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Network models are a fundamental tool for the visualization and analysis of molecular interactions
occurring in biological systems. While broadly illuminating the molecular machinery of the cell,
graphical representations of protein interaction networks mask complex patterns of interaction that
depend on temporal, spatial, or condition-specific contexts. In this paper, we introduce a novel
graph construct called a biological context network that explicitly captures these changing patterns
of interaction from one biological context to another. We consider known gene ontology biological
process and cellular component annotations as a proxy for context, and show that aggregating small
process-specific protein interaction sub-networks leads to the emergence of observed scale-free
properties. The biological context model also provides the basis for characterizing proteins in terms
of several context-specific measures, including ‘interactive promiscuity,’ which identifies proteins
whose interacting partners vary from one context to another. We show that such context-sensitive
measures are significantly better predictors of knockout lethality than node degree, reaching better
than 70% accuracy among the top scoring proteins.
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Introduction

Graphs and their variants are the foundation for modeling
complex biological systems. Graph topology reveals the basic
properties of connectivity, robustness, modularity, hierarchi-
cal structure, and other properties, enabling identification of
protein complexes or functional modules (Segal et al, 2003;
Spirin and Mirny, 2003), and serves to aid whole-genome
annotation efforts (Hartwell et al, 1999; Marcotte et al, 1999;
Zheng et al, 2002; Letovsky and Kasif, 2003; Karaoz et al,
2004). Cross-species comparisons of conserved sub-networks
reveal broad classes of conserved networks (Milo et al, 2004;
Sharan et al, 2005) and recurring motifs (Vazquez et al, 2004).
Biological networks are also of commercial interest as an aid to
drug target discovery or for predicting toxic side effects, and
they are at the heart of pharmaceutical initiatives focused on
integrating and mining pathways data sets (Gardner et al,
2003; Hood et al, 2004; di Bernardo et al, 2005).

Biological interaction networks are often obtained by high-
throughput detection assays (Giot et al, 2003; Rual et al, 2005)
or inferred from literature surveys (Mishra et al, 2006). As
a result, they represent a high-level integrated summary of
a large number of interactions inferred from many biological
contexts. However, representing the interactome as a static
biological network is akin to a long-exposure photograph that

can mask more complex patterns of activation across multiple
processes, cellular locations, and time. Conclusions drawn
from the full network’s topology may be compromised by
these inherent limitations. A central goal of systems biology
research is to elucidate the underlying patterns of interaction,
in an effort to obtain more realistic and predictive models of
the cell (Ideker et al, 2001; Hood, 2003). This has prompted the
development of a broad range of graphical representations
coupled with mathematical equations intended to model
cellular dynamics. By contrast, protein–protein interaction
(PPI) networks are typically represented as a standard
undirected graph where vertices correspond to individual
proteins and edges connect pairs of interacting proteins. In this
paper, we propose an intermediate-level model, called a
‘biological context network,’ in which we label proteins with
contextual information about the protein and activate protein
interactions as specified by the succinct biological program
associated with the network. In its simplest form, the program
activates an edge, whenever two interacting proteins are in
a shared contextual state, and otherwise assumes that the
interaction has been inactivated. The biological context
network model enables one to view the interactome as a
mosaic of overlapping sub-networks, each associated with
specific contexts or conditions, and to further characterize
changes in topology from one context to another. For example,
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in Figure 1, we show the context-specific sub-networks in the
local neighborhood of the protein Sec13, highlighting its
association with both the nuclear pore complex and the
endoplasmic reticulum (ER) (Enninga et al, 2003).

Previous research investigating condition-specific sub-net-
works in regulatory networks has proven useful in identifying
static and transient hubs (Luscombe et al, 2004). In this paper,
we use gene ontology (GO) (Harris et al, 2004) biological
process and cellular component annotations as representa-
tives of putative contextual assignments, and analyze the PPI
network of the yeast Saccharomyces cerevisiae. We investigate
the topological changes that occur from one context to another
and focus specifically on identifying proteins whose interact-
ing partners are highly context-dependent.

We generate a context-specific sub-network as follows: from
the original network, we extract any proteins associated with a
particular context (i.e., having a particular GO term) and then
include any interconnecting edges from the full PPI network
that occur between any pair of nodes in this resulting protein
subset. It is important to emphasize that the resulting edges do
not signify that each activated interaction definitively occurs
within the specified context, but merely that the interactions
are consistent with the contextual labels of the interacting
proteins. Nevertheless, we believe that the explicit modeling of
contextual information in biological networks, even in an
approximate manner, may offer a new perspective on the
observed scale-free topologies in PPI networks and provide
novel characterization of individual proteins within a chan-
ging network topology.

