RL Reading Group (lIl)
PAC-MDP

Kaiyuan Xu
xky@bu.edu

Reinforcement Learning in Finite MDPs: PAC Analysis

Alexander L. Strehl”
Facebook

1601 S California Ave.
Palo Alto, CA 94304

Lihong Li’

Yahoo! Research

4401 Great America Parkway
Santa Clara, CA 95054

Michael L. Littman
Department of Computer Science
Rutgers University

Piscataway, NJ 08854

ASTREHL({@FACEBOOK.COM

LIHONG |@' YAHOO-INC.COM

MLITTMAN |@' CS5.RUTGERS.EDU

Abstract

We study the problem of learning near-optimal behavior in finite Markov Decision Processes
(MDPs) with a polynomial number of samples. These “PAC-MDP” algorithms include the well-
known E> and R-MAX algorithms as well as the more recent Delayed Q-learning algorithm. We
summarize the current state-of-the-art by presenting bounds for the problem in a unified theoretical
framework. A more refined analysis for upper and lower bounds is presented to yield insight into
the differences between the model-free Delayed Q-learning and the model-based R-MAX.

Keywords: reinforcement learning. Markov decision processes, PAC-MDP, exploration. sample
complexity

PAC-MDP (1.5, P2418)

Definition 2 An algorithm A is said to be an efficient PAC-MDP (Probably Approximately Cor-
rect in Markov Decision Processes) algorithm if, for any € > 0 and 0 < & < 1, the per-timestep
computational complexity, space complexity, and|the sample complexity of A are less than some
polynomial in the relevant quantities (S,4,1/€,1/8,1/(1 —v)), with probability at least 1 —d. It is
simply PAC-MDP if we relax the definition to have no computational complexity requirement.

we consider the relaxed but still challenging and useful goal of acting
near-optimally on all but a polynomial number of steps

Sample Complexity (1.5, P2418)

Definition 1 (Kakade 2003) Let ¢ = (s1,ay,7r1.52,a2.72,...) be a random path generated by exe-
cuting an algorithm A in an MDP M. For any fixed € > 0, the sample complexity of exploration
(sample complexity, for short) of A is the number of timesteps t such that the policy at time t, 4,
satisfies V3 (s,) < V*(s;) — €.

It directly measures the number of times the agent acts poorly

Main results

1.1 Main Results

We present two upper bounds and one lower bound on the achievable sample complexity of general
reinforcement-learning algorithms (see Section 1.5 for a formal definition). The two upper bounds
dominate all previously published bounds. but differ from one another. When logarithmic factors
are 1gnored. the first bound. for the R-MAX algorithm. 1s

0(s*4/(e*(1-v)%)),

while the corresponding second bound. for the Delayed Q-learning algorithm. is

O(s4/(*(1—-7)%)).

Based on the work of Mannor and Tsitsiklis (2004). we provide an improved lower bound

SA, S

Notation and Some Assumptions

* MDP: <S5, A, T R, y>

* R: SXA -> P, reward distribution

* T(s’|s, a): transition probability of state s’ of the distribution T(s, a)
o Vip(s) =E[Z7 ¥ 1rls]

* I3;(s,H) denote the H-step value of policy T from s.

Notation and Some Assumptions

* The maximum reward is 1, thus V < 1/(1-y)

1.3 Admissible Heuristics

We also assume that the algorithms are given an admissible heuristic for the problem before learning
occurs. An admissible heuristic is a function U : § x A — R that satisfies U(s,a) = O"(s,a) for all
s < S and a = A. We also assume that U(s,a) < V., forall (s,a) € S < A and some quantity V.
Prior information about the problem at hand can be encoded into the admissible heuristic and its
upper bound V.. With no prior information, we can always set U(s,a) = Vpax = 1/(1 —) since
V*(s) = maxgea O (s,a) 1s at most 1/(1 — 7). Therefore, without loss of generality, we assume
0<Ul(s,a) < Vpax = 1/(1 —7y) forall (s,a) € 5 < A.

Algorithm 1 R-MAX

=)

- Inputs: S. 4. y.m. e, and U(-,)
R_ M AX 1- for all (s,a) do
2: Qls,a)— Ul(s,a) / action-value estimates
3 r(s,a)—0
4 n(s,a)—0
5 foralls’ = Sdo
6 n(s,a,s’) — 0
7 end for
8. end for
9 forr=1,2,3,--- do
10: Let s denote the state at time 7.
11: Choose action a := argmax, -, O(s,a’).
12: Let 7 be the immediate reward and s’ the next state after executing action « from state s.
13: ifn(s,a) < m then

14 n(s,a)— n(s,a)+1

15: r(s,a) < r(s,a) +r /# Record immediate reward

16: n(s,a,s’) <« n(s,a,s") + 1 /#/ Record immediate next-state

17: if 72(s,a) = m then

18 fori=1,23, -, ["“”f%{;“"ﬂ do

19: for all (s,a) do

20: if n(s,a) = m then

21: O(5,a) «— R(5,a) +YXy T(s'[5,a) maxy O(s',a').

