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Development and cancer signatures<p>A systematic analysis of the relationship between the neoplastic and developmental transcriptome provides an outline of global trends in cancer gene expression.</p>

Abstract

Background: In recent years, the molecular underpinnings of the long-observed resemblance
between neoplastic and immature tissue have begun to emerge. Genome-wide transcriptional
profiling has revealed similar gene expression signatures in several tumor types and early
developmental stages of their tissue of origin. However, it remains unclear whether such a
relationship is a universal feature of malignancy, whether heterogeneities exist in the developmental
component of different tumor types and to which degree the resemblance between cancer and
development is a tissue-specific phenomenon.

Results: We defined a developmental landscape by summarizing the main features of ten
developmental time courses and projected gene expression from a variety of human tumor types
onto this landscape. This comparison demonstrates a clear imprint of developmental gene
expression in a wide range of tumors and with respect to different, even non-cognate
developmental backgrounds. Our analysis reveals three classes of cancers with developmentally
distinct transcriptional patterns. We characterize the biological processes dominating these classes
and validate the class distinction with respect to a new time series of murine embryonic lung
development. Finally, we identify a set of genes that are upregulated in most cancers and we show
that this signature is active in early development.

Conclusion: This systematic and quantitative overview of the relationship between the neoplastic
and developmental transcriptome spanning dozens of tissues provides a reliable outline of global
trends in cancer gene expression, reveals potentially clinically relevant differences in the gene
expression of different cancer types and represents a reference framework for interpretation of
smaller-scale functional studies.
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Background
The historical roots of our understanding of the intimate con-
nection between tumorigenesis and developmental processes
reach back to 1858, when Rudolf Virchow first suggested that
neoplasms arise "in accordance with the same law, which reg-
ulates embryonic development" [1]. Since then, his idea has
profoundly influenced medicine and still remains highly rele-
vant today. The similarities between cancer and development
are evident on many levels of observation: microscopically,
cancerous tissues appear as undifferentiated masses, with
some tumor types even exhibiting embryonic tissue organiza-
tion. The increased mobility of malignant cells, leading to
invasion of the local environment with the potential for sub-
sequent travel to distant organs (representing one of the most
problematic clinical aspects of cancer), is reminiscent of
migratory behavior during development. On the molecular
level, the shared characteristics between certain malignant
tumors and developing tissues with respect to transcription
factor activity [2], regulation of chromatin structure [3] and
signaling [4] have been documented. In particular, several
studies have suggested that part of the cancer transcriptome
represents a 'developmental signature', that is, it contains a
set of genes that are collectively active during development.
For lung cancer [5,6], liver cancer [7], Wilms' tumor [8],
colon cancer [9,10] and medulloblastoma [11], gene expres-
sion patterns resembling early developmental stages of the
corresponding organ have been identified in the tumor pro-
file. The results of these transcriptome-scale analyses are
important because they offer a glimpse into fundamental bio-
logical processes underlying tumorigenesis and provide a nat-
ural framework for understanding complex cancer gene
expression signatures that are difficult to interpret otherwise.
Moreover, developmental signatures harbor a clinical rele-
vance that we are only beginning to discover. For example,
lung cancers can be risk-stratified by their similarity to lung
development and pluripotency gene signatures can be used to
predict outcome in breast cancer [6,12].

In the present study, we paint a novel picture of the oncolog-
ical landscape by comparing a variety of human cancers based
on their developmental signature. Our analysis was inspired
by the following questions: to which extent can the transcrip-
tome of a tumor, which is oftentimes perceived as an aberra-
tion, be 'explained' by developmental gene expression? Does
the developmental signature represent a feature of most, and
possibly all, human cancers or does gene expression in differ-
ent tumors fall into distinct groups with respect to develop-
ment? Is recapitulation of developmental gene expression
programs a tissue-specific phenomenon or is the develop-
mental signature largely composed of general transcriptional
modules that play a ubiquitous role in developmental proc-
esses? The answers to these open questions have therapeutic
implications [13]. If a broad range of tumors employs primi-
tive developmental mechanisms that are shared across tis-
sues to sustain their growth and survival, a certain drug or
class of drugs could be capable of affecting them all. If, on the

other hand, highly lineage-specific mechanisms govern
malignant growth and behavior, focus has to be put on iden-
tifying and targeting tissue-specific regulators.

The results from the integrative analysis of gene expression in
cancer and development presented here suggest that the
developmental information content of most human cancers
indeed is significant. The developmental signature of cancers
originating from various tissues exhibits low tissue-specifi-
city, indicating that a large portion of the cancer transcrip-
tome is composed of general developmental modules.
Furthermore, we describe three developmentally distinct
groups of cancer, validate the class distinction on a new time
series of embryonic development in the mouse and show that
the behavior of genes in lung development is predictable by
their expression across the three groups. We explore the bio-
logical themes dominating the expression profiles of these
classes and demonstrate that one group recapitulates early
developmental gene expression patterns and is characterized
by an 'individualistic' signature with upregulation of pluripo-
tency genes and suppression of genes involved in cell-cell
communication and signal transduction. A second group
exhibits a 'communicative' gene expression signature that is
active in late development, is enriched in genes involved in
immune response, cell-cell and cell-matrix interactions and
resembles a wound healing signature. A third group connects
the previous two with a transition phenotype. While social
and anti-social aspects of cancer have been widely popular-
ized, this study points out the possibility of a more subtle clas-
sification of different cancers that tend to evoke different
types of 'survival mechanisms'. Finally, we identify a core pro-
gram of genes that are upregulated in most cancers and show
that these genes are coexpressed in early development.

Results
Placing human cancers on a developmental landscape
Our analysis is based on a large-scale comparison of gene
expression in 10 developmental processes and 32 cancer data
sets. To paint an unbiased picture of the association between
gene expression in development and oncogenesis, we selected
data from a wide biological range. Our development database
encompasses gene expression time series characterizing
processes as diverse as heart development in the mouse,
human T cell development and in vitro differentiation of
murine embryonic stem cells (see Additional data file 6 for a
list of all data sets). Cancer gene expression data include
tumors from most commonly affected anatomical locations
and corresponding normal tissue as a reference.

The approach for analysis of this large data compendium
(consisting of 1,094 individual arrays) is depicted in Figure 1.
We first simplified the complex, high-dimensional expression
profiles characterizing each developmental process into a
one-dimensional developmental timeline (DT). To under-
stand the DT, it is necessary to first consider some general
Genome Biology 2008, 9:R108
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properties of gene expression dynamics during a continuous
developmental process: starting at the earliest (least differen-
tiated) instance of a series of conditions, genes that are char-
acteristic of an immature state will be active. As development
progresses, the expression of these genes will gradually abate.
Concomitantly, the expression of genes that are specific for
the mature state will continuously intensify until it reaches its
peak at the latest (most differentiated) point in time. On aver-
age, about 30% of the measured genes will follow this pattern.
The construction of the DT takes advantage of this behavior,
ordering the genes in a linear array based on their temporal
pattern of expression. Early genes are localized on the left end
of the DT, genes with no bias towards early or late expression
center in the middle and late genes occupy the right end.
Thus, the unique order of genes on the DT represents a sum-
mary of early and late states for each developmental process.

In the next step, we determined the relationship of gene
expression in cancer to each of the ten DTs. We identified the
genes that were up- and downregulated in a cancer relative to
its corresponding normal tissue and tracked their position (or
the position of their mouse ortholog for murine developmen-
tal processes) on the DTs [11]. In the following, we will use
two kinds of plots to summarize the resulting distribution: a
frequency plot (Figure 1a) for an intuitive overview of where
deregulated cancer genes fall on the DT and a probability den-
sity plot (Figure 1b) that allows a more accurate quantifica-
tion of the cancer-development relationship. The frequency
plot is divided into two panels: on the left side, the frequency
of upregulated genes on the DT is shown; on the right side,
the DT is depicted again with the distribution of downregu-
lated genes (Figure 1).

