
1 / 25

RL Reading Group – Prep Session 1

Zhiyu Zhang
09/16/2019

Boston University Division of System Engineering

2 / 25

Overview

RL Reading Group – Prep Session 1

 Problem formulation
 Solution techniques
 Model given: Dynamic Programming (DP)
 Curse of dimensionality and approximate DP
 Model unknown: Reinforcement learning (RL)
 Tabular Monte Carlo
 Tabular Temporal Difference
 Q learning with function approximation, the “deadly triad”

 Next time: policy gradient, actor-critic, RL subcategories...

3 / 25

Finite Markovian Decision Problems (finite MDP)

RL Reading Group – Prep Session 1

[1] Bertsekas, Dimitri P. Abstract dynamic programming. Athena Scientific, 2018.
[2] https://spinningup.openai.com/en/latest/spinningup/rl_intro.html

 A finite MDP is a 5-tuple ℳ ൌ൏ 𝑆, 𝐴, 𝑅, 𝑃, 𝜌଴ ൐ :
 𝑆 is the state space, finite
 𝐴 is the action space, finite
 𝑅: 𝑆 ൈ 𝐴 ൈ 𝑆 → ℝ is the reward function

The reward at time 𝑡 is 𝑟௧ ൌ 𝑅ሺ𝑠௧, 𝑎௧, 𝑠௧ାଵሻ
 𝑃: 𝑆 ൈ 𝐴 ൈ 𝑆 → 0,1 is the transition probability of the Markov Chain induced by the applied

action, e.g. 𝑃ሺ𝑠௧ାଵ|𝑠௧, 𝑎௧ሻ
 𝜌଴ is the starting state distribution

 Can be extended to continuous state / action space, with technical assumptions

[2]

4 / 25

Finite Markovian Decision Problems (finite MDP)

RL Reading Group – Prep Session 1

 We pick a stationary (stochastic) policy 𝜋 for the agent
𝑎௧ ∼ 𝜋ሺ⋅ |𝑠௧ሻ

 When applying 𝜋, denote the first 𝑁 step sample path starting at 𝑠଴ as 𝜏ேሺ𝑠଴ሻ ൌ 𝑠௧, 𝑎௧ ௧ୀଵ
ே

 Denote the infinite horizon sample path starting at 𝑠଴ as 𝜏ሺ𝑠଴ሻ ൌ 𝑠௧, 𝑎௧ ௧ୀଵ
ஶ

 We focus on the infinite horizon setting.

 The performance of 𝜋 is characterized by one of the three objectives we choose:
 𝛾-discounted cumulative reward, with discount factor 𝛾 ∈ ሺ0,1ሻ
 Undiscounted cumulative reward, with discount factor 𝛾 ൌ 1
 Infinite horizon average reward

Well-behaved
Needs restriction

Very useful but not popular in RL due to difficulty
RL mainly consider the first two

5 / 25

Finite Markovian Decision Problems (finite MDP)

RL Reading Group – Prep Session 1

 Consider only the first two types, they can both be expressed as the value function

𝑉గሺ𝑠଴ሻ ൌ lim sup
ே→ஶ

𝐸ఛಿ|గ,௦బ ෍ 𝛾௧𝑅ሺ𝑠௧, 𝑎௧, 𝑠௧ାଵሻ
ேିଵ

௧ୀ଴

 We want to find an optimal policy 𝜋∗ that maximizes the value function for all starting state 𝑠଴:
𝑉 𝑠଴ ൌ sup

గ
 𝑉గ 𝑠଴ ∀𝑠଴ ∈ 𝑆

 𝜋∗ can be any policy that attains this supremum; 𝑉 is the optimal value function

 Note that the value function is defined in the DP fashion [1]; in (Deep) RL [2], it is

𝑉గሺ𝑠଴ሻ ൌ 𝐸ఛ|గ,௦బ ෍ 𝛾௧𝑅ሺ𝑠௧, 𝑎௧, 𝑠௧ାଵሻ
ஶ

௧ୀ଴

[1] Bertsekas, Dimitri P. Abstract dynamic programming. Athena Scientific, 2018.
[2] https://spinningup.openai.com/en/latest/spinningup/rl_intro.html

Less concrete but in “good cases”
(discounted, bounded 𝑅) they are
the same, and lim sup becomes lim

6 / 25

Solution techniques: DP, ADP and RL

RL Reading Group – Prep Session 1

 The solution technique largely depends on what is available to us: model given or unknown

 Define the model as the reward function 𝑅 and the transition probability 𝑃

 𝑃 is objective: if we don’t know it, we cannot use it

 𝑅 can be objective / subjective:
As the real outcome has multiple ways to quantify, we can often pick 𝑅 (weird...)