22- end if

R-MAX

mean reward 1s
nis.a)

> 7l

i=1

R(s,a) :=
(s,) n(s,a)

Let n(s,a,s") denote the number of times the agent has taken action a from state s and immediately

transitioned to the state s’. Then. the empirical transition distribution 1s the distribution 7'(s,a)

satisfying

n(s,a,s’)

— " foreachs’ = S.
n(s,a)

T(s'|s,a) ;=

In the R-MAX algorithm. the action-selection step 1s always to choose the action that maximizes
the current action value, O(s,-). The update step is to solve the following set of Bellman equations:

O(s,a) = R{s,a}—l—‘fo(.s“.s=n)111@xQ(5’,a’), if n(s,a) = m, (4)
O(s,a) = Uls,a), otherwise,

where R(s,a) and T'(-|s,a) are the empirical (maximum-likelihood) estimates for the reward and
transition distribution of state-action pair (s,) using only data from the first m observations of
(s,a). Solving this set of equations 1s equivalent to computing the optimal action-value function
of an MDP. which we call Model{R-MAX). This MDP uses the empirical transition and reward

Quantifying iteration numbers

Proposition 3 (Corollary 2 from Singh and Yee 1994) Let Q'(-,-) and Q*(-,-) be two action-value
functions over the same state and action spaces. Suppose that Q" is the optimal value function
of some MDP M. Let Tt be the greedy policy with respect to Q' and T*° be the greedy policy with
respect to QF, which is the optimal policy for M. For any o > 0 and discount factor y < 1, if
max; {0/ (s.a) — O (s.a)|} < o1 —7)/2, then max, {V™ (s) — V7™(s)} < o

Proposition 4 Let B > 0 be any real number satisfying 3 < 1/(1 —v) where y < 1 is the discount

factor. Suppose that value iteration is run for [ln(l/ (IB_(;_Y)))-‘ iterations where each initial action-

value estimate, Q(-,-), is initialized to some value between 0 and 1/(1 —). Let Q'(-.-) be the
resulting action-value estimates. Then, we have that max, ,{|0'(s.a) — O*(s.a)|} <P.

PAC-MDP Analysis

3.1 General Framework

We now develop some theoretical machinery to prove PAC-MDP statements about various algo-
rithms. Our theory will be focused on algorithms that maintain a table of action values. Q(s,a). for
each state-action pair (denoted O, (s,a) at time 7).!° We also assume an algorithm always chooses
actions greedily with respect to the action values. This constraint 1s not really a restriction. since
we could define an algorithm’s action values as 1 for the action 1t chooses and 0 for all other ac-
tions. However, the general framework 1s understood and developed more easily under the above
assumptions. For convenience, we also introduce the notation ¥(s) to denote max, Q(s,a) and V;(s)
to denote V' (s) at time /.

Definition 5 Suppose an RL algorithm A maintains a value, denoted Q(s,a), for each state-action
pair (s.a) € S x A. Let O,(s.a) denote the estimate for (s, a) immediately before the t™ action of the

agent. We say that A is a greedy algorithm if the ™
th

action of 4, a;, is a; := argmax . O;(s;,a),

where s; is the t™ state reached by the agent.

PAC-MDP Analysis

Definition 6 Let M = (S.A. T, R..y) be an MDP with a given set of action values, Q(s.a), for each
state-action pair (s,a), and a set K of state-action pairs, called the known state-action pairs. Ve
define the known state-action MDP My = (SU {z,,|(s,a) € K}.A.Tx.Rx.Y) as follows. For each
unknown state-action pair, (s.a) & K, we add a new state z; , to My, which has self-loops for each
action (Tx(Zsa|zsq.-) = 1). For all (s.a) € K, Rg(s.a) = R(s.a) and Tx(-|s.a) = T(-|s.a). For
all (s.a) € K, Rg(s.a) = O(s.a)(1 =) and Tx(zs4|s,a) = 1. For the new states, the reward is
Rk (zsa.+) = Q(s.a)(1 —).

