RL Reading Group (III) PAC-MDP

Kaiyuan Xu xky@bu.edu

Reinforcement Learning in Finite MDPs: PAC Analysis

Alexander L. Strehl* ASTREHL@FACEBOOK.COM

Facebook

1601 S California Ave. Palo Alto, CA 94304

Lihong Li[†] Lihong@yahoo-inc.com

Yahoo! Research 4401 Great America Parkway Santa Clara, CA 95054

Michael L. Littman MLITTMAN@CS.RUTGERS.EDU

Department of Computer Science Rutgers University Piscataway, NJ 08854

Abstract

We study the problem of learning near-optimal behavior in finite Markov Decision Processes (MDPs) with a polynomial number of samples. These "PAC-MDP" algorithms include the well-known E³ and R-MAX algorithms as well as the more recent Delayed Q-learning algorithm. We summarize the current state-of-the-art by presenting bounds for the problem in a unified theoretical framework. A more refined analysis for upper and lower bounds is presented to yield insight into the differences between the model-free Delayed Q-learning and the model-based R-MAX.

Keywords: reinforcement learning, Markov decision processes, PAC-MDP, exploration, sample complexity

PAC-MDP (1.5, P2418)

Definition 2 An algorithm \mathcal{A} is said to be an **efficient PAC-MDP** (Probably Approximately Correct in Markov Decision Processes) algorithm if, for any $\varepsilon > 0$ and $0 < \delta < 1$, the per-timestep computational complexity, space complexity, and the sample complexity of \mathcal{A} are less than some polynomial in the relevant quantities $(S,A,1/\varepsilon,1/\delta,1/(1-\gamma))$, with probability at least $1-\delta$. It is simply **PAC-MDP** if we relax the definition to have no computational complexity requirement.

we consider the relaxed but still challenging and useful goal of acting near-optimally on all but a polynomial number of steps

Sample Complexity (1.5, P2418)

Definition 1 (Kakade 2003) Let $c = (s_1, a_1, r_1, s_2, a_2, r_2, ...)$ be a random path generated by executing an algorithm \mathcal{A} in an MDP M. For any fixed $\varepsilon > 0$, the **sample complexity of exploration** (**sample complexity**, for short) of \mathcal{A} is the number of timesteps t such that the policy at time t, \mathcal{A}_t , satisfies $V^{\mathcal{A}_t}(s_t) < V^*(s_t) - \varepsilon$.

It directly measures the number of times the agent acts poorly

Main results

1.1 Main Results

We present two upper bounds and one lower bound on the achievable *sample complexity* of general reinforcement-learning algorithms (see Section 1.5 for a formal definition). The two upper bounds dominate all previously published bounds, but differ from one another. When logarithmic factors are ignored, the first bound, for the R-MAX algorithm, is

$$\tilde{O}(S^2A/(\varepsilon^3(1-\gamma)^6)),$$

while the corresponding second bound, for the Delayed Q-learning algorithm, is

$$\tilde{O}(SA/(\epsilon^4(1-\gamma)^8)).$$

Based on the work of Mannor and Tsitsiklis (2004), we provide an improved lower bound

$$\Omega\left(\frac{SA}{\varepsilon^2}\ln\frac{S}{\delta}\right) \tag{3}$$

Notation and Some Assumptions

- MDP: <*S*, A, *T*, *R*, γ>
- R: $S \times A \rightarrow P_R$, reward distribution
- T(s'|s, a): transition probability of state s' of the distribution T(s, a)
- $V_M^{\pi}(s) = \mathbf{E}[\sum_{j=1}^{\infty} \gamma^{j-1} r_j | s]$
- $V_M^{\pi}(s, H)$ denote the *H*-step value of policy π from s.