The probability density plot shows how likely genes in differ-
ent segments of the DT are to be expressed/suppressed in
cancer (see the Figure 1 legend for details). If there was no
correlation between gene expression in cancer and develop-
ment, the probability distributions would follow a straight
line with slope 1. However, if certain parts of the DT contain
genes that are up- or downregulated in cancer with a higher
frequency than expected by chance, the slope of the probabil-
ity density increases. Conversely, if cancer genes are depleted
in a particular segment of the DT, the slope becomes flatter.
For the deregulated genes in Figure 1b, this results in an 'open
eye' shape of the probability density (the legend to Figure 1
details the quantification of this shape).

A variety of cancers have activated a predominantly 
tissue-independent developmental signature
We will discuss some general principles emerging from the
comparison of all our data sets to the ten DTs on a subset of
instances and progress to a global overview thereafter. Figure
2 shows the frequency plots and probability distributions for
lung adenocarcinoma, Wilms' tumor, glioblastoma, ovarian
cancer and liver cirrhosis with respect to the DTs of lung
development, atrial chamber development, embryonic stem

(ES) cell differentiation and T cell development. The distribu-
tion of lung adenocarcinoma genes on the lung development
DT represents a good starting point for discussion, given that
the recapitulation of embryonal pulmonary gene expression
in lung cancer has been reported repeatedly [4,5]. The fre-
quency plot shows an early peak for upregulated genes, fol-
lowed by a gradual decline towards the late end of the DT,
implying that genes that are active in lung adenocarcinoma
are preferentially expressed in early lung development. The
pattern is inversed for downregulated genes, meaning that
genes that are characteristic for the mature, differentiated
state of the lung are suppressed in lung cancer. The probabil-
ity density confirms this observation with a sharp rise of
P(DEV[1-i] | cancer) for low values of i (early development)
for upregulated genes and high values of i (late development)
for downregulated genes.

Perhaps unexpectedly, the specificity of upregulated lung
cancer genes for early development (and downregulated
genes for late development) can be reproduced on DTs
derived from atrial chamber development, ES cell differenti-
ation and T cell development (more examples can be found in
Additional data file 1). Apparently, gene expression programs
that are exploited during lung tumorigenesis play a ubiqui-
tous role in processes involving differentiation and morpho-
genesis. This result is in contrast to the prevailing notion that
recapitulation of developmental gene expression in cancer is
a tissue-specific phenomenon [9,11].

Examination of the developmental distribution of Wilms'
tumor genes suggests that this property is not unique to lung
cancers. The segregation of up- and downregulated genes in
Wilms' tumor on lung development occurs even more con-
vincingly than the separation of lung cancer genes. A similar
result for many other tumor types (Additional data file 1) sug-
gests that this is unlikely to be solely attributable to the
embryonal nature of Wilms' tumor. Instead, a general devel-
opmental signature that shows very little evidence of tissue-
specificity seems to be a hallmark of many cancers. However,
there are several notable exceptions.

Upregulated genes in glioblastoma (2c) follow a similar pat-
tern to lung adenocarcinoma and Wilms' tumor in early
development, but an additional peak prominently occurs on
the late end of the DTs. Beyond expressing early genes, gliob-
lastomas have activated other, distinct transcriptional pro-
grams that are characteristic of later developmental stages.
The developmental gradient in this case is not capable of
'explaining' the glioblastoma gene expression signature
unambiguously. An even more striking example is ovarian
cancer (Figure 2d), a tumor that is in many respects the devel-
opmental complement of glioblastoma: upregulated genes
tend to avoid early and late development, while downregu-
lated genes have a preference for the extremes of the DT.
Apparently, transcriptional states in different cancers map to
distinct domains of physiological gene expression. These
Genome Biology 2008, 9:R108
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divergent developmental patterns are unlikely to be random
fluctuations. First, their recurrence with respect to changing
developmental backgrounds suggests a robust association.
Second, up- and downregulated genes have complementary
patterns; where upregulated genes are abundant on the DT,
downregulated genes are infrequent and vice versa. The
expression of certain sets of genes seems to be mutually exclu-
sive; if one set is active, the other set is invariably turned off.

Third, a limited number of patterns consistently recurs in dif-
ferent data sets.

Finally, Figure 2e shows the developmental profile of a dis-
ease that does not directly belong to the cancer family: liver
cirrhosis. The developmental timing of deregulated genes in
cirrhosis is strikingly different from most cancers. Upregu-
lated genes have a preference for late development, downreg-

Approach to data analysisFigure 1
Approach to data analysis. A developmental timeline (DT), which is a linear number ray on which each of 5,166 genes has a definite position, is constructed 
from a time course of gene expression during development (top left panel), positioning genes that are expressed in early development on the left end, 
genes that are upregulated in late development on the right end and neutral genes in the middle. The DT is integrated with genes that are deregulated in a 
population of tumors versus corresponding normal tissues (top right panel). (a) Frequency plot showing a histogram-like representation of the frequency 
of upregulated (red) and downregulated (green) cancer genes in different portions of the DT. The height of each bar indicates how many deregulated 
genes map to one of 13 equally sized segments of the DT. Each segment corresponds to approximately 400 genes. Up- and downregulated genes are 
depicted on separate DTs, that is, the first red bar refers to the same DT segment as the first green bar. Stated differently, the height of the first red bar 
signifies the number of upregulated cancer genes that map to the first 400 developmental genes and the height of the first green bar signifies the number of 
downregulated cancer genes that map to the same set of 400 developmental genes. (b) Probability density plot showing P(DEV[1,2,3...i] | cancer) for i = 
2,3...5,166 for upregulated and downregulated cancer genes. The probability of being among the first i genes on the DT (genes are numbered 1-5,166 from 
left/early to right/late) if deregulated in cancer directly reflects the preference of cancer genes for different segments of the DT. The shape of each 
probability distribution is summarized by two linear functions that are fitted to its early and late portions (blue lines). The slopes of these functions are 
subsequently used as a quantification of the developmental profile of a cancer.
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ulated genes tend to be enriched on the early end of the DTs.
This example illustrates that the distribution of deregulated
genes in development indeed is a pathophysiology-specific
phenomenon.

Three distinct groups of tumors emerge from the 
developmental landscape
The cases discussed in Figure 2 are a collection of represent-
ative examples highlighting some fundamental properties of
the association between cancer and development. By visual
inspection it is already clear that the developmental profiles
of lung adenocarcinoma and Wilms' tumor are more similar
to each other than to ovarian cancer, for example. However, if
we want to extend this assessment of similarity to a larger
number of tumors, a quantitative description of the 'shape' of
the developmental profile is required. We realized this quan-
tification by fitting two linear curves to each probability dis-
tribution, one curve representing its slope in the early part of
the DT and the other one approximating the late slope (Figure
1b). Thus, each combination of cancer and developmental
process is summarized by a unique set of four values, consist-

ing of two slopes for upregulated and two slopes for downreg-
ulated genes.

We next used this set of values to establish a high-level over-
view of the developmental information in all our datasets.
Clustering by the probability distribution slope values (Figure
3) reveals at least three distinct groups of tumors that exhibit
disparate developmental patterns. Group 1 contains tumors
with 'early' developmental profiles comparable to lung aden-
ocarcinoma and Wilms' tumor (Figure 2). This group repre-
sents 46% of all datasets and contains tumors from a diversity
of anatomical locations, including lung carcinomas, bladder
cancers, hepatocellular carcinomas and the hematological
malignancy T-cell lymphoma. Clearly, early developmental
gene expression is a widespread feature in cancer. An impor-
tant observation is that the early developmental signature in
all these tumors is only minimally tissue-specific. Many can-
cers have approximately equal slope values across diverse
developmental backgrounds, meaning that deregulated genes
map with the same specificity to the early and late segments
of many DTs.

