information
of identical profile pairs. In genera, r, | and P are dl
functions of x, y and z given N but not unique functions of
one another. For compl eteness we note that combinatorial
expression for P(z|x, y, N) (Equation 6) which is exact
for al N, is approximated by a binomia provided all
factorials become large, and provided f; = fxfy. In
that case Equation (6) becomes the natural background
distribution for the Pearson correlation coefficient r.

3 RESULTS AND DISCUSSION

3.1 Therdation between different measures of
correlation

We have developed an expression for the probability that
the two profiles match by chance, as a function of x, y, z
and N. For comparison we also discuss the utility of the
Pearson correlation coefficient and mutual information,
which are functions of the normalized variables x/N,
y/N and z/N. Ultimately we would like to be able to
comment on the extent to which the value of a correlate
provides information about the relation between a pair of
genes. There is of course a certain level of arbitrariness
in choosing the level of biological function at which such
acorrelation is to be used. In this paper we discuss func-
tional linkage at two levels: in terms of 126 biochemical
pathways as given in the Kyoto Encyclopedia of Genes and
Genomes  (http://www.genome.ad.jp/kegg/kegg2.html,
Kanehisa and Goto, 2000) and in terms of the 18
coarse grained functional categories compiled by
the National Center of Biotechnology Information
(http://ww.ncbi.nlm.nih.gov/COG/). Although these on-
tologiesare useful, they provide only asmall glimpse at al
the relations between genesthey contain since many genes
in different pathways, or in different COG categories, sub-
serve common functions. For example, of the 42 thousand
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Fig. 1. The distribution of mutual information (I: diamond)
and Pearson correlation coefficient (r: square) as a function of
probability of chance co-occurrence. For any particular value
of probability, there is a distribution of values of the other
two measures of correlation. The standard deviations in these
distributions are shown by the error bars.

COG pairs that are in the same COG functional category
and annotated in KEGG, 31 thousand are in different
pathways. We will return to this later. First we comment
on the relation between the different correlation measures.

Profile pairs in a relatively narrow probability interval
will have disparate combinations of (X, y, z). A particular
set of combinations corresponding to a common proba-
bility does not, however, correspond to a common value
of Pearson correlation or mutual information; i.e. the
chance occurrence probability of a profile-pair does not
uniquely specify either the Pearson correlation coefficient
or the mutual information (Fig. 1). Analogous statements
are true when r and | are the independent variables
(data not shown). The three measures of correlation are
nevertheless strongly coupled.

With mutual information and Pearson correlation as a
function of probability of chance co-occurrence (Fig. 1),
the mutual information increases more or less logarith-
mically as probability decreases, and its dispersion is
relatively invariant and tight. The correlation coefficient
(r) on the other hand has a larger dispersion, rises rela-
tively rapidly with — log P, and isrelatively insensitive to
changes in probability for correlation coefficients above
0.8.

Profileswithr below 0.4 are not significantly correlated
and the dispersion in the relation between | (or probabil-
ity) and r increases as the correlation coefficient increases
(data not shown). High correlations are of course signifi-
cant in terms of probability, but the range of probability
values corresponding to a given level of correlation spans
several orders of magnitude; i.e. r essentially loses its
ability to discriminate between profiles whose levels of
significance varies widely. This has implications (to be
developed elsewhere) for the specificity with which genes

can be allocated to neighboring pathways. The dynamic
range of the Pearson correlation coefficient is therefore
smaller than it is for the mutual information.

3.2 Degenerate profiles

A number of genes have identical profiles. When the num-
ber of genes that share a particular profile is small, such
identity is a strong indication that the genes are related.
To be specific, seven profiles have 20 or more genes in
common. Five of the seven represent housekeeping genes,
i.e. genes that occur in al or nearly al genomes. One of
them, having a total number of 70 genes, occursin al 41
lineages. An application of Equation (6) shows immedi-
ately that pair wise profile patternsformed by the profile of
these genes and any other profile is entirely insignificant.
They therefore do not need to be screened out a priori,
but are properly eliminated by the method. Two others are
more interesting. One occursin nine out of 41 lineages, the
other in 30 of 41 lineages. The probability of pairing these
two profiles, taken across all genomes, with others can be
significant. However, the former which includes 20 genes,
occurs in archaea only (9/9), and the latter (21 genes) oc-
curs in bacteria (30/30) only. When paired with any pro-
fileswithin their life domainsthe patterns are insignificant.

The remaining two profiles occur in archaea (9/9) +
eukaryotes (2/2) only and bacteria (30/30) + eukaryotes
(2/2) only (53 and 28 genes respectively). Here too, there
is little or no chance that a function would be incorrectly
assigned.