It has been widely observed that a broad range of social,
technological, and biological networks are scale-free, char-
acterized by a power-law degree distribution where a few ‘hub’
proteins have many interacting partners, whereas most
proteins have very few (Barabasi and Albert, 1999; Amaral
et al, 2000; Barabasi and Oltvai, 2004; Han et al, 2004; Yook
et al, 2004). For PPI networks, high-degree ‘hubs’ are
more likely to be essential for the viability of the organism.
In this paper, we provide evidence that a power-law distribu-
tion, while clearly evident in the aggregate experimental

PPI data, is plausibly an artifact of the aggregation of
interactions across multiple process-specific contexts. This
observation suggests that paths connecting disparate protein
pairs may be substantially impacted by intervening contextual
differences. We show, for example, that aggregating about
100 small leaf-term sub-networks reconstitutes a scale-free
network (R2¼0.88). In order to better gauge the rapidity with
which scale-free topologies emerge through aggregation, we
have also simulated this effect on the aggregation of
random Erdös-Rényi networks, each representing a particular
shared context, but subject to the constraint that the number
of contextual labels (or annotations) per protein follows a
power-law distribution—a fact we confirm for a wide range
of species.

The analysis of context-specific sub-networks derived using
the biological context network model provides, in addition,
a basis for characterizing proteins with respect to several
context-specific measures. These include the following:

� Context degree: The degree of a node, considering only those
interacting partners that share at least one context (annota-
tion), while taking into account transitive closure within
the GO annotation hierarchy. An edge, thus, is preserved if
the neighbor has at least one annotation in common with
the protein in question, or if it contains at least one
annotation more specific than an annotation of the protein.
Equivalently, context degree is the number of unique edges
occurring in at least one context-specific sub-network.

� Context mutual information: Measures the degree to which
the annotations of neighboring proteins are correlated.

� Interactive promiscuity: Measures the variability of annota-
tions (contexts) among a protein’s interacting partners in
an effort to identify those proteins likely to play a cross-
contextual ‘linking’ role. We emphasize that an interactively
promiscuous protein is not necessarily promiscuous in the
sense of being involved in multiple processes, or being
merely highly annotated. Interactive promiscuity is speci-
fically concerned with changes in the network topology
from one context to another. By contrast, a protein whose

Figure 1 The local context networks for Sec13 with respect to two of its current GO biological process annotations—GO:0006888, nuclear pore organization and
biogenesis, and GO:0006999, ER to Golgi transport—highlighting Sec13’s association with both the nuclear pore complex and the ER. Sec13 is an example of a protein
whose interacting partners vary from one process context to another. We characterize such proteins as ‘interactively promiscuous.’ The shuttling of Sec13 between the
nucleus and the cytoplasm is believed to play a cross-functional regulatory role (Enninga et al, 2003).
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interacting partners are stable from one context to another is
‘interactively conserved.’

We provide formal definitions for context mutual information
and interactive promiscuity below. Interestingly, we find that
the top-ranked proteins with respect to each of these context-
specific measures are highly enriched in essential proteins and
these measures provide a significantly improved predictor
for knockout lethality than the static measure of the degree
computed from the original ‘context-free’ network.

The distinction between interactively promiscuous and
interactively conserved proteins is similar in conception
although different in practice from the classification of hubs
as either date hubs (interacting at different times and/or
places) or party hubs (interacting at the same time and place)
introduced by Han et al (2004). The distinction is addressed in
greater detail below. In part, this difference stems from the fact
that the date/party hub distinction is based on the correlation
of expression patterns (or lack thereof), whereas our focus is
on the existing GO biological process and cellular component
annotations as putative process-specific or location-specific
contexts.

Results

Aggregation of context-specific sub-networks
rapidly reconstitutes a scale-free network

A graphical representation of the yeast PPI network represents
proteins as nodes and physical interactions between two
proteins as edges. We examined a PPI data set from the
database of interacting proteins (DIP) containing 15 429
interactions among 4741 proteins. It exhibits a scale-free
topology (g¼1.79, R2¼0.88). It is widely appreciated that the
static PPI network view of an organism’s interactome
simplifies what is otherwise a complex dynamic system
governed by context-specific pattern interactions mediated
by the activation of specific cellular processes and regulated
by the transcriptional machinery of the cell. We show by
simulation that the aggregation of random (Erdös-Rényi)
networks can reconstitute a scale-free topology when the
number of contexts per protein is itself characterized by a
power-law distribution. We also demonstrate that the smallest
(context-specific) sub-networks generated from the DIP PPI
network will also form a scale-free network in aggregate. The
small size of these networks (o14 edges per network)
precludes a reliable characterization of their degree distribu-
tion, but demonstrates, nevertheless, that a seemingly
fragmentary collection of context-specific sub-networks is
sufficient to reconstitute a power-law degree distribution when
context is ignored.

In our simulation (Figure 2), we constructed a random
biological context network with N¼1000 nodes. Each node
was associated with one or more contextual states. Particular
context labels were assigned randomly from a pool of labels,
L (where |L|¼100). We assumed that two proteins sharing
a particular context interact within that context with fixed
probability, P. We further assumed that the number of proteins
having c contexts, Nc, is subject to a power-law distribution
(NcBc�g). This latter assumption roughly holds for a broad

range of species, using the GO biological process annotations
as representative of a specific contextual role (Supplementary
Figure S1). The resulting context-specific sub-networks are
random Erdös-Rényi graphs, as constrained by the fixed
interaction probability employed in our simulation. Our
aggregation results were averaged over 100 random trials.
Aggregation of these networks rapidly reconstitutes a scale-
free distribution. See Materials and methods section for
detailed simulation procedures.