Frequency plots and probability distributions for (a) lung adenocarcinoma, (b) Wilms' tumor, (c) glioblastoma, (d) clear cell ovarian cancer and (e) liver cirrhosisFigure 2
Frequency plots and probability distributions for (a) lung adenocarcinoma, (b) Wilms' tumor, (c) glioblastoma, (d) clear cell ovarian cancer and (e) liver 
cirrhosis. These cases were selected because they are representative of most tumors in our database.
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Group 2 contains several tumors with an ambiguous correla-
tion with developmental gene expression. Glioblastoma is
part of this group, next to several other central nervous
system tumors, breast cancer, and the more aggressive forms
of papillary renal cell carcinoma (subtypes 1.2A and 2). Exam-
ination of the frequency plots and probability distributions
for these cancers (Additional data file 1) shows that two types
of tumors are found in this group: those that do recapitulate
early developmental gene expression, but also exhibit addi-
tional transcriptional programs that are not consistent with
the developmental gradient (for example, glioblastoma); and
tumors that are consistent with the gradient, but whose
deregulated genes show a less dramatic preference for the
extremes of the DTs (for example, breast carcinoma).

Group 3, featuring several subtypes of ovarian cancer, pros-
tate cancer, two independent data sets of papillary thyroid
carcinoma (PTC) and two independent instances of renal cell
carcinoma, displays a transcriptional phenotype that is com-
pletely distinct from groups 1 and 2. Upregulated genes have
no clear preference for early development. In fact, in some
instances they accumulate on the late end of the DTs, co-clus-
tering with liver cirrhosis, dysplastic liver and ulcerative coli-
tis. The behavior of downregulated genes varies considerably.
In some cases - most notably the ovarian cancers - they com-
plement upregulated genes, but in PTC 3 for example, up- and
downregulated genes peak in similar DT segments, hinting at
active regulatory mechanisms that are not found in normal
developmental processes. It is apparent that group 3 is a
much more heterogeneous collection of diseases than groups
1 or 2.

Heatmap of probability distribution slopesFigure 3
Heatmap of probability distribution slopes. Thirty-two expression data sets of neoplasia versus corresponding normal tissue (and liver cirrhosis versus 
normal liver, dysplastic liver versus normal liver and ulcerative colitis versus non-inflamed colon) are compared against all 10 DTs. Each comparison is 
characterized by a four-dimensional vector of slopes derived from the probability distributions (example in top left corner). Two slope values stem from 
the distribution of upregulated genes on the DT, two are derived from the distribution of downregulated genes (Figure 1). UpE = slope for upregulated 
genes in the early part of the DT; UpL = slope for upregulated genes in the late part of the DT; DownE = slope for downregulated genes in the early part 
of the DT; DownL = slope for downregulated genes in the late part of the DT. Red indicates a steep slope (high specificity of up- or downregulated genes 
for that segment of the DT), green indicates a flat slope (depletion of up- or downregulated genes in that segment).
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Of note, two data sets in group 3 have counterparts of histo-
logically similar tumors located in group 1. PTC is represented
with three, and clear cell renal cell carcinoma (CRCC) with
two independent data sets in our database. Two of the PTC
data sets belong to group 3; a third data set, which is divided
in three histological subtypes of PTC (follicular, tall cell and
conventional variant) is part of group 1. Possibly, the lacking
histological subclassification of PTCs belonging to group 3
emphasizes a different transcriptional theme in those tumors.
Even more likely, the paired experimental design of the two
group 3 PTC data sets - in both cases, tissue from the same
patient served as a normal control - influences the gene
expression signature. We will address this issue in more detail
in the discussion.

The CRCC data sets are concordant as far as the top third of
differentially expressed genes is concerned. Considering only
the 450 most differentially expressed genes reveals a pro-
nounced preference of upregulated genes for the late part of
DTs in both data sets (Additional data file 3), making CRCC
more similar to diseases like liver cirrhosis and ulcerative col-
itis and implying that the early peak that places CRCC 1
among the 'early developmental' tumors is a less significant
addition to a prominent 'late' transcriptional program.

While groups 1 and 3 are clearly distinct, it is debatable
whether group 2 should be treated as its own entity. It is
apparent that there is a spectrum of developmental signa-
tures, with most cancer types clustering at its early or late end
and a few intermediate cases that cannot be classified unam-
biguously. Examining the distribution of probability distribu-
tion slope values for upregulated genes in the early segment
of the DTs (the most distinguishing feature) exemplifies this
point (Additional data file 8). The distribution is bimodal,
with most cancers falling into the early or late peak and group
2 tumors occupying the middle. To achieve a clear biological
separation in subsequent analyses, we decided to treat these
intermediate cases as a distinct class; it remains to be deter-
mined in more comprehensive studies whether this group can
be identified reproducibly.

The contribution of proliferation-related genes to the 
developmental pattern in cancer
Since early stages of most developmental processes involve
massive proliferation, part of the similarity between early
development and cancer can most certainly be attributed to
cell cycle (CC)-related genes. Also, the clinical behavior of the
cancers constituting the three groups raises the question
whether a proliferation signature could be driving their devel-
opmental profile. Group 1 mostly consists of aggressive
tumors with low doubling times (for example, urinary bladder
cancer, lung cancer, Wilms' tumor), while group 3 contains
more indolent forms. Tumors like ovarian and renal cancer
are associated with poor outcome because they metastasize
frequently and do not respond well to chemotherapy, but
their growth rate tends to be relatively low [14-16]. Also, pros-

tate and thyroid cancers are well-known for their slow growth
[17,18].

In order to determine whether the developmental component
in cancer is more than a proliferation signature, we rigorously
eliminated genes that are correlated with progression
through the CC in HeLa cells [19] from the deregulated genes
of all cancers (see Materials and methods), discounting
approximately 50% of differentially expressed genes in many
data sets. Figure 4 shows selected developmental profiles
before and after this CC subtraction. Group 1 tumors are
largely unaffected. Their profiles become noisier due to the
reduction of the number of differentially expressed genes, but
the shape remains qualitatively unchanged. In group 2, how-
ever, the early peaks in the frequency distribution disappear,
suggesting that the CC is a dominant factor in the upregulated
genes mapping to early development here, which does not
seem to be the case in group 1. The profiles of group 3 tumors
also remain constant. To see whether this surprising robust-
ness to CC subtraction is a cancer-specific phenomenon, we
constructed a developmental profile for proliferating
endometrium (PEN) versus early secretory endometrium
(ESEN) as a model for a proliferating, but non-malignant tis-
sue. Similarly to tumors in group 1, most genes upregulated in
PEN map to early development. In contrast to cancer, how-
ever, the effects of CC subtraction are much more pro-
nounced. Figure 4c shows a quantitative assessment of these
effects, defined as the difference of the probability density
slope for early upregulated genes before and after CC subtrac-
tion. Clearly, the developmental component in cancer is less
CC dominated than in the PEN. This becomes particularly vis-
ible on the background of ES cell differentiation (Figure 4b).
Discounting CC-regulated genes completely eliminates the
early peak in the frequency distribution for PEN, while the
profile for squamous cell lung carcinoma and other group 1
tumors (Additional data file 2) does not change. This
demonstrates that cancer shares a common gene expression
signature with stem cells that cannot be found in normal PEN
tissue. Finally, clustering all data sets by their probability dis-
tribution slope values after CC subtraction results in the same
distinction between groups 1, 2 and 3 as the one shown in Fig-
ure 3 (Additional data file 4). We therefore conclude that the
CC is not the main determinant of the disparate gene expres-
sion programs in these tumors.