Notation and Some Assumptions

• The maximum reward is 1, thus $V < 1/(1-\gamma)$

1.3 Admissible Heuristics

We also assume that the algorithms are given an admissible heuristic for the problem before learning occurs. An **admissible heuristic** is a function $U: S \times A \to \mathbb{R}$ that satisfies $U(s,a) \geq Q^*(s,a)$ for all $s \in S$ and $a \in A$. We also assume that $U(s,a) \leq V_{\max}$ for all $(s,a) \in S \times A$ and some quantity V_{\max} . Prior information about the problem at hand can be encoded into the admissible heuristic and its upper bound V_{\max} . With no prior information, we can always set $U(s,a) = V_{\max} = 1/(1-\gamma)$ since $V^*(s) = \max_{a \in A} Q^*(s,a)$ is at most $1/(1-\gamma)$. Therefore, without loss of generality, we assume $0 \leq U(s,a) \leq V_{\max} \leq 1/(1-\gamma)$ for all $(s,a) \in S \times A$.

Algorithm 1 R-MAX

R-MAX

```
0: Inputs: S, A, \gamma, m, \varepsilon_1, and U(\cdot, \cdot)
 1: for all (s,a) do
 2: Q(s,a) \leftarrow U(s,a) // action-value estimates
 3: r(s,a) \leftarrow 0
 4: n(s,a) \leftarrow 0
 5: for all s' \in S do
        n(s,a,s') \leftarrow 0
         end for
 8 end for
 9: for t = 1, 2, 3, \cdots do
         Let s denote the state at time t.
10:
         Choose action a := \operatorname{argmax}_{a' \in A} Q(s, a').
11:
         Let r be the immediate reward and s' the next state after executing action a from state s.
12:
         if n(s,a) < m then
13:
            n(s,a) \leftarrow n(s,a) + 1
14:
           r(s,a) \leftarrow r(s,a) + r // Record immediate reward
15:
            n(s, a, s') \leftarrow n(s, a, s') + 1 // Record immediate next-state
16:
            if n(s,a) = m then
17:
                for i = 1, 2, 3, \cdots, \left\lceil \frac{\ln(1/(\epsilon_1(1-\gamma)))}{1-\gamma} \right\rceil do
18:
                    for all (\overline{s}, \overline{a}) do
19:
                       if n(\overline{s}, \overline{a}) \geq m then
20:
                           Q(\overline{s}, \overline{a}) \leftarrow \hat{R}(\overline{s}, \overline{a}) + \gamma \sum_{s'} \hat{T}(s'|\overline{s}, \overline{a}) \max_{a'} Q(s', a').
21:
                       end if
22:
```

R-MAX

mean reward is

$$\hat{R}(s,a) := \frac{1}{n(s,a)} \sum_{i=1}^{n(s,a)} r[i].$$

Let n(s, a, s') denote the number of times the agent has taken action a from state s and immediately transitioned to the state s'. Then, the *empirical transition distribution* is the distribution $\hat{T}(s, a)$ satisfying

$$\hat{T}(s'|s,a) := \frac{n(s,a,s')}{n(s,a)}$$
 for each $s' \in S$.

In the R-MAX algorithm, the action-selection step is always to choose the action that maximizes the current action value, $Q(s, \cdot)$. The update step is to solve the following set of Bellman equations:

$$Q(s,a) = \hat{R}(s,a) + \gamma \sum_{s'} \hat{T}(s'|s,a) \max_{a'} Q(s',a'), \quad \text{if } n(s,a) \ge m,$$

$$Q(s,a) = U(s,a), \quad \text{otherwise,}$$
(4)

where $\hat{R}(s,a)$ and $\hat{T}(\cdot|s,a)$ are the empirical (maximum-likelihood) estimates for the reward and transition distribution of state-action pair (s,a) using only data from the first m observations of (s,a). Solving this set of equations is equivalent to computing the optimal action-value function of an MDP, which we call Model(R-MAX). This MDP uses the empirical transition and reward

Quantifying iteration numbers

Proposition 3 (Corollary 2 from Singh and Yee 1994) Let $Q'(\cdot,\cdot)$ and $Q^*(\cdot,\cdot)$ be two action-value functions over the same state and action spaces. Suppose that Q^* is the optimal value function of some MDP M. Let π be the greedy policy with respect to Q' and π^* be the greedy policy with respect to Q^* , which is the optimal policy for M. For any $\alpha > 0$ and discount factor $\gamma < 1$, if $\max_{s,a} \{|Q'(s,a) - Q^*(s,a)|\} \le \alpha(1-\gamma)/2$, then $\max_s \{V^{\pi^*}(s) - V^{\pi}(s)\} \le \alpha$.