We recognize that this simulation has certain inherent
limitations. For example, it is clear that the highest degree
nodes in the aggregate network will generally correspond to
those proteins that are most highly annotated, as these are the
nodes that occur in the most context-specific sub-networks. In
the yeast PPI network, hubs are often associated with protein
complexes having a limited number of annotations. Indeed,
we find no correlation in the DIP network (R2¼0.07) between
the number of interacting partners and the number of
annotations that the protein contains (Supplementary Figure
S2). This observation is consistent with previous studies
demonstrating a lack of correlation between the amount of
information known about a gene and its centrality in a
biological network (Hoffmann and Valencia, 2003). Further-
more, our simulation does not attempt to model the formation
of complexes or other modular features of real biological
networks. Nevertheless, the simulation demonstrates the
plausibility of reconstituting a scale-free topology as an
aggregate of non-scale-free context-specific sub-networks.
We have found this effect to be independent of network size,
number of context labels, the power-law scaling coefficient, or
interaction probability (Supplementary Figure S3).

We next considered the extent to which aggregating process-
specific sub-networks within the DIP network would recon-
stitute the inherent scale-free topology of the full PPI network.
As explained earlier, a process-specific sub-network retains
proteins having the corresponding GO biological process
annotation, or a more specific term, and any interactions

Figure 2 A simulation of the aggregation of random (Erdös-Rényi) graphs
showing rapid reconstitution of a scale-free degree distribution. The simulation
involved a set of random labels (contexts), L, distributed across N¼1000 nodes,
subject to the additional condition that the number of labels per node follows a
power-law distribution. Displayed results are the average of 100 trials, showing
degree distribution after aggregating L¼1, 25, 50, 75, and 100 labels. In our
simulation, we assume that two nodes sharing a given context have a fixed
probability of interaction (P¼0.05), thus any context-specific sub-network is
a random (Erdös-Rényi) graph.
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occurring between them from the full network. The resulting
sub-network is an approximation of the cellular interactions
associated with a particular process. Each edge is consistent
with the GO biological process of interest (because all nodes
are associated with the process), but it is nevertheless possible
that specific interactions are activated in some other shared
context or are merely the result of experimental error.

As GO annotations are hierarchical, high-level terms may
retain large numbers of nodes and a substantial fraction of the
original network (Supplementary Figure S4). For example, the
high-level term Protein Biosynthesis (GO:0006412) produces a
sub-network containing 253 proteins and 236 edges. Excluding
54 zero-degree proteins, the network is already inherently scale-
free (R2¼0.86). It is not surprising that sub-networks correspond-
ing to high-level terms exhibit a scale-free topology, because they
extract a substantial fraction of the original network.

We identified 384 GO biological leaf terms occurring in the
DIP PPI network for yeast, yielding a non-empty sub-network

projection (40 nodes). Of these, 137 contain at least one edge.
Figure 3 plots these 137 leaf-term projections by the number
of nodes and edges in the resulting sub-network, and also
provides a sampling of the resulting networks. The small size
of these sub-networks (average number of nodes¼11.4,
average number of edges¼13.7) makes it problematic to
characterize their degree distribution as scale-free or non-
scale-free. We note, however, that the largest of these leaf-term
sub-networks (GO:0006888—ER to Golgi transport) had 60
nodes and 123 interactions, and is moderately correlated with
a scale-free distribution (R2¼0.75). As we wished to consider
the effect of aggregating non-scale-free sub-networks, we
eliminated 34 of the largest leaf-term sub-networks from
further consideration. The remaining 103 sub-networks have
no more than 21 proteins (mean¼6.974.4) and 13 interactions
(mean¼3.773.5). When we simulate the cross-contextual
aggregation of evidence by taking the union of these
fragmentary leaf-term sub-networks, we find that the resulting

Figure 3 (A) Location of GO biological process leaf-term sub-networks in EDGE-NODE space, showing the variability in the size of the resulting projections. (B) The
resulting sub-networks reveal a broad range of irregular distributions. Singleton nodes are excluded for clarity. Node color coding is by degree: 1–4 neighbors (blue), 5–9
neighbors (green), 10–14 neighbors (yellow), 15þ neighbors (red).
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aggregate network contains 578 proteins (333 having at least
one edge) and 308 edges, and is well described by and highly
correlated to a scale-free network (g¼�2.2, R2¼0.88),
although it is better correlated with an exponential degree
distribution (R2¼0.98), a distribution that is not at all
characteristic of the original DIP network (R2¼0.41). The
resulting network contains 369 unique annotations and 220
unique leaf-term annotations. The number of annotations per
protein, as well as the number of leaf-term annotations per
protein, exhibits a power-law distribution (R2¼0.90 and 0.91,
respectively), consistent with our earlier simulations. This
analysis demonstrates the overall tendency of small and highly
specific sub-networks to reconstitute scale-free topologies in
aggregate, although the precise process by which aggregate
distributions ultimately achieve scale-freeness may involve
transitional characteristics.