Two additional profiles remain and they do cause er-
ror, because they are related to genomic correlations. One
of them includes 39 genes that only occur in three ar-
chaea genomes, Archaeoglobus fulgidus, Methanococcus
jannaschii and Methanobacterium ther moautotrophicum,
and forms a cluster on the evolutionary tree. These genes
perform functions ranging from cell division, ribosomal
structure and biogenesis, to energy production and conver-
sion and amino acid transport and metabolism. The other
promiscuous profile contains 30 genes exclusively from
four closely related bacterial genomes: Escherichia coli,
Haemophilus influenzae, Vibrio cholerae and Pasteurella
multocida. None of the 30 genes have pathway annotation
in KEGG,; 10 of them are annotated, and these are dis-
tributed over three COG functional categories: DNA repli-
cation, recombination and repair; cell envelope biogene-
sis; cell division and chromosome partitioning. The signif-
icance of the intra-group profiles for the 39 gene archaea
group and the 30 gene bacterial group are 10~°, 1076 re-
spectively when all 41 lineages are used, and 10~2, 10~°
after life domain adjustment. In this instance we clearly
draw the wrong inference—the correlation is significant
not because of similarity between genes, but because of
similarity between genomes.
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Fig. 2. Fp: fraction of gene pairs that have a profile correlation
of Hamming Distance D, and share a common pathway in KEGG
(diamond), or fall into the same functional category in COG

(square).

3.3 Corréationsasa function of Hamming
distance (D)

When profiles are identical (D = 0), the fraction
of annotated genes sharing at least one pathway is
approximately 0.9 and, over a range of seven decades, it
is nearly independent of the probability that the profiles
arerelated by chance. As D increases (Fig. 2) the fraction
of genesthat share a pathway decreases rapidly until D of
about 5, remains relatively constant at 0.08 between 5 and
35, and then increases again. Thusthe likelihood that pairs
will have a similar function as defined by the COG and
KEGG ontologies is independent of the distance between
profiles, except for profiles that are very similar (fewer
than three or four differences), or very dissimilar (fewer
than three or four similarities).

For D > 36, the two profiles in a pair are nearly
symmetric, rather than nearly identical. They therefore
have a high negative correlation, and as a result their
functional correlation increases at large D in a way that
is symmetric to its decline for small D. In other words
at large values of D, when gene X is present in a given
genome, gene Y tends to be absent, and vice versa, but
X and Y occur in the same set of orthologous pathways
(that is, pathways in different organisms, in analogy to
orthologous genes), as though they are substituting for
one another. It therefore appears plausible that X and Y
are analogs; i.e. they are different genes with different
sequences, which appear to be playing asimilar role. Such
patterns can arise by non-orthologous gene displacement,
in which one gene is replaced by analogous genes in one
or more genomes (Koonin et al., 1996). For example,
a class | lysyl-tRNA (COG1384) can replace the non-
homologous but analogous class Il gene (COG1190) in
function, leaving each genome ableto use either of the two
(Galperin and Koonin, 1999). Both genes participate in
the Lysine biosynthesis and Aminoacyl-tRNA biosynthesis
pathway while having aprofile D = 41. What isimportant

as far as this paper is concerned is that (Equation 5)
symmetric or nearly symmetric profiles have alow chance
co-occurrence probability. If we were limited to using
only perfect matches to draw functional correlation, the
significance of symmetric or nearly symmetric profile
pairs would be missed entirely.

3.4 Functional linkage

The NCBI database provides 1.54 x 10° annotated pairs
of COGs, 113380 are in the same functional categories;
for the Kyoto encyclopedia of genes and genomes, 51 643
of the 594595 annotated gene pairs are in the same
pathway. To be specific about the meaning of this last
set of numbers, define ng as the number of pathways
with k proteins. Such pathways have k(k — 1)/2 pairs
and Y ngk(k—1)/2 = 51643, the tota number of
intrapathway pairs.

We refer to a gene pair as linked if the correlation in
their profiles exceeds some specified value. Thus profiles
having a chance occurrence probability below 102 are
said to be linked at a significance level of 1072; those
whose probability of chance occurrenceisbelow 10~3 are
said to belinked at that level, etc. For any specified degree
of linkage, gene pairs can be in one of four mutually
exclusive and collectively exhaustive categories. in the
same pathway and either linked or not linked, and in
different pathways and either linked or not linked. We
are interested in the distribution of genes pairs and their
correlations, in these categories.

We characterize this distribution with the 2 x 2 matrix

Cij(i = 1,2j = 1,2), wherei labels pathway state
(i = 1, same pathway; i = 2, different pathway)
and | labels linkage state (j = 1, linked, ] = 2,

not linked) (Table 1). Because there are many more
interpathway than intrapathway gene pairs, the number of
links is actualy larger in the former group than in the
latter when the confidence level is 99%. In particular, of
the more than 51000 pairs that share a pathway, 8935
are linked at the 0.01 level; i.e. the probability that the
relation between the profiles could have been a chance
happening with no evolutionary pressure is less than 0.01
(Fig. 3). Many of the gene pairs in the same pathway are
not sufficiently correlated to rule out chance occurrence,
even at the significance level of 1072. For example,
the gene pair of pyruvate dehydrogenase (COG2609)
and phosphoglucomutase (COG0033) both participate in
the glycolysis pathway while their profiles chance co-
occurrence probability is more than 102,

