
1 / 25

RL Reading Group – Prep Session 1

Zhiyu Zhang
09/16/2019

Boston University Division of System Engineering

2 / 25

Overview

RL Reading Group – Prep Session 1

 Problem formulation
 Solution techniques
 Model given: Dynamic Programming (DP)
 Curse of dimensionality and approximate DP
 Model unknown: Reinforcement learning (RL)
 Tabular Monte Carlo
 Tabular Temporal Difference
 Q learning with function approximation, the “deadly triad”

 Next time: policy gradient, actor-critic, RL subcategories...

3 / 25

Finite Markovian Decision Problems (finite MDP)

RL Reading Group – Prep Session 1

[1] Bertsekas, Dimitri P. Abstract dynamic programming. Athena Scientific, 2018.
[2] https://spinningup.openai.com/en/latest/spinningup/rl_intro.html

 A finite MDP is a 5-tuple ℳ 𝑆, 𝐴, 𝑅, 𝑃, 𝜌 :
 𝑆 is the state space, finite
 𝐴 is the action space, finite
 𝑅: 𝑆 𝐴 𝑆 → ℝ is the reward function

The reward at time 𝑡 is 𝑟 𝑅 𝑠 , 𝑎 , 𝑠
 𝑃: 𝑆 𝐴 𝑆 → 0,1 is the transition probability of the Markov Chain induced by the applied

action, e.g. 𝑃 𝑠 |𝑠 , 𝑎
 𝜌 is the starting state distribution

 Can be extended to continuous state / action space, with technical assumptions

[2]

4 / 25

Finite Markovian Decision Problems (finite MDP)

RL Reading Group – Prep Session 1

 We pick a stationary (stochastic) policy 𝜋 for the agent
𝑎 ∼ 𝜋 ⋅ |𝑠

 When applying 𝜋, denote the first 𝑁 step sample path starting at 𝑠 as 𝜏 𝑠 𝑠 , 𝑎

 Denote the infinite horizon sample path starting at 𝑠 as 𝜏 𝑠 𝑠 , 𝑎

 We focus on the infinite horizon setting.

 The performance of 𝜋 is characterized by one of the three objectives we choose:
 𝛾-discounted cumulative reward, with discount factor 𝛾 ∈ 0,1
 Undiscounted cumulative reward, with discount factor 𝛾 1
 Infinite horizon average reward

Well-behaved
Needs restriction

Very useful but not popular in RL due to difficulty
RL mainly consider the first two

5 / 25

Finite Markovian Decision Problems (finite MDP)

RL Reading Group – Prep Session 1

 Consider only the first two types, they can both be expressed as the value function

𝑉 𝑠 lim sup
→

𝐸 | , 𝛾 𝑅 𝑠 , 𝑎 , 𝑠

 We want to find an optimal policy 𝜋∗ that maximizes the value function for all starting state 𝑠 :
𝑉 𝑠 sup 𝑉 𝑠 ∀𝑠 ∈ 𝑆

 𝜋∗ can be any policy that attains this supremum; 𝑉 is the optimal value function

 Note that the value function is defined in the DP fashion [1]; in (Deep) RL [2], it is

𝑉 𝑠 𝐸 | , 𝛾 𝑅 𝑠 , 𝑎 , 𝑠

[1] Bertsekas, Dimitri P. Abstract dynamic programming. Athena Scientific, 2018.
[2] https://spinningup.openai.com/en/latest/spinningup/rl_intro.html

Less concrete but in “good cases”
(discounted, bounded 𝑅) they are
the same, and lim sup becomes lim

6 / 25

Solution techniques: DP, ADP and RL

RL Reading Group – Prep Session 1

 The solution technique largely depends on what is available to us: model given or unknown

 Define the model as the reward function 𝑅 and the transition probability 𝑃

 𝑃 is objective: if we don’t know it, we cannot use it

 𝑅 can be objective / subjective:
As the real outcome has multiple ways to quantify, we can often pick 𝑅 (weird...)