Gene expression in groups 1, 2 and 3 is dominated by 
different biological processes
We next used Gene Ontology (GO) to compare the dominant
biological processes in groups 1, 2 and 3 with two develop-
mental meta-signatures, eDEV500 and lDEV500, represent-
ing tissue-independent early and late programs. eDEV500 is
defined as the 500 genes that are most consistently expressed
early across all time series (analogous definition for
lDEV500). Table 1 shows that upregulated genes in groups 1
and 2 are enriched for the same processes as eDEV500, most
prominently CC, RNA splicing and DNA repair. Indeed, DNA
Genome Biology 2008, 9:R108
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repair genes are active in pre-implantation and late gesta-
tional development and have been shown to be essential for
embryonic viability and development of extra-embryonic
tissues [20]. Downregulated genes in group 1 belong to proc-
esses that are underrepresented in eDEV500 and enriched in
lDEV500. These include cell communication, signal trans-
duction and system development, processes that are required
for the establishment and maintenance of a structured tissue
organization. It is noteworthy that downregulated genes in
group 2 diverge from this theme. The prominent observation
here is that genes required for aerobic respiration are
reduced; this could either point at hypoxic conditions or the
Warburg effect (a shift towards lactate production in cancer
cells even under normal oxygen supply). From a developmen-
tal perspective, upregulated genes in group 3 represent a mir-
ror image of group 1. They map to similar terms as lDEV500,
namely immune response, cell adhesion and multicellular
organismal process. While the latter two processes clearly
gain importance in the course of organogenesis, immune
response is less obviously associated with late developmental
stages. The role of cytokine signaling in hematopoiesis is well-
established, but its function in the development of other tis-
sues is incompletely understood. However, it is becoming
clear that chemokines do not only function as chemoattract-
ants for immune cells during inflammation, but also fulfill
essential roles in embryogenesis and tissue homeostasis [21].
For example, inhibition of signaling through the chemokine
receptor CXCR4 leads to defects in migration and differentia-
tion in the developing chick limb [22]. In cancer, chemokine
signaling can also affect migratory behavior. For instance,
mesenchymal stem cells in the tumor stroma are able to

increase breast cancer cell motility through paracrine CCL5
signaling [23]. The expression of inflammation-related genes
in cancer tissue is frequently interpreted as a consequence of
an immune response against the tumor. Interestingly, the
developmental perspective suggests that a similar gene
expression signature exists during the normal development of
several tissues without the involvement of an inflammatory
reaction.

The difference between early and late developmental genes,
and consequently genes activated in group 1 versus group 3,
is also evident when comparing the cellular localization of
their gene products. Proteins that are produced in early devel-
opment and group 1 are predominantly located in the
nucleus. Similarly, upregulated genes in group 2 have prod-
ucts with nuclear localization and specific involvement in the
CC. Gene products of lDEV500 and group 3, however, are
chiefly membrane-associated or secreted into the extracellu-
lar space.

Finally, we compared the PEN to development and cancer. As
expected, upregulated genes were mostly CC-related. How-
ever, they were not depleted for cell communication or signal
transduction genes like eDEV500 and cancers in groups 1 and
2, suggesting that proliferating cells of the endometrium
retain a higher level of communication with their surround-
ings than those in cancer or early development. Downregu-
lated genes were associated with lipid metabolism and
showed no enrichment for organogenesis or multicellular
processes like lDEV500 and downregulated genes in group 1.

Effects of CC subtractionFigure 4
Effects of CC subtraction. Frequency plots of selected cancer types on the backdrop of lung development (left panel) and ES cell differentiation (middle 
panel) are depicted before and after the dismissal of hundreds of CC regulated genes. The corresponding probability distributions can be viewed in 
Additional data files 9 and 10. The right panel shows the effects of this CC subtraction on all data sets, quantified as the difference of the early probability 
distribution slope value (UpE) before and after elimination of CC regulated genes. PEN versus ESEN = proliferating endometrium versus early secretory 
endometrium; PEN versus MSEN = proliferating endometrium versus mid secretory endometrium.
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Taken together, these results suggest a unique relationship
between malignancy and development that is not fully reca-

pitulated in normal proliferating tissues.

Table 1

GO category enrichment

BP - overrepresented BP - underrepresented CC - overrepresented

eDEV500 DNA replication
Cell cycle
RNA splicing
DNA repair
Chromatin modification

Multicellular organismal process
Cell communication
Signal transduction
System development
Ion transport

Intracellular
Nuclear part
Membrane-bound organelle
Spliceosome
Ribonucleoprotein complex

lDEV500 Immune response
Antigen processing and presentation
Cytokine and chemokine mediated 
signaling pathway
Cell adhesion
Multicellular organismal process

Biopolymer metabolic process
Biosynthetic process
RNA processing
Cell cycle phase
DNA repair

Membrane
Extracellular region
MHC protein complex
Lysosome
Secretory granule

Group 1 (16)

Up DNA repair (15)
Cell cycle (15)
RNA splicing (13)

Multicellular organismal process (16)
G-protein coupled receptor protein signaling 
pathway (16)
Neurological process (16)

Intracellular (16)
Organelle (15)
Nuclear part (15)

Down Multicellular organismal process (15)
Organ development (14)
Cell communication (11)

Primary metabolic process (14)
RNA processing (14)
DNA metabolic process (14)

Plasma membrane (16)
Extracellular region (13)
Voltage-gated potassium channel 
complex (8)

Group 2 (6)

Up Cell cycle (6)
DNA replication (6)
Response to DNA damage stimulus 
(6)

Multicellular organismal development (5)
Anatomical structure development (5)
System development (4)

Chromosome (6)
Protein complex (5)
Replication fork (5)

Down Monovalent inorganic cation transport 
(5)
ATP synthesis coupled proton 
transport (5)
Oxidative phosphorylation (4)

DNA recombination (6)
Immune response (5)
Macromolecule metabolic process (5)

Proton-transporting two-sector 
ATPase complex (5)
Membrane (5)
Extracellular matrix (3)

Group 3 (13)

Up Immune response (10)
Multicellular organismal process (8)
Cell adhesion (6)
Response to wounding (5)

Cellular metabolic process (10)
Nucleobase, nucleoside, nucleotide and 
nucleic acid metabolic process (9)
RNA metabolic process (8)

Plasma membrane (10)
Extracellular region (10)
Lysosome (5)

Down Cellular metabolic process (10)
Protein metabolic process (6)
RNA processing (5)

Multicellular organismal process (10)
Immune response (10)
Cell activation (8)

Cytoplasm (10)
Intracellular (8)
Organelle (8)

PEN versus ESEN

Up DNA replication
Cell cycle phase
DNA metabolic process

Biosynthetic process
Generation of precursor metabolites and 
energy
Translation

Chromosome
Replication fork
Microtubule cytoskeleton

Down Lipid metabolic process
Lipid biosynthetic process
Cofactor metabolic process

Macromolecule metabolic process
Intracellular signaling cascade
M phase of mitotic cell cycle

Desmosome
Membrane fraction
Microsome

Next to the most significant GO categories for eDEV500, lDEV500 and PEN versus ESEN, the GO categories that are most frequently enriched in 
the up- and downregulated genes of group 1, 2 and 3 data sets are listed with the number of occurrences in parentheses. BP, biological process; CC, 
cellular component. For example, DNA repair is enriched in the upregulated genes of 15 out of 16 data sets belonging to group 1.
Genome Biology 2008, 9:R108
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Among hundreds of curated gene sets, the 
developmental signature is the best descriptor of 
approximately 50% of interrogated tumor types
We next wanted to determine how well our developmental
signatures describe the difference between cancer and nor-
mal tissue in a direct comparison with other gene sets. We
downloaded the C2 database from MSigDB [24], a collection
of gene sets derived from gene expression studies and known
pathways, and tested the enrichment of approximately 1,000
gene sets in the up- and downregulated genes of our data sets.
Subsequently, we compared the results with the performance
of eDEV500, lDEV500 and four smaller gene sets that were
defined analogously, eDEV200/lDEV200 and eDEV100/
lDEV100.

Table 2 shows the gene sets that were most significantly
enriched in the up- and downregulated genes of the three
groups. Upregulated genes in group 1 are best represented by
eDEV500, which is a remarkable result because no cancer
gene expression data were used in deriving this gene set, but
solely time courses of mouse development (all DTs except for
T cell development are murine). Many data sets in MSigDB,
on the other hand, are directly derived from gene expression
profiles of human cancers. Of course, the groups were defined
by the distribution of deregulated genes in development, but
group 1 is not a specialized subset, but comprises almost 50%
of our data sets. Two of the top ranks next to eDEV500 and
eDEV200 are occupied by sets of genes that are upregulated
in stem cells, implying a close connection between early
development and pluripotency that is also evident in the can-
cer gene expression profile. CC gene sets are not among the
most enriched signatures, but the imprint of 'stemness' can
clearly be distinguished in group 1 tumors, even though our
data sets represent heterogeneous tissues containing a variety
of cell types. Conversely, lDEV500 is the most significant
gene set in the downregulated genes of group 1, next to genes
that are downregulated in various tumor models (SANSO
M_APC_5_DN, LEE_DENA_DN, LEE_ACOX1_DN) and
signatures found in activated mast cells (NAKAJIMA_M
CS_UP), confirming the aforementioned association of late
developmental genes and downregulated genes in group 1
cancers with the immune response.

eDEV500 is less significant in group 2 than in group 1. This is
consistent with previous results showing a less pronounced
clustering of upregulated genes in early development for
group 2. Instead, two independent serum response signatures
are enriched in the upregulated genes (SERUM_FIBRO
BLAST_CORE_UP, CHANG_SERUM_RESPONSE_UP).
Besides stimulating proliferation, serum exposure induces a
wound healing response in fibroblasts, involving the activa-
tion of genes that play a role in intercellular signaling and
remodeling of the extracellular matrix [25]. These are both
processes that map to late development in our analysis.
Indeed, group 2 tumors tend to have both an early and a late

peak in the frequency distribution of upregulated genes (Fig-
ure 2).