Definition 7 For algorithm A, for each timestep t, let K; (we drop the subscript t if t is clear from
context) be a set of state-action pairs defined arbitrarily in a way that depends only on the history
of the agent up to timestep t (before the (t)™ action). We define Ag. to be the event, called the escape
event, that some state-action pair (s,a) & K; is experienced by the agent at time t.

Some Bounds

Chernoff-Hoeffding Bound

Lemma 8 Suppose a weighted coin, when flipped, has probability p > 0 of landing with heads up.
Then, for any positive integer k and real number d € (0., 1), there exists a numberm = O((k/p)1In(1/0)),
such that after m tosses, with probability at least 1 — d, we will observe k or more heads.

‘we assume V3, (s) < Viax and O(s,a) < Vpax foralls € Sanda € A

Lemma9 Let M = (5,A.T.R.,y) be an MDP whose optimal value function is upper bounded by
Vinax. Furthermore, let My be a known state-action MDP for some K C S x A defined using value
function Q(s,a). Then, Vi (s) < Vimax + maxy o Q(s".a") forall s € §.

PAC-MDP Analysis Framework

Theorem 10 Ler A(e,d) be any greedy learning algorithm such that, for every timestep t, there
exists a set K; of state-action pairs that depends only on the agent’s history up to timestep t. We
assume that K; = K, 1 unless, during timestep t, an update to some state-action value occurs or the
escape event Ax happens. Let My, be the known state-action MDP and T; be the current greedy
policy, that is, for all states s, T;(s) = argmax, O;(s,a). Furthermore, assume QO:(s,a) < Viax for
all t and (s.a). Suppose that for any inputs € and O, with probability at least 1 — d, the following
conditions hold for all states s, actions a, and timesteps t: (1) Vi(s) > V" (s) — € (optimism), (2)
Vi(s)— K“?Kf (s) <€ (accuracy), and (3) the total number of updates of action-value estimates plus the
number of times the escape event from K;, Ag, can occur is bounded by C(€,0) (learning complexity).
Then, when A(g,d) is executed on any MDP M, it will follow a 4e-optimal policy from its current

state on all but
O (Kna\;é(ga) 1 1)

In<1In
e(l-y) o e(l—y)
timesteps, with probability at least 1 — 20.

Proof.

Vi (se,H)

> Vit (5t:H) = 2Vmax Pr(W)
Kﬂ?ﬁ {'5'1} —E€— EVﬂ]ﬂK Pr(ﬁrr)
V(s¢) — 2€ — 2Vmax Pr(W)
V*(5¢) — 38 — 2Vmax Pr(7).

The first step above follows from the fact that following 4; in MDP A results in behavior 1dentical
to that of following m; in M, unless event W occurs. in which case a loss of at most 2V, can
occur (Lemma 9). The second step follows from the definition of A above. The third and final steps
follow from Conditions 2 and 1. respectively. of the proposition.

Proof.

Now, suppose that Pr(i7) <
optimal;

ZVM. Then, we have that the agent’s policy on timestep 7 1s 4e-

Var (s1) = Vag (51, H) = Vig(s) — 4.

Otherwise, we have that Pr(#) > 57— which implies that an agent following A4; will either perform
a successful update in H timesteps, or encounter some (s,a) ¢ K; in H timesteps, with probability at

least 57— Call such an event a “success”. Then, by Lemma 8, after O{% In1/8) timesteps
1 where Pr(WW) > 57—, {(g,8) successes will occur, with probability at least 1 — 8. Here, we have
identified the event that a success occurs after following the agent’s policy for A steps with the event
that a coin lands with heads facing up. However, by Condition 3 of the proposition, with probability
at least 1 — 8. {(&,8) 1s the maximum number of successes that will occur throughout the execution
of the algorithm.

To summarize, we have shown that with probability 1 — 26. the agent will execute a 4e-optimal

S L(e.6)HV max C(e.8) Vanax
policy on all but O(=====In { 5)= O(—f—m - In i]_IIEH

) timesteps. |

Thanks

Kaiyuan Xu
xky@bu.edu

R-MAX (Computing complexity)

On most timesteps, the R-MAX algorithm performs a constant amount of computation to choose
its next action. Only when a state’s last action has been tried m times does 1t solve its mternal
model. Our version of R-MAX uses value iteration to solve its model. Therefore, the per-timestep
computational complexity of R-MAX 1s

we see that the total computation time of R-MAX is O (B—i— SAS+HA) 1y 1)

1—y e1(1-7)

R-MAX (Sample Complexity)

Theorem 11 Suppose that 0 < & < —i, and 0 < < 1 are two real numbers and M = (§,A.T.R..Y)

is any MDP. There exists inputs m = m(l é) and €1, satisfying m(l é) =0 ((‘SH;‘(Sf_/%}E)Kﬁ“) and
|

o= O(E), such that if R-MAX is executed on M with inputs m and €1, then the following holds. Let
A; denote R-MAX’s policy at time t and s; denote the state at time t. With probability at least 1 — 9,

V’ﬁr() = VU(-S;) € is true for all but

(H(m)eSxA|usa>> L= (s g)

(1—y)° 5 o e(l—v)

fimesteps t.