Using context to characterize the local network
neighborhood

We define several measures used to characterize the local
context network neighborhood. Intuitively, the context neigh-
borhood is the set of contextual labels or annotations (e.g., GO
biological process annotations) associated with the interacting
partners of a particular protein. More formally, the context
neighborhood of a protein is a matrix MG�K, where K is the
number of interacting neighbors and G is the number of
annotations occurring among the K interactors. For a given
protein, Mgk¼1, iff neighbor k has annotation g or a more
specific annotation (to account for transitive closure in the GO
term hierarchy), otherwise Mgk¼0. The columns of the matrix
thus correspond to the set annotated of interacting partners,
whereas the rows define the set of annotations occurring at

Figure 4 Neighborhood-annotation matrices for three interactively promiscuous examples: (A) Cdc6, (B) Spt5, and (C) Exo84. Column headers include all neighbors
having at least one GO biological process annotation. Rows correspond to particular GO annotations associated with these neighboring proteins. Red boxes indicate that
the neighbor protein has the annotation explicitly or a more specific annotation in the GO biological process ontology.
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least once among these interactors. Figure 4 presents the local
context neighborhood matrices for three proteins: Cdc6, Spt5,
and Exo84. Separate matrices were computed for each protein
in the DIP network and separately generated for both GO
biological process and GO cellular component terms. The
resulting matrices are the basis of several context-specific
measures described below.

Interactive promiscuity (IP) is the average pairwise Ham-
ming distance across all annotations (row) vectors of the
matrix:

IP ¼ 2

GðG � 1Þ
XG

i;j

hð~Ai; ~AjÞ

where ~Ai denotes the bit vector formed from the ith annotation
(row) of the matrix M and h is the Hamming distance function
on two bit vectors, which measures the total number of bit
changes (0-1 or 1-0) across all vector positions. In this case,
given two annotations, the Hamming distance function counts
the number of neighbors having one annotation, but not the
other. Interactively promiscuous proteins have different
interacting partners in different contexts. Those proteins
having the same interacting partners across multiple contexts
are interactively conserved. We emphasize that interactive
promiscuity is not equivalent to having multiple distinct
annotations. Certain proteins may be richly annotated simply
because they have been more thoroughly investigated. A
multi-functional protein that maintains the same interactors
across different GO terms is not considered to be interactively
promiscuous by our definition. Thus, it is possible for a protein
to be interactively promiscuous but have few annotations, or
to be interactively conserved but have many annotations. For
example, the proteins Nup170, Gle2, Tmp1/Tmp2, Rga2, and
Elm1 have the highest number of GO biological process
annotations, but are not found to be interactively promiscu-
ous. By contrast, the proteins SPP381, Atp1/Atp2, and
Smd{1,2,3} are found to be highly interactively promiscuous,
but have relatively few annotations. This distinction also
applies to interactive promiscuity based on GO cellular
compartment annotations, where we find, for example, that

there are proteins found in multiple cellular locations that are
not, however, considered interactively promiscuous using GO
cellular compartment as the basis for computing interactive
promiscuity. In general, we find that interactive promiscuity
based on GO biological process and GO cellular component
annotations are well correlated (R2¼0.72; see Supplementary
Figure S5a). Complete protein-by-protein statistics are pro-
vided in the supplement.

Context degree is the number of neighbors of a given protein
having at least one shared context. If GO annotations are the
basis for defining context, then the interacting partner must
have at least one annotation that is either identical to or a
descendant of an annotation of the node whose context degree
we are measuring. A node that is un-annotated, or whose
neighbors are all un-annotated, or whose neighbors have no
common annotations has a context degree of zero. The DIP
sub-network of essential proteins for both all edges and
context-verified edges only is provided for comparison in
Figure 5. Not unsurprisingly, many context-verified edges are
often associated with protein complexes.

Context mutual information (CMI), like interactive promis-
cuity, is based on the context neighborhood matrix, M. It is
defined as the sum total pairwise mutual information across all
neighbors (column vectors) of the matrix, and measures the
degree to which annotation among pairs of interacting
neighbors is correlated. Formally,

CMI ¼
XK

i;j

Ið~Ki; ~KjÞ

where ~Ki is the ith column vector of the neighborhood matrix
M, and I is mutual information defined as

IðX;YÞ ¼
X

x2X

X

y2Y

pðx; yÞ log
pðx; yÞ

pðxÞpðyÞ

where p(x, y) is the joint probability distribution, p(X¼x
and Y¼y), and p(x) and p(y) are the marginal probability
distribution functions, p(X¼x) and p(Y¼y) respectively, with
X¼{0,1} and Y¼{0,1}. Here, mutual information is computed
by assuming values for x and y along each row position of the
two column vectors ~Ki and ~Kj: Unlike interactive promiscuity,
context mutual information values based on GO biological
process and GO cellular component contexts are not well
correlated (R2¼0.32; Supplementary Figure S5b), although we
have not yet determined definitively why this might be the
case.

We also find in general that the number of interacting
partners (degree) does not correlate well with interactive
promiscuity (R2¼0.26), context mutual information
(R2¼0.15), or even context degree (R2¼0.39) when these
measures are computed using GO biological process annota-
tions. When based on GO cellular component annotations,
the correlation of context mutual information to degree is
substantially higher (R2¼0.62), but not for other measures.