Proposition 4 Let $\beta > 0$ be any real number satisfying $\beta < 1/(1-\gamma)$ where $\gamma < 1$ is the discount factor. Suppose that value iteration is run for $\left\lceil \frac{\ln(1/(\beta(1-\gamma)))}{1-\gamma} \right\rceil$ iterations where each initial action-value estimate, $Q(\cdot,\cdot)$, is initialized to some value between 0 and $1/(1-\gamma)$. Let $Q'(\cdot,\cdot)$ be the resulting action-value estimates. Then, we have that $\max_{s,a} \{|Q'(s,a)-Q^*(s,a)|\} \leq \beta$.

PAC-MDP Analysis

3.1 General Framework

We now develop some theoretical machinery to prove PAC-MDP statements about various algorithms. Our theory will be focused on algorithms that maintain a table of action values, Q(s,a), for each state-action pair (denoted $Q_t(s,a)$ at time t). We also assume an algorithm always chooses actions greedily with respect to the action values. This constraint is not really a restriction, since we could define an algorithm's action values as 1 for the action it chooses and 0 for all other actions. However, the general framework is understood and developed more easily under the above assumptions. For convenience, we also introduce the notation V(s) to denote $\max_a Q(s,a)$ and $V_t(s)$ to denote V(s) at time t.

Definition 5 Suppose an RL algorithm \mathcal{A} maintains a value, denoted Q(s,a), for each state-action pair $(s,a) \in \mathcal{S} \times A$. Let $Q_t(s,a)$ denote the estimate for (s,a) immediately before the t^{th} action of the agent. We say that \mathcal{A} is a **greedy algorithm** if the t^{th} action of \mathcal{A} , a_t , is $a_t := \operatorname{argmax}_{a \in A} Q_t(s_t,a)$, where s_t is the t^{th} state reached by the agent.

PAC-MDP Analysis

Definition 6 Let $M = \langle S, A, T, \mathcal{R}, \gamma \rangle$ be an MDP with a given set of action values, Q(s,a), for each state-action pair (s,a), and a set K of state-action pairs, called the **known state-action pairs**. We define the **known state-action MDP** $M_K = \langle S \cup \{z_{s,a} | (s,a) \notin K\}, A, T_K, R_K, \gamma \rangle$ as follows. For each unknown state-action pair, $(s,a) \notin K$, we add a new state $z_{s,a}$ to M_K , which has self-loops for each action $(T_K(z_{s,a}|z_{s,a},\cdot)=1)$. For all $(s,a) \in K$, $R_K(s,a)=R(s,a)$ and $T_K(\cdot|s,a)=T(\cdot|s,a)$. For all $(s,a) \notin K$, $R_K(s,a)=Q(s,a)(1-\gamma)$ and $T_K(z_{s,a}|s,a)=1$. For the new states, the reward is $R_K(z_{s,a},\cdot)=Q(s,a)(1-\gamma)$.

Definition 7 For algorithm A, for each timestep t, let K_t (we drop the subscript t if t is clear from context) be a set of state-action pairs defined arbitrarily in a way that depends only on the history of the agent up to timestep t (before the (t)th action). We define A_K to be the event, called the **escape event**, that some state-action pair $(s,a) \notin K_t$ is experienced by the agent at time t.

Some Bounds

Chernoff-Hoeffding Bound

Lemma 8 Suppose a weighted coin, when flipped, has probability p > 0 of landing with heads up. Then, for any positive integer k and real number $\delta \in (0,1)$, there exists a number $m = O((k/p)\ln(1/\delta))$, such that after m tosses, with probability at least $1 - \delta$, we will observe k or more heads.

we assume $V_M^*(s) \leq V_{\max}$ and $Q(s,a) \leq V_{\max}$ for all $s \in \mathcal{S}$ and $a \in A$

Lemma 9 Let $M = \langle S, A, T, \mathcal{R}, \gamma \rangle$ be an MDP whose optimal value function is upper bounded by V_{max} . Furthermore, let M_K be a known state-action MDP for some $K \subseteq S \times A$ defined using value function Q(s,a). Then, $V_{M_K}^*(s) \leq V_{\text{max}} + \max_{s',a'} Q(s',a')$ for all $s \in S$.