Model explicitly given
Model unknown: only
real experience

Weaker model knowledge, larger state / action space, harder problem

A good simulator

Dynamic Programming Approximate DP Model based RL Model free RL

Pure planning Planning with larger
state / action space

Learn the model Learn value /
policy directly

7 / 25

Dynamic Programming: The principle of optimality

RL Reading Group – Prep Session 1

 In DP, since the dynamics is known, there is no need to explore; assume 𝜋 is deterministic
The action 𝑎 is chosen from the allowable control set at 𝑠: 𝑎 ∈ 𝐴 𝑠

 Bellman’s priciple of optimality [1]:
An optimal policy has the property that whatever the initial state and initial decision are, the
remaining decisions must constitute an optimal policy with regard to the state resulting from
the first decision.

[1] https://en.wikipedia.org/wiki/Bellman_equation
[2] https://en.wikipedia.org/wiki/Dynamic_programming

[2]
In the deterministic case, we expect something like

(Bellman equation)
Value at current state = max over action [immediate
reward + value at next state | action]

Need more careful analysis

8 / 25

DP operators

RL Reading Group – Prep Session 1

 Let 𝒳 be the set of functions 𝑆 → ℝ; (the set of all possible value functions)

 For any policy 𝜋, define the DP operator 𝑇గ on any 𝑣 ∈ 𝒳 as
ሺ𝑇గ𝑣ሻሺ𝑠ሻ ൌ 𝐸௦ᇲሾ𝑅 𝑠, 𝜋ሺ𝑠ሻ, 𝑠ᇱ ൅ 𝛾𝑣 ሺ𝑠′ሻሿ

 Define the optimal DP operator (Bellman operator) 𝑇 on 𝑣 ∈ 𝒳 as
ሺ𝑇𝑣ሻ 𝑠 ൌ max

௔∈஺ሺ௦ሻ
 𝐸௦ᇲሾ𝑅 𝑠, 𝑎, 𝑠ᇱ ൅ 𝛾𝑣ሺ𝑠′ሻሿ

 The DP operators are characterized by two properties that are central to solving the problem:
Monotonicity and contraction

9 / 25

Monotonicity

RL Reading Group – Prep Session 1

 Monotonicity of DP operators are defined as follows:

 (Assumption 1.2.1, [1]): The DP operator 𝑇ሺ⋅ሻ without 𝜋 specified is monotone if ∀𝑣ଵ, 𝑣ଶ ∈ 𝒳 such
that ∀𝑠 ∈ 𝑆, 𝑣ଵ 𝑠 ൑ 𝑣ଶሺ𝑠ሻ, we have

𝑇గ𝑣ଵ 𝑠 ൑ 𝑇గ𝑣ଶ 𝑠 ∀𝑠 ∈ 𝑆, ∀𝜋 admissible

 If 𝑇ሺ⋅ሻ is monotone, then the Bellman operator 𝑇 is monotone

 In the two typical types of MDP problems we consider (cumulative discounted or undiscounted
reward problem with assumptions), 𝑇ሺ⋅ሻ is monotonic

[1] Bertsekas, Dimitri P. Abstract dynamic programming. Athena Scientific, 2018.

10 / 25

Contraction

RL Reading Group – Prep Session 1

 The definition of contraction requires a norm; we use the sup-norm here:
𝑣 ൌ sup

௦
|𝑣ሺ𝑠ሻ|

 It can be shown that the set of 𝑣 with 𝑣 ⋅ bounded is complete (Appendix B, [1])
It is a subset of 𝒳, denote this set as 𝐵ሺ𝒳)

 (Assumption 1.2.1, [1]): The DP operator 𝑇ሺ⋅ሻ without 𝜋 specified is contractive if ∀𝜋 admissible,
∀𝑣 ∈ 𝐵ሺ𝒳ሻ we have 𝑇గ𝑣 ∈ 𝐵ሺ𝒳ሻ, and ∃𝛼 ∈ ሺ0,1ሻ such that

𝑇గ𝑣ଵ െ 𝑇గ𝑣ଶ ൑ 𝛼 𝑣ଵ െ 𝑣ଶ ∀𝑣ଵ, 𝑣ଶ ∈ 𝐵 𝒳 , ∀𝜋 admissible

 If 𝑇ሺ⋅ሻ is contractive, then the Bellman operator 𝑇 is contractive

[1] Bertsekas, Dimitri P. Abstract dynamic programming. Athena Scientific, 2018.