Examples

We conducted an informal literature survey pertaining to those
proteins found to be highly interactively promiscuous. This
survey was by no means comprehensive. We identified 10

Figure 5 (A) DIP yeast sub-network of all 991 essential proteins. (B) Essential
proteins having context degree 41. Node coloring is according to the degree of
the protein in the full DIP network: 1–4 neighbors (blue), 5–9 neighbors (green),
10–14 neighbors (yellow), 15þ neighbors (red). Many of the essential proteins
aggregate into clusters of essential protein complexes that are typically related to
cell-cycle regulation and mRNA processing. As a result of the network’s improved
specificity, context degree is a better predictor for knockout lethality, although
applicable only to annotated nodes.
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examples (provided in Table I) that present interesting cases of
proteins appearing to play a promiscuous role (either directly
or in association with other promiscuous proteins), according
to the available literature. These self-selected examples are not
intended to prove unambiguously the validity of any particular
contextual measure, but rather to showcase diverse circum-
stances by which a particular protein might achieve a high
measurement score owing to their cross-contextual associa-
tions. All 10 proteins cited are essential for viability. The reader
is referred to the supplement for the context measurements of
all DIP proteins, based on both GO biological process and GO
cellular component annotations. A literature review confirms
that these proteins are multifunctional, or involved in
complexes that have multiple functional roles. Sec13 is
associated with both the nuclear pore complex and the ER.
The shuttling of Sec13 between the nucleus and the cytoplasm
is believed to play a cross-functional regulatory role (Enninga
et al, 2003). The high promiscuity of the actin protein Act1
probably reflects the multi-functional role of actin in numer-
ous cellular processes including cell polarization and endo-
cytosis, as well as the diversity of structures formed (cables,
contractile rings, and patches). Exo84 has been shown to have

dual roles in both the spliceosome and exocytosis (Awasthi
et al, 2001; Zhang et al, 2005). Cdc6 is an origin recognition
complex (ORC) constituent whose downregulation is one of
several mechanisms to prevent re-initiation (Nguyen et al,
2001). Lsm5 is an LSm (Like-Sm) protein whose members form
multimeric complexes. Their subunit composition affects both
cell location and activity, including mRNA degradation and
pre-mRNA intron removal (Zaric et al, 2005). Skp1 is
associated with multiple functionally diverse protein com-
plexes, including RAVE, CBF3, V-ATPase, and SCFs responsible
for regulating a wide variety of cellular processes (Seol et al,
2001). The chromatin-bound protein Mcm10 plays a key role
in the recruitment of the Mcm2–7 complex to the ORC and
multiple other steps in DNA replication initiation (Sawyer et al,
2004). Spt5 has been shown to play dual roles in pre-mRNA
processing and transcription elongation (Lindstrom et al,
2003). Taf9 is a member of TAF (TBP-associated factor)
proteins that are constituents of the general transcription
factor TFIID and other complexes and highly conserved
between human and yeast. Thirteen of the 14 TAFs identified
in yeast are essential. TAFs are believed to play a role in the
specificity of TFIID. Finally, Wbp1 is a member of the nine-unit

Table I Examples of ‘interactively promiscuous’ proteins

Name SGD Degree Context
degree

Context mutual
information

Interactive
promiscuity

GO biological process annotations

SEC13 YLR208W 17 9 13.4 4.1 Nuclear pore organization and biogenesis, ER-associated
protein catabolism, ER to Golgi transport, vesicle budding

ACT1 YFL039C 40 26 8.8 4.0 Mitochondrion inheritance, protein secretion, actin filament
reorganization during cell cycle, exocytosis, sporulation (sensu
Fungi), chronological cell aging, endocytosis, establishment of
mitotic spindle orientation, response to osmotic stress,
establishment of cell polarity (sensu Fungi), regulation of
transcription from RNA polymerase II promoter, vacuole
inheritance, vesicle transport along actin filament, cytokinesis,
histone acetylation, budding cell isotropic bud growth, cell wall
organization, biogenesis

EXO84 YBR102C 12 6 16.4 3.8 Spliceosome assembly, exocytosis

CDC6 YJL194W 11 7 14.8 3.6 Pre-replicative complex formation and maintenance

LSM5 YER146W 37 16 17.2 3.6 Nuclear mRNA splicing, via spliceosome, mRNA catabolism,
rRNA processing

SKP1 YDR328C 42 17 11.1 3.5 Vacuolar acidification, protein ubiquitination, G1/S transition
of mitotic cell cycle, protein complex assembly, G2/M transition
of mitotic cell cycle, SCF-dependent proteasomal ubiquitin-
dependent protein catabolism

MCM10 YIL150C 7 0 9.9 3.4 Unannotated at time of analysis

SPT5 YML010W 11 6 7.6 3.2 Establishment and/or maintenance of chromatin architecture,
RNA elongation from RNA polymerase II promoter, regulation
of transcription, DNA-dependent