As already noted in the context of GO classification, gene sets
enriched in group 3 are a counterpart of group 1. eDEV500
does not rank among the top gene sets, nor do any of the stem
cell signatures. Instead, three signatures that are enriched in
group 1 downregulated genes are overrepresented in the
upregulated genes of group 3 (TARTE_MATURE_PC, SAN
SOM_APC_5_DN, NAKAJIMA_MCS_UP). The combina-
tion of serum-induced cell division (SERUM_FIBRO
BLAST_CELLCYCLE) and immune response gene sets again
suggests an association with wound healing, but the early
developmental component that is so prominent in group 1
and also present in group 2 is lacking in group 3.

To visualize how well the tumors inside of a group agree on
the significance of a gene set, we clustered all data sets by the
p-values for the top 20 signatures in the upregulated genes of
the three groups (Figure 5). Group 1 presents very homogene-
ously with only few exceptions such as the thyroid carcinomas
and renal carcinoma. Both of these cancers have counterparts
in group 3 and have already been mentioned as ambiguous
cases. The variation in group 2 is also low. Its position as a
transition state between groups 1 and 3 is clearly visible in the
heatmap as a general agreement with group 1, but simultane-
ous activation of a cluster of gene sets (hypoxia response,
immune response, cell adhesion receptor activity) that are
enriched in group 3 and insignificant in group 1. Group 3
clearly represents a distinct entity, but intra-group variation
is substantial, confirming a greater heterogeneity among
these tumors. Notwithstanding, they are all characterized by
the lack of a pronounced developmental/stemness compo-
nent and activation of inflammatory signatures. An analo-
gous heatmap for gene sets enriched in downregulated genes
(Additional data file 5) shows that the distinction of groups 1-
3 is also present in genes that are suppressed in these cancers.

The class distinction is reproducible on an independent 
time series
To test whether we could validate the segregation of tumors
into distinct developmental classes on an independent time
series, we generated expression profiles of the developing
mouse lung at embryonic day (E) 11.5, E13.5, E14.5, E16.5 and
postnatal day 5. A heatmap of probability distribution slope
values based on the DT constructed from these data (Figure
6) shows that the segregation of tumors into the previously
defined groups can be fully recapitulated. This result further
corroborates that the relationship between a cancer type and
developmental gene expression is highly robust. Given that
groups 1(2) and 3 display such disparate developmental pat-
terns, we next asked whether the fact that a gene is upregu-
lated in group 1, 2 or 3 is enough to predict its behavior during
embryonic lung development. Based on our previous results,
we would expect genes that are commonly upregulated in
group 1 to be expressed in early lung development, group 2
Genome Biology 2008, 9:R108
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genes to have a more ambiguous expression pattern and
genes activated in group 3 to be expressed late. We defined
three consensus signatures by selecting those genes that are
expressed in at least 60% of the data sets in each group (80%
for group 2 to account for smaller group size). Figure 7 shows
the average expression value for the three consensus gene sets
at each time point in our lung developmental time series.
Indeed, consensus genes for groups 1 and 2 are upregulated in
early development (with a more pronounced decline of group
1 genes in late development), while group 3 genes are active
late. Remarkably, the fact that a set of genes is expressed in a
particular group of tumors is enough to predict the average

temporal expression pattern of these genes during embryonic
development in a different species, further highlighting the
deep-rooted connection between development and tumorige-
nesis.

Table 3 shows some examples of the consensus genes, sorted
by their average rank across all DTs. Consensus genes in
group 1 are almost exclusively expressed very early on (aver-
age rank <1,500) and include molecular chaperones (CCT3,
CCT7), proliferation-related genes (RACGAP1, PCNA and its
associated factor KIA1001 [26]) and DNA repair genes (UNG,
H2AFX). The consensus set of group 2 includes genes that are

Table 2

MSigDB C2 gene sets most significantly enriched in groups 1-3

Upregulated genes Downregulated genes

Group 1

eDEV500 lDEV500

STEMCELL_NEURAL_UP SANSOM_APC_5_DN

eDEV200 NAKAJIMA_MCS_UP

TARTE_PLASMA_BLASTIC TARTE_MATURE_PC

STEMCELL_EMBRYONIC_UP CALCIUM_REGULATION_IN_CARDIAC_CELLS

PRMT5_KD_UP LEE_DENA_DN

CANCER_NEOPLASTIC_META_UP SMOOTH_MUSCLE_CONTRACTION

LI_FETAL_VS_WT_KIDNEY_DN YAO_P4_KO_VS_WT_UP

eDEV100 lDEV200

MOREAUX_TACI_HI_IN_PPC_UP LEE_ACOX1_DN

Group 2

HOFFMANN_BIVSBII_BI_TABLE2 FLECHNER_KIDNEY_TRANSPL_REJ_DN

YU_CMYC_UP AGEING_KIDNEY_SPECIFIC_DN

DNA_REPLICATION_REACTOME CHANG_SERUM_RESPONSE_DN

eDEV500 LE_MYELIN_DN

SERUM_FIBROBLAST_CORE_UP AGEING_KIDNEY_DN

CMV_IE86_UP VENTRICLES_UP

CHANG_SERUM_RESPONSE_UP CARIES_PULP_DN

G1_TO_S_CELL_CYCLE_REACTOME UVB_NHEK1_UP

PEART_HISTONE_DN SMOOTH_MUSCLE_CONTRACTION

GENOTOXINS_ALL_4HRS_REG BRCA_ER_POS

Group 3

SERUM_FIBROBLAST_CELLCYCLE FLECHNER_KIDNEY_TRANSPL_REJ_DN

BRCA_ER_NEG AGEING_KIDNEY_DN

TARTE_MATURE_PC IDX_TSA_UP_CLUSTER6

DAC_PANC_UP AGEING_KIDNEY_SPECIFIC_DN

SANSOM_APC_5_DN DIAB_NEPH_DN

NAKAJIMA_MCS_UP CARIES_PULP_DN

CANCER_UNDIFFERENTIATED_META_UP MITOCHONDRIA

HIF1_TARGETS BRCA_ER_POS

LEE_TCELLS3_UP VENTRICLES_UP

GENOTOXINS_ALL_4HRS_REG HEARTFAILURE_ATRIA_DN
Genome Biology 2008, 9:R108
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expressed early and late. Early genes fall into similar
categories as the group 1 consensus, that is, DNA repair
(NUDT1, DTL), proliferation (DTMYK, MELK) and DNA
methylation (HELLS). Late genes are involved in signal trans-
duction (DTNA) and antigen processing (TAP1). PSMB8 and
PSMB9 are part of the immunoproteasome, a special form of
the proteasome that is active after stimulation of cells with
interferon-γ and is constitutively expressed in dendritic cells.
The immunoproteasome exhibits modified cleavage proper-
ties that have been shown to affect tumor antigen processing
and consequently cytotoxic T cell responses [27]. Consensus
genes in group 3 mainly map to late development and are
involved in antigen processing (HLA-C, TAP1), extracellular
matrix remodeling (MMP7), proteolysis (PPGB), and
cytokine signaling (IL7R). However, the group 3 consensus
also contains a fraction of early genes that overlap with early
consensus genes in groups 1 and 2 (CKS2, MELK, KIAA0101*,
RACGAP1). Considering the small size of the consensus gene
sets - 20, 58 and 29 genes for groups 1-3, respectively - this
level of unanimity is striking and suggests the existence of a

'core program' that is active in all cancers, regardless of large-
scale differences in the global gene expression program.