On the other hand, for the complementary population of
542 952 pairs that do not share a pathway, 65422 are cor-
related at aconfidence level of 99% (Table 1). Thisismore
than 10 standard deviations above the number expected by
chance at the 0.01 level of significance. As noted earlier,
when we commented on the connection between COG
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Fig. 3. Number of gene pairs as a function of confidence level.
C11(diamond) is the number of gene pairs that share a common
pathway in KEGG: intrapathway linked pairs. C»1 (square) is the
number of gene pairsthat do not share pathway: interpathway linked
pairs.

and KEGG, many of interpathway linked genes can fall
into the same functional category. For example, NADH
(COG0623) and acetate kinas (COG0282) have profile
pairs significant at the 102 level. The former participates
only in the Fatty acid biosynthesis pathway, while the lat-
ter isin three pathways: Glycolysis, Pyruvate metabolism
and Propanoate metabolism pathway. However, the fatty
acid biosynthesis pathway neighbors both the Pyruvate
metabolism and Propanoate metabolism pathway, in the
sense that they share common genes, which in this case
are Acetyl-CoA carboxylase beta subunit (COGO777)
and Acetyl-CoA carboxylase alpha subunit (COG0825).
Another example is Lysophospholipase (COG2267)
and Glycerol 3-phosphate dehydrogenase (COG0240)
which participate in the Phospholipid degradation and
Glycerolipid metabolism pathway respectively, while
having a profile pair linked at a significance level of
10~2. These two pathways are also neighbors, sharing
Glycerophosphory! diester phosphodiesterase (COG0584)
and an outer membrane phospholipase A (COG2829).
These examples of interpathway functional correlations
not withstanding, intrapathway genes are significantly
more related than interpathway genes. Thus while 12% of
the interpathway genes (65422 out of 542 952) are linked
at the 0.01 level of significance, 17.3% of the intrapathway
genes are linked at that significance level. If instead
we use probabilities of 1074 and 10~6 as measures of
significance, the corresponding numbers are 1.5 and 4.3%
in the first case, and 0.2 and 1.8% in the second. These
differences are al highly significant. More generally, we
summarize in Table 1 Cj; as a function of significance
level of linkage. The differences are significant at a Chi-
square level of 867 with one degree of freedom. This
number can be placed in perspective by recalling that a

Table 1. Cj; is the number of pairs with link state at the confidence level
of P*, (j = 1, linked, j = 2, not linked), and pathway state (i = 1, share
a common pathway or fall in the same functional category (COG); i = 2,
not share a common pathway (KEGG) or in different functional categories
(COQG))

—logyq P* Cu Cr2 Ca Cx
0 51643 0 542952 0
1 23252 28391 208550 334402
2 8935 42708 65422 477530
4 2236 49407 8586 534366
6 961 50682 1250 541702
8 493 51150 133 542819
10 156 51487 18 542934
11 79 51564 1 542951

Chi-sguare value of seven corresponds to a probability of
chance occurrence between 10~2 and 103,

An exact calculation using fisher's test indicates that
the probability that percentages are drawn from the same
population is essentially zero. In particular under the null
hypothesis, the probability of interest is the number of
waysin which at least C11 linked genes can be distributed
between intra and interpathway pairs, divided by the total
number of ways in which all linked genes can be

min(C11+C§,C11+C12) (Cll 4 Clz) ( Co1 +Cox )

kCoy k Cui+Cau—Kk
Ci11+C12+Co1+Cx
C11+Cx

In addition to significantly different percentages, plots
of the number of intrapathway and interpathway linked
genes as a function of level of significance cross at a
P* ~ 10~% (Fig. 3); in other words, the more stringent
the criterion, the more likely the linked genes will belong
to the same pathway. Thisagain is consistent with theidea
that interpathway genes are much more constrained to co-
function and therefore to co-evolve.

These relations not withstanding, there are a large
number of pairs whose profiles are significantly correlated
but are not in the same pathway. A significant statistical
correlation therefore tends to suggest the same pathway,
with the likelihood increasing with stringency of confi-
dence level, but the same pathway is not guaranteed at
any level of confidence. Nevertheless these findings, and
in particular the increase in pathway co-occurrence with
threshold, have implications for the allocation of genes
of unknown function to locations on a graph of a cellular
protein network, a subject that will be developed in future
publications.

As noted previously (Yanai and Delisi, 2002), phy-
logenetic links uncover networks. Restricted profiling
however, only uncovers fully connected clades. By
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Fig. 4. 30 out of 31 TCA genes are uncovered as a weighted edge
network at the 99% confidence level (weights not shown).

relaxing the restriction, we also remove the constraint
on complete network connectivity and thereby recover
many more clusters. It is not our intention to develop
this complex subject here; we show only one example
to illustrate the difference between graphs obtained by
unrestricted and those obtained by restricted profiling
as presented previously (Yanai and Delisi, 2002). In
particular at a 99% confidence level we uncover 30/31
COGsinthe TCA cycle asanetwork with weighted edges
(Fig. 4). This compares favorably with the best results ob-
tained previously, when chromosomal proximity, domain
analysis and restricted phylogenetic profiling were used in
conjunction with one another (Yanai and DeL.isi, 2002).
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