TAF9 YMR236W 16 9 7.8 3.0 Transcription initiation from RNA polymerase II promoter,
establishment and/or maintenance of chromatin architecture,
chromatin modification, protein amino-acid acetylation,
histone acetylation, G1-specific transcription in mitotic cell
cycle

WBP1 YEL002C 9 8 12.2 2.8 N-linked glycosylation, cell cycle

Values provided for context-specific measures, including context degree, context mutual information, and interactive promiscuity, are computed using GO biological
process annotations. Measurements based on GO cellular component annotations are included in Supplementary information.
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oligosaccharyl transferase (OST) complex in yeast. It has been
shown that the yeast OST has two functionally distinct
isoforms (Schwarz et al, 2005), suggesting a broader inter-
pretation for high interactively promiscuous proteins, namely
being part of a complex whose variable constituents are
themselves active in multiple processes.

Context-sensitive measures are significantly
better predictors of essentiality than degree

We identified essential DIP proteins by cross-referencing gene
names with a list of ‘essential ORFs’ from the Saccharomyces
Genome Deletion Project (see Materials and methods). We
found that proteins ranking highly with respect to various
context-sensitive measures are highly enriched in essential
proteins, and thus provide a significantly better predictor for
protein essentiality than the traditional measure based on
node degree alone. For example, we find that context degree is
a consistently better predictor for essentiality, which is likely
due to the reduction in false-positive edges that otherwise tend
to dilute the fraction of essential proteins among the top
proteins ranked by node degree. Furthermore, high context-
degree nodes are frequently associated with complexes
whose component proteins are more uniformly annotated
and have inherently high connectivity. Because many of these
larger complexes in yeast are essential to cell cycle regulation
and mRNA processing, nodes that have the highest context

degree are naturally more likely to be essential. We find, for
example, that 56% (27 out of 48) of the top 1% of nodes by
degree (degree X47) are essential. By comparison, more than
72% of the top 1% of nodes by context degree (context degree
X17) are essential. We also note that the average context
degree of essential proteins (using GO biological process
terms) is 3.9 times greater than the average context degree of
non-essential proteins and that although some high context-
degree proteins do in fact occur among the set of non-essential
proteins, we find that 134/991 (13.5%) of essential
proteins have context degree X10, compared to just 60/3750
(1.6%) of non-essential proteins. The key limitation of
context degree is that it is not applicable to un-annotated
nodes that typically represent 30% or more of the proteins in
a PPI network. By contrast, our definitions for interactive
promiscuity and context mutual information depend only on
the local ‘context neighborhood,’ that is, the annotations of
neighboring proteins, and do not require that the protein itself
be annotated. We find that these measures also lead to
significant enrichment of essential proteins among top-ranked
proteins.

Figure 6 summarizes how various context-sensitive mea-
sures for ranking proteins, including interactive promiscuity,
perform as a predictor of essentiality. Context mutual
information is the best predictor among the top 2% (B100
proteins), and remains the best predictor as we encompass
more proteins (up to 20% of the network). Ultimately, our goal
is to identify context-specific criteria that rank proteins such

Figure 6 (A) Percent of proteins (N¼4741) that are essential (knockout lethal) for the top-ranked proteins (1–20%), according to various measures including degree,
context degree, context mutual information, and interactive promiscuity. The highest ranked proteins (top 1%) using context-verified degree contain the highest
proportion of lethal nodes, but this measure is surpassed by the mutual-information-based measure when we include the top 2%. All three measures outperform degree
as a predictor of lethality, although, as we encompass larger numbers of proteins, the differences are less pronounced. (B) Approximate measure cutoffs for
corresponding rank levels.
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that the most highly ranked proteins are more likely to be
essential. We find that our context-sensitive measures produce
a statistically significant increase in the rankings of essential
proteins (Wilcoxon rank sum, a¼0.05, see Materials and
methods). Thus, the top-ranked proteins according to each
measure are more likely to be essential than the top proteins
ranked by node degree alone. It is interesting to note that
interactive promiscuity and context mutual information are
both associated with the enrichment of essential genes, even
though interactive promiscuity is measuring annotation
variability whereas context mutual information is measuring
correlation among annotations. Although we have not
established a conclusive reason for this effect, we have verified
that the two measures are not well correlated (R2¼0.43).
In Supplementary Figure S6, we provide values for all
measures averaged across essential versus non-essential
genes, and show that context-verified degree and context
mutual information exhibit the largest percent increases
(close to 300%).

Discussion

It has been argued that scale-free networks are more
vulnerable to targeted attacks on hubs than their Erdös-Rényi
cousins, because their disruption effectively disconnects the
network as a whole. At the same time, such networks are
more tolerant of random node removal (Albert et al, 2000).
This interpretation has important implications for drug target
discovery and validation. In one analysis, a correlation
between node degree and essentiality was demonstrated in
S. cerevisiae, where 62% of high-degree proteins (having 15 or
more links) were essential compared to 21% overall (Jeong
et al, 2001). However, more recent yeast knockout data from
the Saccharomyces Genome Deletion Project (see Materials
and methods) mapped to DIP network nodes yields
P(essential|degreeX15)¼0.46, but with P(degreeX15|essential)
¼0.24, suggesting a lack of strong correlation between high-
degree nodes, connectivity, and essentiality. We have shown
that it is possible to incorporate contextual information to
generate more accurate predictors of essentiality. Although it
is not the aim of this paper to systematically investigate
competing in silico techniques for predicting whether or not a
gene is essential, we have demonstrated that taking context
into account while focusing on degree-type measures does
indeed improve our ability to predict essentiality. We expect
similar benefits to be garnered when context is applied to other
functional problems. Thus, we focused on the added predictive
value of features such as context degree versus degree. We
suspect that other functional predictors can also be enhanced
if appropriately modified to incorporate available context
information.