R-MAX (Sample Complexity)

Lemma 12 (Strehl and Littman, 2005) Let M} = (S,A.T1,R,.Y) and M> = (S,A,T>,R3,7) be two
MDPs with non-negative rewards bounded by 1 and optimal value functions bounded by Viax. Sup-
pose that |Ry(s.a) —Ra(s,a)| < o.and ||Ty(s,a.-) — Ta(s.a,-)||1 < 2P for all states s and actions
a. There exists a constant C > 0 such that for any 0 < e < 1/(1 —v) and stationary policy T, if
o=2B=Ce(1 —7)/Vnax, then

O1(s.a) — O3 (s.a)| <.

Two Bounds

Lemma 13 Suppose that r[1],r[2],.... rlm| are m rewards drawn independently from the reward
distribution, R (s, a), for state-action pair (s.a). Let R(s.a) be the empirical (maximum-likelihood)
estimate of R (s,a). Let &g be any positive real number less than 1. Then, with probability at least

1 — 8z, we have that |R(s,a) — R (s.a)| < E‘ﬁ(s ay Where
In(2/8g)
eh =/ 2R
m
Proof This result follows directly from Hoeffding’s bound (Hoeftding, 1963). H

Lemma 14 Suppose that T (s.a) is the empirical transition distribution for state-action pair (s.a)

using m samples of next states drawn independently from the true transition distribution T (s,a). Let

Or be any positive real number less than 1. Then, with probability at least 1 — &7, we have that
‘ (o T sher

|\ T(s,a)—T(s,a)|]; < €, (s.q) Where

r _\/2[1n(25 —2)—1In(87)]

m
m

R-MAX (Sample Complexity)

Lemma 15 There exists a constant C such that if R-MAX with parameters m and € is executed on
any MDP M = (S.A.T.R..v) and m satisfies

m > cv?

S+In(S4/8)\ O SV max
max 812(1 _\{)2 - 812(1 _Y)z .

then Event A1 will occur with probability at least 1 — 0.

PAC-MDP Analysis Framework

Theorem 10 Ler A(e,d) be any greedy learning algorithm such that, for every timestep t, there
exists a set K; of state-action pairs that depends only on the agent’s history up to timestep t. We
assume that K; = K, 1 unless, during timestep t, an update to some state-action value occurs or the
escape event Ax happens. Let My, be the known state-action MDP and T; be the current greedy
policy, that is, for all states s, T;(s) = argmax, O;(s,a). Furthermore, assume QO:(s,a) < Viax for
all t and (s.a). Suppose that for any inputs € and O, with probability at least 1 — d, the following
conditions hold for all states s, actions a, and timesteps t: (1) Vi(s) > V" (s) — € (optimism), (2)
Vi(s)— K“?Kf (s) <€ (accuracy), and (3) the total number of updates of action-value estimates plus the
number of times the escape event from K;, Ag, can occur is bounded by C(€,0) (learning complexity).
Then, when A(g,d) is executed on any MDP M, it will follow a 4e-optimal policy from its current

state on all but
O (Kna\;é(ga) 1 1)

In<1In
e(l-y) o e(l—y)
timesteps, with probability at least 1 — 20.

R-MAX (Sample Complexity)

Theorem 11 Suppose that 0 < & < —i, and 0 < < 1 are two real numbers and M = (§,A.T.R..Y)

is any MDP. There exists inputs m = m(l é) and €1, satisfying m(l é) =0 ((‘SH;‘(Sf_/%}E)Kﬁ“) and
|

o= O(E), such that if R-MAX is executed on M with inputs m and €1, then the following holds. Let
A; denote R-MAX’s policy at time t and s; denote the state at time t. With probability at least 1 — 9,

V’ﬁr() = VU(-S;) € is true for all but

(H(m)eSxA|usa>> L= (s g)

(1—y)° 5 o e(l—v)

fimesteps t.