PAC-MDP Analysis Framework

Theorem 10 Let $A(\varepsilon, \delta)$ be any greedy learning algorithm such that, for every timestep t, there exists a set K_t of state-action pairs that depends only on the agent's history up to timestep t. We assume that $K_t = K_{t+1}$ unless, during timestep t, an update to some state-action value occurs or the escape event A_K happens. Let M_{K_t} be the known state-action MDP and π_t be the current greedy policy, that is, for all states s, $\pi_t(s) = \arg\max_a Q_t(s,a)$. Furthermore, assume $Q_t(s,a) \leq V_{\max}$ for all t and (s,a). Suppose that for any inputs ε and δ , with probability at least $1-\delta$, the following conditions hold for all states s, actions a, and timesteps t: (1) $V_t(s) \geq V^*(s) - \varepsilon$ (optimism), (2) $V_t(s) - V_{M_{K_t}}^{\pi_t}(s) \leq \varepsilon$ (accuracy), and (3) the total number of updates of action-value estimates plus the number of times the escape event from K_t , A_K , can occur is bounded by $\zeta(\varepsilon,\delta)$ (learning complexity). Then, when $A(\varepsilon,\delta)$ is executed on any MDP M, it will follow a 4ε -optimal policy from its current state on all but

$$O\left(\frac{\mathit{V}_{\max}\zeta(\epsilon,\delta)}{\epsilon(1-\gamma)}\ln\frac{1}{\delta}\ln\frac{1}{\epsilon(1-\gamma)}\right)$$

timesteps, with probability at least $1-2\delta$.

Proof.

$$V_{M}^{\mathcal{A}_{t}}(s_{t}, H)$$

$$\geq V_{MK_{t}}^{\pi_{t}}(s_{t}, H) - 2V_{\max} \Pr(W)$$

$$\geq V_{MK_{t}}^{\pi_{t}}(s_{t}) - \varepsilon - 2V_{\max} \Pr(W)$$

$$\geq V(s_{t}) - 2\varepsilon - 2V_{\max} \Pr(W)$$

$$\geq V^{*}(s_{t}) - 3\varepsilon - 2V_{\max} \Pr(W).$$

The first step above follows from the fact that following \mathcal{A}_t in MDP M results in behavior identical to that of following π_t in M_{K_t} unless event W occurs, in which case a loss of at most $2V_{\text{max}}$ can occur (Lemma 9). The second step follows from the definition of H above. The third and final steps follow from Conditions 2 and 1, respectively, of the proposition.

Proof.

Now, suppose that $\Pr(W) < \frac{\varepsilon}{2V_{\max}}$. Then, we have that the agent's policy on timestep t is 4ε -optimal:

$$V_M^{\mathcal{A}_{\mathbf{r}}}(s_t) \geq V_M^{\mathcal{A}_{\mathbf{r}}}(s_t, H) \geq V_M^*(s_t) - 4\varepsilon.$$

Otherwise, we have that $\Pr(W) \geq \frac{\varepsilon}{2V_{\max}}$, which implies that an agent following \mathcal{A}_t will either perform a successful update in H timesteps, or encounter some $(s,a) \notin K_t$ in H timesteps, with probability at least $\frac{\varepsilon}{2V_{\max}}$. Call such an event a "success". Then, by Lemma 8, after $O(\frac{\zeta(\varepsilon,\delta)HV_{\max}}{\varepsilon}\ln 1/\delta)$ timesteps t where $\Pr(W) \geq \frac{\varepsilon}{2V_{\max}}$, $\zeta(\varepsilon,\delta)$ successes will occur, with probability at least $1-\delta$. Here, we have identified the event that a success occurs after following the agent's policy for H steps with the event that a coin lands with heads facing up. However, by Condition 3 of the proposition, with probability at least $1-\delta$, $\zeta(\varepsilon,\delta)$ is the maximum number of successes that will occur throughout the execution of the algorithm.