Beyond understanding why certain gene knockouts are
lethal, a fundamental goal of systems biology research is to
enable one to infer the specific effects of a drug compound by
reverse engineering the biological network (Butcher et al,
2004). This is based on the hypothesis that if protein B is
reachable from protein A by some regulatory or signaling
mechanism via protein X, then the perturbation of protein A
will affect protein B. However, if the connection from A to B via

X is an artifact of aggregate observations, then the conclusions
drawn from such networks may not apply. It is also important
to note that experimental error may significantly impact
network topology (Lin and Zhao, 2005) and any subsequent
conclusions.

The limitations of viewing biological networks in purely
static terms has been previously demonstrated by showing
that changes to network topology resulting from the removal
of targeted ‘hubs’ depends very much on whether the hubs are
spatial ‘party hubs’ or temporal ‘date hubs’ (Han et al, 2004).
As noted above, interactively promiscuous and interactively
conserved proteins differ in practice from the date and party
hub concept owing to the fact that the date/party hub
distinction is based on the correlation of expression patterns,
whereas we focus on GO process and component annotations
as representative of a specific context. In addition, we found
that our most interactively promiscuous proteins (N¼190,
IPX3.5) contain both party and date hubs in roughly equal
numbers (36 party/32 date). We further note that interactive
promiscuity measure does not correlate with the average
Pearson correlation coefficient used by Han et al, to distinguish
date and party hubs (see Supplementary Figure S7). It is clear,
therefore, that interactive promiscuity and date hubs are
capturing unique (and equally valid) characteristics of a
protein within a network context.

It has also been observed that existing experimental
methods to detect PPIs have intrinsically limited coverage,
suggesting that the topology of biological sub-networks cannot
be extrapolated to infer the properties of the complete
interactome (Han et al, 2005). The biological context network
model introduced in this paper represents an intermediate
level of abstraction for computational modeling of biological
networks. Such intermediate level models may play an
increasingly important role in systems biology research
(Bornholdt, 2005). By contrast, the more complex models
involving systems of differential equations, Boolean networks
(Akutsu et al, 2000; Kauffman et al, 2003; Ghim et al, 2005;
Quayle and Bullock, 2005), or Bayesian networks (Letovsky
and Kasif, 2003; Beer and Tavazoie, 2004; Friedman, 2004; Li
and Chan, 2004) attempt to capture the full behavior of the
network or focus on predicting the regulation of network
components under specific conditions (Segal et al, 2003)
rather than its basic connectivity or neighborhood properties.
Of course, any model that introduces a broader range of
tunable control parameters is subject to the inherent risk of
overfitting. We have found that a generalization of a biological
context network (in which cross-contextual interactions are
allowed) is equivalent to a Boolean network formalism (Alon
et al, in preparation). We believe, however, that biological
context networks provide a more natural framework for the
investigation of certain properties of the network. Such
properties include context degree, interactive promiscuity,
or whether one protein is ‘reachable’ from another along
interaction pathways associated with multiple contexts. In a
follow-up paper (Alon et al, in preparation), we show, in fact,
that the average number of proteins ‘reachable’ from any
protein in the network grows linearly in the number of
contexts used.

While we maintain the simplicity and analytical advantages
of a conventional graphical model, we add one element of

Biological context networks
J Rachlin et al

& 2006 EMBO and Nature Publishing Group Molecular Systems Biology 2006 9



complexity to modeling of cellular processes intended to
capture PPIs in different functional contexts.

The biological context network formalism provides insight
into the statistical topological characteristics of the network
within specific contexts, including hubs, dense-sub-graphs,
connectivity, and centrality, but quantified with respect to
particular contexts. This formalism also suggests an explana-
tion for the emergence of scale-free properties in PPI networks,
and offers a measure for the interactive promiscuity of a
protein, highlighting those proteins that are either intrinsically
multi-functional or are a subunit of a multi-functional
complex. This opens up a number of new directions for
research. In this paper, we briefly looked at promiscuity of
proteins and the conservation of simple protein interaction
motifs (in the form of protein pairs) across process-specific and
location-specific contexts. We also primarily focused on sub-
networks that emerge from applying a single context to the
entire interactome, but the formalism naturally captures any
systematic application of different context to sub-graphs to
allow the study of cross-functional or cross-pathway proper-
ties of the network. In particular, we note that using GO
annotations as a representative context is inherently limited by
the fact that two semantically related but non-ancestral sub-
terms are treated as separate and distinct contexts in our
analysis. Furthermore, as we pointed out earlier, a context-
specific sub-network identifies a set of proteins and inter-
actions that are internally consistent with a specific context,
but there is no guarantee that a specific interaction actually
occurs in the corresponding process (or location).