11 / 25

Contraction

RL Reading Group – Prep Session 1

 The DP operators corresponding to the 𝛾-discounted cumulative reward problem are contractive
with modulus 𝛾, therefore has the strongest theoretical result

 With the undiscounted cumulative reward problem they are not contractive, but when 𝜋 is
restricted to a subset of policies (“proper”), 𝑇గ is a contraction

Such a restriction is called the “stochastic shortest path” problem, will come back later

 The contraction principle: A contraction on a complete metric space has a unique fixed point

 Therefore, define the Bellman equations as 𝑣 ൌ 𝑇గ𝑣 and 𝑣 ൌ 𝑇𝑣, they have unique solutions

12 / 25

Discounted problems

RL Reading Group – Prep Session 1

 Consider maximizing the 𝛾-discounted cumulative reward, with discount factor 𝛾 ∈ ሺ0,1ሻ

 Assume the reward function 𝑅 is bounded; therefore, monotone and contractive

The results: (Chap. 2, [1])

 Bellman equations 𝑣 ൌ 𝑇గ𝑣 and 𝑣 ൌ 𝑇𝑣 have unique solutions, which are 𝑉గ and 𝑉 respectively

 The optimal cost in non-stationary policies can be attained to within an arbitrary accuracy with a
stationary policy

It suffices to consider only the stationary policies

 𝑉గ and 𝑉 can be obtained by value iteration, starting from ∀𝑣 ∈ 𝐵ሺ𝒳ሻ:
𝑉గ ൌ lim

௞→ஶ
𝑇గ

௞𝑣
𝑉 ൌ lim

௞→ஶ
𝑇௞𝑣

The convergence is geometric

[1] Bertsekas, Dimitri P. Abstract dynamic programming. Athena Scientific, 2018.

“Continuing” in RL terms

13 / 25

Policy iteration

RL Reading Group – Prep Session 1

 In the above problem, 𝑉 can also be obtained from policy iteration:

 Start with any policy 𝜋଴

 In the 𝑘௧௛ iteration, first do the policy evaluation step that solves 𝑉గೖషభ from the linear equation
𝑉గೖషభ ൌ 𝑇గೖషభ𝑉గೖషభ

 Then do the policy improvement step that computes a new policy 𝜋௞ (argmax instead of max in
the Bellman operator)

𝜋௞ሺ𝑠ሻ ൌ arg max
௔∈஺ሺ௦ሻ

 𝐸௦ᇲሾ𝑅 𝑠, 𝑎, 𝑠ᇱ ൅ 𝛾𝑉గೖషభሺ𝑠′ሻሿ

 The value function 𝑉గೖ converges to 𝑉 as 𝑘 → ∞

 Value iteration can be seen as a “one step approximation” of policy iteration

 RL is largely inspired by this idea of iteratively moving 𝑉 and 𝜋 closer, called Generalized Policy
Iteration (GPI); it often works, but not always...

[1] Sutton, Richard S., and Andrew G. Barto. Reinforcement learning: An introduction. MIT press, 2018.

[1]

14 / 25

Undiscounted problems

RL Reading Group – Prep Session 1

 Consider maximizing the undiscounted cumulative reward, with discount factor 𝛾 ൌ 1

 Monotonicity still holds, but only contractive for some policies (semi-contractive)

 Make a restriction: assume one state is the termination state 𝑜 that
𝑃௢௢ 𝑎 ൌ 1 ∀𝑎 ∈ 𝐴ሺ𝑜ሻ

Any self transition loop at 𝑜 gives zero reward.

 𝜋 is proper if
max
௦∈ௌ

 𝑃 𝑠 ௌ ് 𝑜 𝑠଴ ൌ 𝑠, 𝜋 ൏ 1

That is, starting with any state, there is a positive probability to reach termination in 𝑆 steps;

In other words, termination is reached in finite time with probability 1

 In this restricted “SSP” problem, theoretical tools from last page are available

“Episodic” in RL terms

15 / 25

From DP to Approximate DP

RL Reading Group – Prep Session 1

 The problem of DP: “curse of dimensionality”

The number of states grows exponentially with the amount of describing variables

Consider the state as a vector in ℝௗ, each element is binary; 𝑆 ൌ 2ௗ

The same is true for discretizing continuous state space

 Three main ideas in Approximate DP:

 Use function approximation for policy and value function

The approximator can be global and parametric (DNN) or local (aggregation, kernels, ...)