A core program of genes expressed in most cancers is 
active in early development
To further explore the notion of a tissue-independent core
program in cancer, we scored each gene by how many times it
is upregulated in all cancer data sets (here, we excluded liver
cirrhosis, dysplastic liver and ulcerative colitis) and com-
pared this score to the average rank of the gene across all DTs.
Figure 8 shows a highly significant inverse relationship
between the developmental rank of a gene and its overexpres-
sion frequency (p < 2.2e-16). The top-scoring genes in this
comparison are related to proliferation and DNA repair and
also include transcripts coding for chromatin remodeling
proteins (EZH2), a histone variant that has recently been
linked with stem cell proliferation [28] (H2AFX) and RNA-
interacting proteins (ELAVL1, SNRPA). To see whether the
relationship between developmental rank and overexpres-
sion in cancer is robust towards CC subtraction, we excluded

Heatmap of enrichment p-valuesFigure 5
Heatmap of enrichment p-values. The p-values for gene sets that ranked among the 20 most enriched in the upregulated genes of either group 1, 2 or 3 are 
shown for all data sets. Red indicates low p-values, green high p-values.
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Lung adenocarcinoma
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Serous ovarian cancer
Endometroid ovarian cancer
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Mucinous ovarian cancer
Clear cell ovarian cancer
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all CC-regulated genes as previously described. The associa-
tion remains highly significant (p < 2.2e-16). Top-scoring
genes are mainly involved in RNA processing (CSTF2,
SNRPA, SNRPA1, SNRPE, USP39, HNRPAB), which could
either be a secondary effect of proliferation or reflect the
increased metabolic activity of cancer cells, and chromatin
remodeling (ACTL6A, SMARCC1), indicating that epigenetic
mechanisms may be involved in the maintenance of an
embryonic phenotype in many cancers.

Discussion
We have presented a comprehensive, tissue-spanning com-
parison of gene expression in normal development and
human cancer. Main conclusions emerging from this analysis
are that a large percentage of tumors recapitulate early devel-
opmental gene expression and that the developmental signa-
ture in these cancers exhibits low tissue-specificity.
Furthermore, we have identified three groups of cancers dis-
tinguished by disparate developmental signatures. One group
has an early developmental phenotype and expresses genes
that are characteristic of stem cells. From a developmental
perspective, this group presents very homogeneously. This is

all the more surprising as it contains cancer types with com-
plex karyotypes, which are currently thought to lead to more
'chaotic' gene expression. A second, more heterogeneous
group tends to be more similar to late development and is
characterized by an inflammatory signature. A small group of
cancers presents as a transition phenotype between these two
extremes and displays both characteristics. This group dis-
tinction is reproducible with respect to a new time series of
embryonic lung development in the mouse. Finally, we have
identified a core program of genes that are expressed in most
cancers and mapped the activity of this transcriptional pro-
gram to early development.

An unexpected result is the low tissue-specificity of the devel-
opmental signature, contrasting with previous reports [9,11].
We cannot exclude the possibility that cancer types that were
not included in our database recapitulate more tissue-specific
developmental patterns. However, our findings suggest that
comprehensive comparisons against a diverse set of develop-
mental backgrounds are required before a specific association
between a cancer and the development of its cognate tissue
can be established on the gene expression level. It is likely
that a lineage-specific aspect does exist in cancer gene expres-

Heatmap of probability distribution slopes for all data sets with respect to the lung development validation time seriesFigure 6
Heatmap of probability distribution slopes for all data sets with respect to the lung development validation time series. Abbreviations and colors are the 
same as in Figure 3.
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sion [13], but its magnitude seems to be small in comparison
with more generic developmental modules. Possibly, micro-
RNA profiles might be better suited for detection of such sub-
tle signals because they reflect more specific processes than
mRNA profiles [29].

Given the type of analysis conducted here, intended to reveal
broad brush strokes rather than subtleties, the clear segrega-
tion of tumors into three groups with distinct expression pat-
terns is surprising. Clearly, the developmental trajectory
provides a meaningful background for capturing large-scale
differences in gene expression across diverse conditions. That
said, we can only speculate as to what the biological determi-
nants of the observed segregation might be as they are poten-
tially as broad as the contexts in which a proliferative
response is 'normal' and physiological.

The capability to divide in response to certain conditions is an
inherent property of most cells. Epithelia can augment the
production of new cells in response to mechanical irritation
[30], fibroblasts divide to reconstitute injured tissue [31], the
microvasculature of the female reproductive system periodi-
cally expands [32], hepatocytes reconstitute liver tissue after
hepatectomy [33] and, of course, cells divide to form a new
organism during embryogenesis. The transcriptional
programs driving these processes might be as diverse as the
contexts that trigger proliferation. Cancers likely exploit
endogenous cellular mechanisms to sustain their growth, but
our understanding of which of the available paths towards
proliferation is chosen in different types of cancers is rudi-

mentary. Our analysis suggests that tumors in group 1
recapitulate an embryonic phenotype: they express early
developmental and stem cell genes, suppress genes character-
istic of mature tissues and they have downregulated messages
required for intercellular communication and signaling. Cell
cycle in these tumors might be fueled through the same mech-
anisms that are employed in rapidly proliferating blastemal
cells. Group 3, on the other hand, presents a different picture.
Differentially expressed genes imply that proliferation here
could occur in the context of wound healing, which is associ-
ated with all the processes that are relevant in group 3
(inflammatory reaction, proliferation, tissue remodeling).
The conception of cancer as a 'wound that does not heal' has
often been cited [34]. Our analysis suggests that it might be
more applicable to some tumors than to others. Indeed, the
clinical behavior of tumors in group 3 seems to exhibit some
special features. Even though ovarian cancer is known as a
malignancy with poor prognosis, its growth rate often is slow
and patients can live with metastases for years [14]. Renal cell
carcinoma also has a poor prognosis when metastatic; how-
ever, most renal cell carcinomas have an indolent growth rate
[15]. Finally, thyroid cancers are also recognized for their slow
growth [17]. It is not clear whether the inflammatory gene
expression signature we observe in these tumors is a cause or
consequence of this particular behavior, but further investi-
gation of this question has profound clinical implications. If
tumors truly rely on distinct programs for proliferation and
survival, a classification system that takes these differences
into consideration could provide valuable guidelines for ther-
apeutic decisions. Based on our study, for example, we would
predict that a drug interfering with the wound healing pro-
gram might be effective against both ovarian and renal carci-
noma, but not against Wilms' tumor or lung adenocarcinoma.
Interestingly, a recent paper that examined gene expression
in mouse models of colon carcinoma in a developmental con-
text revealed a distinction between Smad3-/- and Tgfb1-/-;
Rag2-/- models (both exhibiting a strong inflammatory com-
ponent and showing similarity to late colon development)
and ApcMin/+ and AOM models, which recapitulated early
colon development [10]. This result implies that different
genetic alterations might underlie the distinct gene expres-
sion signatures in group 1 and 3 cancers.

To refine the distinction between the developmental groups
of cancers emerging from our analysis, more data - ideally
acquired under standardized conditions - are necessary.
While the embryonic cancers in group 1 seem to represent a
fairly homogeneous population with respect to their develop-
mental component, diseases in group 3 are far more heterog-
eneous and more reliable data would probably lead to further
sub-classification of these cancers. Standardized data would
also likely help to resolve the group affiliation of ambiguous
cases like thyroid carcinoma. Both PTC data sets mapping to
group 3 are paired experiments, with tumor and normal tis-
sue coming from the same patient, while the PTC data set in
group 1 is unpaired. Such differences seem to have a larger

Average expression level of consensus gene sets in the lung development validation time seriesFigure 7
Average expression level of consensus gene sets in the lung development 
validation time series. Consensus group 1 = genes overexpressed in 11/16 
data sets belonging to group 1; consensus group 2 = genes overexpressed 
in 5/6 data sets belonging to group 2; consensus group 3 = genes 
overexpressed in 8/13 data sets belonging to group 3.
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impact on the genes that are identified as differentially
expressed than commonly assumed. A recent study elegantly
proves this point by showing an altered gene expression sig-
nature in 'normal' tissue adjacent to lung tumors [35]. Other
possibly confounding factors like the degree of lymphocyte

infiltration in different samples and the already mentioned
specification of histological subtype might play important
roles in determining the developmental profile of a tumor and
should be accounted for in future studies.