To summarize, we have shown that with probability $1-2\delta$, the agent will execute a 4 ϵ -optimal policy on all but $O(\frac{\zeta(\epsilon,\delta)HV_{\max}}{\epsilon}\ln\frac{1}{\delta}) = O(\frac{\zeta(\epsilon,\delta)V_{\max}}{\epsilon(1-\gamma)}\ln\frac{1}{\delta}\ln\frac{1}{\epsilon(1-\gamma)})$ timesteps.

Thanks

Kaiyuan Xu xky@bu.edu

R-MAX (Computing complexity)

On most timesteps, the R-MAX algorithm performs a constant amount of computation to choose its next action. Only when a state's last action has been tried m times does it solve its internal model. Our version of R-MAX uses value iteration to solve its model. Therefore, the per-timestep computational complexity of R-MAX is

$$\Theta\left(SA(S+\ln(A))\left(\frac{1}{1-\gamma}\right)\ln\frac{1}{\varepsilon_1(1-\gamma)}\right).$$

we see that the total computation time of R-MAX is $O\left(B + \frac{S^2A(S + \ln(A))}{1 - \gamma} \ln \frac{1}{\epsilon_1(1 - \gamma)}\right)$

R-MAX (Sample Complexity)

Theorem 11 Suppose that $0 \le \varepsilon < \frac{1}{1-\gamma}$ and $0 \le \delta < 1$ are two real numbers and $M = \langle \mathcal{S}, A, T, \mathcal{R}, \gamma \rangle$ is any MDP. There exists inputs $m = m(\frac{1}{\varepsilon}, \frac{1}{\delta})$ and ε_1 , satisfying $m(\frac{1}{\varepsilon}, \frac{1}{\delta}) = O\left(\frac{(S + \ln(SA/\delta))V_{\max}^2}{\varepsilon^2(1-\gamma)^2}\right)$ and $\frac{1}{\varepsilon_1} = O(\frac{1}{\varepsilon})$, such that if R-MAX is executed on M with inputs m and ε_1 , then the following holds. Let \mathcal{A}_t denote R-MAX's policy at time t and s_t denote the state at time t. With probability at least $1 - \delta$, $V_M^{\mathcal{A}_t}(s_t) \ge V_M^*(s_t) - \varepsilon$ is true for all but

$$O\left(\frac{|\{(s,a)\in\mathcal{S}\times\mathsf{A}|U(s,a)\geq V^*(s)-\epsilon\}|}{\varepsilon^3(1-\gamma)^3}\left(S+\ln\frac{SA}{\delta}\right)V_{\max}^3\ln\frac{1}{\delta}\ln\frac{1}{\varepsilon(1-\gamma)}\right)$$

timesteps t.

R-MAX (Sample Complexity)

Lemma 12 (Strehl and Littman, 2005) Let $M_1 = \langle S, A, T_1, R_1, \gamma \rangle$ and $M_2 = \langle S, A, T_2, R_2, \gamma \rangle$ be two MDPs with non-negative rewards bounded by 1 and optimal value functions bounded by V_{max} . Suppose that $|R_1(s,a) - R_2(s,a)| \le \alpha$ and $||T_1(s,a,\cdot) - T_2(s,a,\cdot)||_1 \le 2\beta$ for all states s and actions a. There exists a constant C > 0 such that for any $0 \le \varepsilon \le 1/(1-\gamma)$ and stationary policy π , if $\alpha = 2\beta = C\varepsilon(1-\gamma)/V_{\text{max}}$, then

$$|Q_1^{\pi}(s,a) - Q_2^{\pi}(s,a)| \le \varepsilon.$$

Two Bounds

Lemma 13 Suppose that $r[1], r[2], \ldots, r[m]$ are m rewards drawn independently from the reward distribution, $\mathcal{R}(s,a)$, for state-action pair (s,a). Let $\hat{R}(s,a)$ be the empirical (maximum-likelihood) estimate of $\mathcal{R}(s,a)$. Let δ_R be any positive real number less than 1. Then, with probability at least $1 - \delta_R$, we have that $|\hat{R}(s,a) - \mathcal{R}(s,a)| \leq \varepsilon_{n(s,a)}^R$, where

$$\varepsilon_m^R := \sqrt{\frac{\ln(2/\delta_R)}{2m}}.$$

Proof This result follows directly from Hoeffding's bound (Hoeffding, 1963).