 Asynchronous policy iteration

 Sample path based methods (simulation)

Motivated by the fact that there are often LOTs of “null states”

16 / 25

The advantages of simulation

RL Reading Group – Prep Session 1

 The simulation method when combining other two ideas has the following advantages:

 Avoid exhaustive sweeps of the state space by focusing on the simulated sample path

Many states cannot be visited

Many states have low visitation frequency, therefore possibly less important; in simulation
it is updated less often (the idea of asynchronous update)

 Simplify the DP backup (the evaluation of DP operators) by sampling

This is essentially the idea of Monte Carlo integration, which simplifies the E step

 Require less model knowledge than exact DP

In complicated systems it is hard to explicitly formulate transition dynamics, but it is
possible to construct simulators (video games, robots, ...)

17 / 25

Reinforcement Learning

RL Reading Group – Prep Session 1

 Approximate DP becomes RL when the model knowledge is further weakened; the boundary is
vague

 Need to trade-off exploration vs exploitation: the policy 𝜋 needs to be stochastic

 We do not know (in terms of probability) the next state when taking an action, therefore value
functions 𝑉ሺ𝑠ሻ become action-value functions 𝑄ሺ𝑠, 𝑎ሻ

 In continuing problems,

𝑄గሺ𝑠଴, 𝑎ሻ ൌ 𝐸ఛ|గ,௦బ,௔ ෍ 𝛾௧𝑅ሺ𝑠௧, 𝑎௧, 𝑠௧ାଵሻ
ஶ

௧ୀ଴

|𝑎଴ ൌ 𝑎

The optimal action-value function is its supremum

 In episodic problems it is the same (omitting the “proper” restriction for now)

18 / 25

An incomplete overview of (Deep) RL algorithms

RL Reading Group – Prep Session 1

[1]

[1] https://spinningup.openai.com/en/latest/spinningup/rl_intro.html

We briefly cover classical
methods in this part

This is the content of
next time

19 / 25

Monte Carlo Estimation

RL Reading Group – Prep Session 1

 Consider the simplest problem: finite, discounted problem with bounded reward, and there is a
termination state that can be reached in finite time w.p.1 from any state with any policy

 Monte Carlo estimation is an algorithm that finds 𝑄గሺ𝑠, 𝑎ሻ for a policy 𝜋

 The idea is a direct implementation of the definition

𝑄గሺ𝑠଴, 𝑎ሻ ൌ 𝐸ఛ|గ,௦బ,௔ ෍ 𝛾௧𝑅ሺ𝑠௧, 𝑎௧, 𝑠௧ାଵሻ
ஶ

௧ୀ଴

|𝑎଴ ൌ 𝑎

 In each episode, we rollout 𝜋 till termination

 Use the sample path to generate a stochastic approximation of the component inside the
bracket, for all state action pairs encountered along this sample path; store it in the buffer

 Between episodes, use the content of the buffer to evaluate the E step and generate an
estimate 𝑄෠గ; it provably converges to 𝑄గ, no stepsizes

20 / 25

Monte Carlo Control

RL Reading Group – Prep Session 1

 We want to optimize 𝜋 while estimating 𝑄గ, hopefully they converge to 𝜋∗ and 𝑄

 Between episodes, with a newly estimated 𝑄గ, the best policy would be greedy w.r.t. 𝑄గ

 This is a bad idea since it does not explore...

 Two possible solutions:

 Exploration start: make the initial state distribution 𝜌଴ s ൐ 0, ∀𝑠 ∈ 𝑆

Works but no theoretical guarantee...

 Make 𝜋 approximately greedy: greedy with a large probability; explore with a small
probability

Examples: 𝜖-greedy, Boltzmann exploration, ...

For 𝜖-greedy, it provably converges to the best 𝜖-greedy policy, but not the optimal in
general

21 / 25

On policy vs. Off policy

RL Reading Group – Prep Session 1

 An important concept in RL that is vaguely defined as follows:

 When we rollout 𝜋 and learn from the sample path, our algorithm is “on policy” when we
estimate 𝑄గ and generate control; it is “off policy” when we estimate 𝑄గᇲ (corresponding to
another policy) and generate control

 𝜋′ is often chosen as the optimal policy 𝜋∗

 The general scheme of Off Policy Monte Carlo: importance sampling

Check Sec. 5.5 & 5.7 in [1], or Monte Carlo statistics

 Qualitatively, off policy methods nowadays has better sample complexity but less stable
(converges in tabular case but may diverge with function approximation)

[1] Sutton, Richard S., and Andrew G. Barto. Reinforcement learning: An introduction. MIT press, 2018.