Table 3

Example genes from the consensus sets of groups 1-3 ordered by their average rank across all DTs

ProbeID Average rank Gene symbol Description

Consensus group 1

Early 201577_at 627.1 NME1* Non-metastatic cells 1, protein (NM23A)

200812_at 633.8 CCT7 Chaperonin containing TCP1, subunit 7 (eta)

201202_at 875.7 PCNA Proliferating cell nuclear antigen

205436_s_at 890.0 H2AFX H2A histone family, member X

201476_s_at 904.6 RRM1 Ribonucleotide reductase M1 polypeptide

200910_at 922.9 CCT3 Chaperonin containing TCP1, subunit 3 (gamma)

202330_s_at 924.1 UNG Uracil-DNA glycosylase

202503_s_at 1060.0 KIAA0101* KIAA0101

222077_s_at 1146.2 RACGAP1 Rac GTPase activating protein 1

204170_s_at 1188.5 CKS2 CDC28 protein kinase regulatory subunit 2

Consensus group 2

Early 204766_s_at 530.6 NUDT1 Nudix (nucleoside diphosphate linked moiety X)-type motif 1

204825_at 629.0 MELK Maternal embryonic leucine zipper kinase

203270_at 636.6 DTYMK Deoxythymidylate kinase (thymidylate kinase)

218585_s_at 768.5 DTL Denticleless homolog (Drosophila)

220085_at 772.6 HELLS Helicase, lymphoid-specific

Late 205741_s_at 3587.9 DTNA Dystrobrevin, alpha

204279_at 3816.5 PSMB9 Proteasome (prosome, macropain) subunit, beta type, 9 (large multifunctional 
peptidase 2)

204416_x_at 3944.6 APOC1 Apolipoprotein C-I

202307_s_at 3987.2 TAP1 Transporter 1, ATP-binding cassette, sub-family B (MDR/TAP)

209040_s_at 4243.6 PSMB8 Proteasome (prosome, macropain) subunit, beta type, 8 (large multifunctional 
peptidase 7)

Consensus group 3

Early 204825_at 629.0 MELK Maternal embryonic leucine zipper kinase

202503_s_at 1060.0 KIAA0101* KIAA0101

202705_at 1095.9 CCNB2 Cyclin B2

222077_s_at 1146.2 RACGAP1 Rac GTPase activating protein 1

204170_s_at 1188.5 CKS2 CDC28 protein kinase regulatory subunit 2

Late 208997_s_at 3296.1 UCP2 Uncoupling protein 2 (mitochondrial, proton carrier)

205798_at 3499.9 MMP7 Matrix metallopeptidase 7 (matrilysin, uterine)

202307_s_at 3724.7 PPGB Protective protein for beta-galactosidase (galactosialidosis)

209166_s_at 3946.3 IL7R Interleukin 7 receptor

206707_x_at 3987.2 TAP1 Transporter 1, ATP-binding cassette, sub-family B (MDR/TAP)

208812_x_at 4485.7 HLA-C Major histocompatibility complex, class I, C

To identify only the most relevant genes, the definition of 'consensus gene set' was tightened from the definition employed in Figure 7. Consensus 
group 1 = 20 genes overexpressed in at least 15/16 data sets belonging to group 1; consensus group 2 = 58 genes overexpressed in all data sets (6/
6) belonging to group 2; consensus group 3 = 29 genes overexpressed in 9/13 data sets belonging to group 3. Bold entries are those expressed more 
than three times above median in at least one of murine E6, E7, E8, E9, E10 (Symatlas). Italicized entries are those expressed more than three times 
above median in at least one of the following human cell types: CD4+ T cells, CD8+ T cells, CD19+ B cells (peripheral blood), BDCA4+ dendritic 
cells, B lymphoblasts (peripheral blood). *Expression data not available in Symatlas.
Genome Biology 2008, 9:R108
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To gain a better understanding of the biology underlying dif-
ferent loci on the developmental landscape, it might also be
helpful to include more pathological conditions unrelated to
cancer in the analysis. For many diseases, we have sufficiently
good understanding of etiology and pathophysiology to be
able to use them as 'landing lights' on the developmental
surface.

Conclusion
The results presented here suggest that there is great poten-
tial for better understanding of human disease in a 'macrobio-
logical' approach to analyzing high-throughput data. Shifting
our focus from single sets of genes or processes to the biology
of aggregates on the order of the entire transcriptome is likely
to be useful in establishing highly robust molecular correla-
tions between seemingly unrelated disease phenotypes.

Materials and methods
Data
All gene expression data with the exception of the lung devel-
opment validation series came from the public domain.
Developmental time courses were profiled on several differ-

ent Affymetrix chips (MG-430 2.0, MG-430A, MG-U74,
Mu11K, HG-U133A). To exclude potential platform-related
bias, we restricted ourselves to Affymetrix HG-U133A or HG-
U133 Plus 2.0 arrays for cancer gene expression profiles. A
detailed description of all data sets can be found in Additional
data file 6.

Data preprocessing
When available, .CEL files were downloaded and arrays were
normalized and expression measures calculated using the
robust multi-array average [36,37]. When raw data were not
available, MAS5 preprocessed expression values were down-
loaded, quantile-normalized and log2-transformed.

Cross-platform comparison and homology mapping
On Affymetrix arrays, a gene is often assayed by several probe
sets. We first reduced each platform to unique Entrez Gene
IDs. To avoid artifacts in downstream analyses caused by
biased probe set selection, we randomly chose the probe set
that would represent a gene on a particular platform. Probe
sets with no Entrez ID were removed. In the next step, we
used the homologene database (NCBI) to define orthologs
between the human and the mouse. Entrez IDs with no
ortholog were removed from all platforms. Finally, we

Cancer core program genes before and after cell cycle subtractionFigure 8
Cancer core program genes before and after cell cycle subtraction. Genes overexpressed in >20/32 data sets and with an average DT rank <1,000 are 
marked in red and their names are listed below the table (left panel). Analogously for the right panel, with the parameter relaxed to overexpression in 
>15/32 data sets to account for the reduced number of genes after elimination of CC genes. Genes belonging to the GO category 'cell cycle' are marked 
as orange asterisks (and with orange boxes in the right panel) to allow a better assessment of the effects of CC subtraction.
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matched orthologous genes across platforms. The resulting
'consensus' between the different platforms consists of 5,166
unique genes.

Construction of the developmental timeline: principal 
components analysis
We used principal components analysis to construct a DT for
each developmental time series [11]. Principal components
analysis is a linear data transformation technique that allows
representation of the original data in a new coordinate system
in which the axes (principal components (PCs)) are chosen to
capture as much variation in the data as possible in a decreas-
ing order, that is, PC1 accounts for x% variability, PC2 for y%,
PC3 for z% and so on, with x > y > z. We first normalized the
expression values of each gene across conditions (time
points) to mean 0 and standard deviation 1. Principal compo-
nents analysis was carried out on the normalized data using
the R language and environment for statistical computing
[38], with genes representing objects and time points repre-
senting the features whose dimensionality is to be reduced.
For the purposes of our analysis, we were interested in the PC
that is most significantly associated with time. For each devel-
opmental time series M (5,166 rows/genes and k columns/
time points), we therefore computed the correlation between
a time vector (1,2,3...,k) and the component loadings for each
of the k PCs. For all time series with the exception of liver
regeneration, PC1 was most significantly correlated with the
time vector (>0.8). For liver regeneration, the highest corre-
lation (~0.6) was found for PC3, indicating that the major
changes in gene expression during liver development do not
occur in a continuum from time point 1 to k, as in develop-
ment. The most active stage of hepatocyte regeneration
occurs approximately 48 h after hepatectomy, while our time
series spans 0-72 h (Seth Karp, personal communication).