Finally, we note that a protein may be active in disparate
contexts simultaneously. Explicitly accounting for these multi-
farious contexts may serve to further refine our notion of the
interactive promiscuity and other context-sensitive measures
introduced in this paper. Additionally, we may wish to
consider interactions occurring in certain context combina-
tions. We have shown, however, that even simple contextual
considerations provide a useful perspective on the structure
and function of complex interaction networks. Future applica-
tions of context-specific functional modules and networks
include the modeling of cross-context connectivity and the
contextual effects of perturbations on biological function, and
enabling improved selection of drug targets by way of more
reliable models of toxicity.

Materials and methods
In modeling a PPI network as a context network, we presuppose that
two proteins sharing an edge in the original network actually interact
only when they share a common context, identified here as the
particular GO biological process annotation shared by both proteins. In
general, sub-network generation must further accommodate the fact
that GO annotations exist as part of a hierarchical directed acyclic
graph, meaning therefore that certain node labels or annotations are
implicit, although in our analysis, we consider sub-network annota-
tion terms having no descendants (i.e., leaf terms). Context-specific
sub-networks are formed by including those proteins that have a
particular GO annotation (or a more specific descendant-term
annotation) and then carrying over any edges between selected nodes
that also occur in the original network. Thus, if we project with respect
to the highest level term, GO:0008150—biological process, we
effectively reconstitute the entire PPI sub-network of annotated
proteins, whereas if we project with respect to some leaf term, say

GO: 0006513—protein monoubiquitinization, we will recover only a
small set of nodes along with a few edges occurring wherever both
incident proteins have this particular annotation explicitly.

PPI network data for S. cerevisiae was obtained from the DIP, the
DIPs (Xenarios et al, 2002) (version 05 June 2005), available online
at http://dip.doe-mbi.ucla.edu. This network currently contains
4741 nodes (proteins) connected by 15 429 edges (interactions). We
annotated this network by mapping biological process annotations for
yeast (Revision 1.1155, 08 June 2005) from the GO consortium http://
www.geneontology.org/GO.current.annotations.shtml. The GO con-
sortium provides 12 231 annotations for all yeast gene products. Of
these annotations, 6408 (52.3%) covering 970 unique GO terms were
mapped to nodes in the DIP network, 1752 (14.3%) are identical
annotations with alternative sources of evidence, and 1667 (13.6%)
correspond to the GO term ‘biological_process unknown’ (GO:0000004),
and were discarded.

Nodes were annotated as being essential (lethal in knockout
experiments) by cross-referencing node names with a list of ‘essential
ORFs’ from data available from the Saccharomyces Genome Deletion
Project (http://www-sequence.stanford.edu/group/yeast_deletion_
project/deletions3.html.) Of the 1106 essential ORFs provided, 991
(89.6%) map to nodes in the DIP network. Thus, 991 of 4741 (20.9%)
DIP nodes were deemed to be essential.

The result that context-sensitive measures cause essential proteins
to be ranked higher than proteins ranked by degree was tested for
statistical significance using a Wilcoxon rank sum (Mann–Whitney)
test (a¼0.05) applied to all known essential proteins. All 4741 network
proteins were first scored by degree, context degree, context mutual
information, and interactive promiscuity. We then ‘normalized’ these
scores by converting them to rank values, accounting for ties using the
standard procedure of averaging rank scores and applying this result to
all tied proteins. The ranks for the 991 essential proteins were then
compared between the various measures to determine whether
context-sensitive measures produced a statistically significant increase
in the rankings of essential proteins versus the rankings based on
degree. Our conclusion that each context-sensitive measure produces
a statistically significant increase in the rankings of essential proteins
is based on the computed P-values provided in Table II.

In our simulation of aggregating random (Erdös-Rényi) networks,
we constructed a random biological context network consisting of
N¼1000 nodes. Each node contained annotations drawn from a fixed
set of 100 unique context labels, subject to the constraint that the
number of contexts or labels per protein was distributed according to a
power-law distribution with g¼2.00. We assumed a fixed probability,
P, that two proteins in the same contextual state interact. We generated
context-specific sub-networks (method described above) for each
unique label in random order. Each sub-network was unioned with
an aggregate network. We measured the degree distribution of the
aggregate network after L¼1,2,3,y, 100 sub-network aggregations.
The resulting degree distribution as averaged across 100 random trials.
In each random trial, the number of contextual labels assigned to each
protein remains fixed, whereas the context label assignments, edges
between proteins, and the generation order of the context-specific sub-
networks are randomized.

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).

Table II W-test statistic (Wilcoxon rank sum) and P-values for three context-
sensitive measures, showing that there is a statistically significant increase in the
rankings of essential proteins (versus degree)

Measure Mean rank W P-value

Context degree) 3160.0 512 452 0.0459
Context mutual information 3075.6 520 558.5 0.0102
Interactive promiscuity 3090.8 512 984 0.0424
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