22 / 25

Temporal Difference

RL Reading Group – Prep Session 1

 Monte Carlo methods are intuitive, but they only update between episodes

 In other words, they do not “bootstrap”, i.e. generate 𝑄గ estimates based on older estimate

 TD learning is a method that bootstraps; the idea is to “cut-off” Monte Carlo rollouts and replace
the remainder with the current 𝑄గ estimate

 The “cut-off” length is a hyperparameter in TD algorithms

Denote one-step cut-off algorithm as TD(0); denote no cut-off as TD(1), i.e. Monte Carlo

On this spectrum is TD(𝜆) where 𝜆 ∈ ሾ0,1ሿ; See Chap. 12 in [1]

 Empirical evaluation shows that a modest bootstrapping has the best performance

[1] Sutton, Richard S., and Andrew G. Barto. Reinforcement learning: An introduction. MIT press, 2018.

23 / 25

One step On-policy TD control: SARSA

RL Reading Group – Prep Session 1

 Start with any action-value estimate 𝑄෠

 After each step, with the current policy 𝜋, observe the state-action-state ሺ𝑠௧, 𝑎௧, 𝑠௧ାଵሻ sample;
receive the reward 𝑟௧ାଵ, and sample the next action 𝑎௧ାଵ using 𝜋

 Use this SARSA sample ሺ𝑠௧, 𝑎௧, 𝑟௧ାଵ, 𝑠௧ାଵ, 𝑎௧ାଵሻ to update 𝑄෠
𝑄෠ 𝑠௧, 𝑎௧ ← 𝑄෠ 𝑠௧, 𝑎௧ ൅ 𝛼௧ሾ𝑟௧ାଵ ൅ 𝛾𝑄෠ 𝑠௧ାଵ, 𝑎௧ାଵ െ 𝑄෠ 𝑠௧, 𝑎௧ ሿ

where 𝛼௧ is the step size

 Update 𝜋 to be approximately greedy
𝜋 ← aprox_greedyሺ𝑄෠ሻ

 Convergence to optimal policy is guaranteed w.p.1 by the following two conditions:

 GLIE (Greedy in the Limit with Infinite Exploration) policy: every action is chosen infinitely
often at states that are visited infinitely often; the policy has a greedy policy as its limit

 Robbins-Monro step sizes: ∑ 𝑎௧ ൌ ∞ஶ
௧ୀଵ , ∑ 𝑎௧

ଶ ൏ ∞ஶ
௧ୀଵ

24 / 25

One step Off-policy TD control: Q learning

RL Reading Group – Prep Session 1

 Start with any action-value estimate 𝑄෠, exploratory rollout policy 𝜋

 After each step, observe the state-action-state ሺ𝑠௧, 𝑎௧, 𝑠௧ାଵሻ sample; receive the reward 𝑟௧ାଵ

 Update 𝑄෠
𝑄෠ 𝑠௧, 𝑎௧ ← 𝑄෠ 𝑠௧, 𝑎௧ ൅ 𝛼௧ሾ𝑟௧ାଵ ൅ 𝛾 max

௔∈஺ሺ௦೟శభሻ
𝑄෠ 𝑠௧ାଵ, 𝑎 െ 𝑄෠ 𝑠௧, 𝑎௧ ሿ

where 𝛼௧ is the step size

 Although we sample with 𝜋, we estimate the optimal action-value function directly

 Convergence to optimal 𝑄 is guaranteed w.p.1 by the following two conditions:

 All admissible state-action pairs are updated infinitely often

 Robbins-Monro step sizes

 A possible paper for discussion: Q learning with UCB exploration achieves near-optimal regret

[1] Jin, Chi, Zeyuan Allen-Zhu, Sebastien Bubeck, and Michael I. Jordan. "Is q-learning provably efficient?." In Advances in Neural Information Processing Systems, pp. 4863-4873. 2018.

25 / 25

Q learning with function approximation: The “deadly triad”

RL Reading Group – Prep Session 1

 The trend of Q learning with DNN action value approximation started several years ago and
initated the field of “Deep RL”; the technique itself dates back to the 90’s

 The “deadly triad” is a concept formulated by Sutton & Barto that illustrate the difficulty of “Deep
Q learning” algorithms:

 Whenever an RL algorithm has all the following three components, it is problematic:

Function approximation, Bootstrapping, Off-Policy training

 Moreover, the loss function for the DNN component is not clear: the popular heuristic “Bellman
loss” is potentially also problematic... See Chap. 11 in [1]

 This triad is so “deadly” that people gradually shifted their attention to policy optimization
methods in the past few years. A lot needs to be done...

[1] Sutton, Richard S., and Andrew G. Barto. Reinforcement learning: An introduction. MIT press, 2018.