The DT of a developmental time series is the original data
matrix M (5,166 rows/genes and k columns/time points) after
the transformation:

y = vT × dT

where vT denotes the k-dimensional PC of M that is most sig-
nificantly correlated with time.

Analysis of differential gene expression and 
construction of developmental profiles
Differential gene expression between tumors and corre-
sponding controls was determined using significance analysis
of microarrays (SAM) [39]. All genes with a q-value <0.05
were considered differentially expressed. For purposes of
consistency, SAM based on an unpaired t-test was used for all
data sets, even though paired data were available in four
cases.

Frequency plots and probability distributions
Frequency plots were constructed by dividing the DTs in 13
equally sized (approximately 400 genes) compartments and
plotting the compartment index against the number of upreg-
ulated and downregulated genes mapping to that compart-
ment.

Probability distributions show the probability P(DEV-
[1,2,...i]|cancer) of being among the first i genes on the DT
(positions are numbered 1-5,166, starting on the left, early
side) if deregulated in cancer for up- and downregulated
genes. Specifically, we plot:

We then quantified the shape of the distribution by fitting two
independent linear models to the data, one regression line
representing the probability distribution on the early end of
the DT and another one approximating the distribution on
the late end (illustrated in Figure 1b and top right corner of
Figure 3). The goal was to find two regression lines that best
approximate the probability distribution and use their slopes
as a two-dimensional summary of how the cancer genes map
to the DT. Since each probability distribution has a unique
shape, it has to be determined in each individual case at which
point on the DT the breakpoint between the early and late
model should occur to achieve an optimal approximation. We
computed a series of F statistics (Chow test) for each potential
breakpoint in the probability distribution; that is, we tested
how different the coefficients of the two regression lines are if
we choose the breakpoint at DEV[i] for i = 774,775,...4,391
(this excludes the earliest and latest parts of the DT because
the linear model should represent a sufficiently large seg-
ment). The optimal breakpoint is defined as the maximal
value in the series of F statistics. All computations were done
using the strucchange package available at [40]. The fit of the
regression lines to all probability distributions (blue lines)
can be viewed in Additional data files 9 (before cell cycle sub-
traction) and 10 (after cell cycle subtraction). For each combi-
nation of cancer and DT, this approach yields four regression
lines: two models representing early and late probabilities for
upregulated genes and two models for downregulated genes.
For each cancer, we can thus summarize the relationship to
the 10 DTs in a 40-dimensional vector (4 regression line
slopes × 10 DTs). These vectors were for used for clustering
using Euclidian distance and Ward's linkage (Figure 3).

Cell cycle subtraction
We downloaded cell cycle scores for 38,578 probes [41]. The
scaled Fourier periodicity scores ranged from 0.1-58; the cut-
off for being considered cell cycle regulated in the original
publication was 3.2. In our CC subtracted data sets, we
allowed only genes with a defined score <1.
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Meta-developmental signatures, consensus gene sets 
and GO characterization
The meta-developmental signatures were determined by
computing the average rank of each gene across all ten DTs
and selecting the x genes with earliest (eDEVx) and latest
(lDEVx) expression. Enrichment of GO categories in meta-
developmental signatures and deregulated genes in cancer
was determined against the background of all 5,166 genes in
our analysis using Bioconductor's GOstats package [42]. Con-
sensus gene sets for tumors in groups 1-3 were defined as
those genes that are upregulated (downregulated) in at least
60% of datasets belonging to a given group, that is, 11/15 for
group 1, 5/6 for group 2 and 8/13 for group 3.

C2 gene set enrichment
We downloaded all C2 gene sets from the Broad Institute
website [43], eliminated the fraction that had an overlap of
less than 15 genes with our data sets, and augmented the C2
collection with 10 meta-developmental gene signatures
(DEV30, 50, 100, 200, 500 and LATEDEV30, 50, 100, 200,
500). We then tested the enrichment of each of these 999
gene signatures in the up- and downregulated genes of our 32
data sets using Fisher's exact test (one-sided). Clustering of
all data sets by the p-values for the top 20 enriched gene sets
in groups 1-3 was accomplished using Manhattan distance
and Ward's linkage.

R scripts for all above-mentioned analyses are provided on
the website accompanying this paper [44].

Validation time series: embryonic lung development
Whole lungs were dissected from C57BL/6J mice at E11.5,
E13.5, E14.5, E16.5 and postnatal day 5 and stored in
RNAlater (Ambion, Austin, TX, USA). All time points repre-
sent gene expression patterns of individuals; only E11.5 was a
pooled sample (seven pups). Total RNA was extracted using
Ambion's mirVana miRNA isolation kit and tested for quality
using a bioanalyzer (Agilent, Santa Clara, CA, USA). RNA
integrity numbers ranged from 9.2-9.7. The samples were
prepared for hybridization to Affymetrix Mouse 430 2.0
arrays according to the manufacturer's instructions. Proc-
essed and raw data have been submitted to Gene Expression
Omnibus [45] under accession number GSE11539 and are
also available in RMA-normalized form as Additional data file
7.

Abbreviations
CC, cell cycle; CRCC, clear cell renal cell carcinoma; DT,
developmental timeline; E, embryonic day; ES, embryonic
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ogy; PC, principal component; PEN, proliferative endomet-
rium; PTC, papillary thyroid carcinoma; SAM, significance
analysis of microarrays.
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Additional data files
The following additional data are available. Additional data
file 1 contains the frequency plots for all cancer types and all
developmental time series. Additional data file 2 contains the
frequency plots for all cancers and all time series after CC sub-
traction. Additional data file 3 shows the frequency plots for
the top 450 differentially expressed genes in CRCC1 and
CRCC2. Additional data file 4 contains a heatmap of probabil-
ity distribution slopes after CC subtraction (analogously to
Figure 3). Additional data file 5 is a heatmap of enrichment p-
values for gene sets that ranked among the 20 most enriched
in the downregulated genes of either group 1, 2 or 3. Addi-
tional data file 6 is a spreadsheet containing detailed annota-
tion for all data sets used in this study. Additional data file 7
contains the raw data for the lung development validation
time series (after RMA-normalization). Additional data file 8
contains a smooth histogram of early upregulated (UpE)
probability distribution slopes for all cancer data sets. Addi-
tional data file 9 contains the probability distribution plots
and linear regression fits for all cancers and all time series.
Additional data file 10 shows the same data as additional data
file 9, but after CC subtraction.

Additional data file 1Frequency plots for all cancer types and all developmental time seriesFrequency plots for all cancer types and all developmental time series.Click here for fileAdditional data file 2Frequency plots for all cancers and all time series after CC subtractionFrequency plots for all cancers and all time series after CC subtraction.Click here for fileAdditional data file 3Frequency plots for the top 450 differentially expressed genes in CRCC1 and CRCC2Frequency plots for the top 450 differentially expressed genes in CRCC1 and CRCC2.Click here for fileAdditional data file 4Heatmap of probability distribution slopes after CC subtractionHeatmap of probability distribution slopes after CC subtraction (analogously to Figure 3).Click here for fileAdditional data file 5Heatmap of enrichment p-values for gene sets that ranked among the 20 most enriched in the downregulated genes of either group 1, 2 or 3Heatmap of enrichment p-values for gene sets that ranked among the 20 most enriched in the downregulated genes of either group 1, 2 or 3.Click here for fileAdditional data file 6Detailed annotation for all data sets used in this studyDetailed annotation for all data sets used in this study.Click here for fileAdditional data file 7Raw data for the lung development validation time series (after RMA-normalization)Raw data for the lung development validation time series (after RMA-normalization).Click here for fileAdditional data file 8Smooth histogram of early upregulated (UpE) probability distribu-tion slopes for all cancer data setsThis shows a bimodal distribution with the left peak containing group 3 tumors, the right peak containing group 1 tumors and intermediate cases (group 2) falling in between.Click here for fileAdditional data file 9Probability distribution plots and linear regression fits for all can-cers and all time seriesProbability distribution plots and linear regression fits for all can-cers and all time series.Click here for fileAdditional data file 10The same data as additional data file 9, but after CC subtractionThe same data as additional data file 9, but after CC subtraction.Click here for file
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