Lemma 14 Suppose that $\hat{T}(s,a)$ is the empirical transition distribution for state-action pair (s,a) using m samples of next states drawn independently from the true transition distribution T(s,a). Let δ_T be any positive real number less than 1. Then, with probability at least $1 - \delta_T$, we have that $||T(s,a) - \hat{T}(s,a)||_1 \le \varepsilon_{n(s,a)}^T$ where

$$\varepsilon_m^T = \sqrt{\frac{2[\ln(2^S - 2) - \ln(\delta_T)]}{m}}.$$

R-MAX (Sample Complexity)

Lemma 15 There exists a constant C such that if R-MAX with parameters m and ε_1 is executed on any MDP $M = \langle S, A, T, \mathcal{R}, \gamma \rangle$ and m satisfies

$$m \ge CV_{\max}^2 \left(\frac{S + \ln(SA/\delta)}{\varepsilon_1^2 (1 - \gamma)^2} \right) = \tilde{O}\left(\frac{SV_{\max}^2}{\varepsilon_1^2 (1 - \gamma)^2} \right),$$

then Event A1 will occur with probability at least $1 - \delta$.

PAC-MDP Analysis Framework

Theorem 10 Let $A(\varepsilon, \delta)$ be any greedy learning algorithm such that, for every timestep t, there exists a set K_t of state-action pairs that depends only on the agent's history up to timestep t. We assume that $K_t = K_{t+1}$ unless, during timestep t, an update to some state-action value occurs or the escape event A_K happens. Let M_{K_t} be the known state-action MDP and π_t be the current greedy policy, that is, for all states s, $\pi_t(s) = \arg\max_a Q_t(s,a)$. Furthermore, assume $Q_t(s,a) \leq V_{\max}$ for all t and (s,a). Suppose that for any inputs ε and δ , with probability at least $1-\delta$, the following conditions hold for all states s, actions a, and timesteps t: (1) $V_t(s) \geq V^*(s) - \varepsilon$ (optimism), (2) $V_t(s) - V_{M_{K_t}}^{\pi_t}(s) \leq \varepsilon$ (accuracy), and (3) the total number of updates of action-value estimates plus the number of times the escape event from K_t , A_K , can occur is bounded by $\zeta(\varepsilon,\delta)$ (learning complexity). Then, when $A(\varepsilon,\delta)$ is executed on any MDP M, it will follow a 4ε -optimal policy from its current state on all but

$$O\left(\frac{\mathit{V}_{\max}\zeta(\epsilon,\delta)}{\epsilon(1-\gamma)}\ln\frac{1}{\delta}\ln\frac{1}{\epsilon(1-\gamma)}\right)$$

timesteps, with probability at least $1-2\delta$.

R-MAX (Sample Complexity)

Theorem 11 Suppose that $0 \le \varepsilon < \frac{1}{1-\gamma}$ and $0 \le \delta < 1$ are two real numbers and $M = \langle \mathcal{S}, A, T, \mathcal{R}, \gamma \rangle$ is any MDP. There exists inputs $m = m(\frac{1}{\varepsilon}, \frac{1}{\delta})$ and ε_1 , satisfying $m(\frac{1}{\varepsilon}, \frac{1}{\delta}) = O\left(\frac{(S + \ln(SA/\delta))V_{\max}^2}{\varepsilon^2(1-\gamma)^2}\right)$ and $\frac{1}{\varepsilon_1} = O(\frac{1}{\varepsilon})$, such that if R-MAX is executed on M with inputs m and ε_1 , then the following holds. Let \mathcal{A}_t denote R-MAX's policy at time t and s_t denote the state at time t. With probability at least $1 - \delta$, $V_M^{\mathcal{A}_t}(s_t) \ge V_M^*(s_t) - \varepsilon$ is true for all but

$$O\left(\frac{|\{(s,a)\in\mathcal{S}\times\mathsf{A}|U(s,a)\geq V^*(s)-\epsilon\}|}{\varepsilon^3(1-\gamma)^3}\left(S+\ln\frac{SA}{\delta}\right)V_{\max}^3\ln\frac{1}{\delta}\ln\frac{1}{\varepsilon(1-\gamma)}\right)$$

timesteps t.