Model explicitly given
Model unknown: only
real experience

Weaker model knowledge, larger state / action space, harder problem

A good simulator

Dynamic Programming Approximate DP Model based RL Model free RL

Pure planning Planning with larger
state / action space

Learn the model Learn value /
policy directly

7 / 25

Dynamic Programming: The principle of optimality

RL Reading Group – Prep Session 1

 In DP, since the dynamics is known, there is no need to explore; assume 𝜋 is deterministic
The action 𝑎 is chosen from the allowable control set at 𝑠: 𝑎 ∈ 𝐴 𝑠

 Bellman’s priciple of optimality [1]:
An optimal policy has the property that whatever the initial state and initial decision are, the
remaining decisions must constitute an optimal policy with regard to the state resulting from
the first decision.

[1] https://en.wikipedia.org/wiki/Bellman_equation
[2] https://en.wikipedia.org/wiki/Dynamic_programming

[2]
In the deterministic case, we expect something like

(Bellman equation)
Value at current state = max over action [immediate
reward + value at next state | action]

Need more careful analysis

8 / 25

DP operators

RL Reading Group – Prep Session 1

 Let 𝒳 be the set of functions 𝑆 → ℝ; (the set of all possible value functions)

 For any policy 𝜋, define the DP operator 𝑇 on any 𝑣 ∈ 𝒳 as
𝑇 𝑣 𝑠 𝐸 𝑅 𝑠, 𝜋 𝑠 , 𝑠 𝛾𝑣 𝑠′

 Define the optimal DP operator (Bellman operator) 𝑇 on 𝑣 ∈ 𝒳 as
𝑇𝑣 𝑠 max

∈
 𝐸 𝑅 𝑠, 𝑎, 𝑠 𝛾𝑣 𝑠′

 The DP operators are characterized by two properties that are central to solving the problem:
Monotonicity and contraction

9 / 25

Monotonicity

RL Reading Group – Prep Session 1

 Monotonicity of DP operators are defined as follows:

 (Assumption 1.2.1, [1]): The DP operator 𝑇 ⋅ without 𝜋 specified is monotone if ∀𝑣 , 𝑣 ∈ 𝒳 such
that ∀𝑠 ∈ 𝑆, 𝑣 𝑠 𝑣 𝑠 , we have

𝑇 𝑣 𝑠 𝑇 𝑣 𝑠 ∀𝑠 ∈ 𝑆, ∀𝜋 admissible

 If 𝑇 ⋅ is monotone, then the Bellman operator 𝑇 is monotone

 In the two typical types of MDP problems we consider (cumulative discounted or undiscounted
reward problem with assumptions), 𝑇 ⋅ is monotonic

[1] Bertsekas, Dimitri P. Abstract dynamic programming. Athena Scientific, 2018.

10 / 25

Contraction

RL Reading Group – Prep Session 1

 The definition of contraction requires a norm; we use the sup-norm here:
𝑣 sup|𝑣 𝑠 |

 It can be shown that the set of 𝑣 with 𝑣 ⋅ bounded is complete (Appendix B, [1])
It is a subset of 𝒳, denote this set as 𝐵 𝒳)

 (Assumption 1.2.1, [1]): The DP operator 𝑇 ⋅ without 𝜋 specified is contractive if ∀𝜋 admissible,
∀𝑣 ∈ 𝐵 𝒳 we have 𝑇 𝑣 ∈ 𝐵 𝒳 , and ∃𝛼 ∈ 0,1 such that

𝑇 𝑣 𝑇 𝑣 𝛼 𝑣 𝑣 ∀𝑣 , 𝑣 ∈ 𝐵 𝒳 , ∀𝜋 admissible

 If 𝑇 ⋅ is contractive, then the Bellman operator 𝑇 is contractive

[1] Bertsekas, Dimitri P. Abstract dynamic programming. Athena Scientific, 2018.

11 / 25

Contraction

RL Reading Group – Prep Session 1

 The DP operators corresponding to the 𝛾-discounted cumulative reward problem are contractive
with modulus 𝛾, therefore has the strongest theoretical result

 With the undiscounted cumulative reward problem they are not contractive, but when 𝜋 is
restricted to a subset of policies (“proper”), 𝑇 is a contraction

Such a restriction is called the “stochastic shortest path” problem, will come back later

 The contraction principle: A contraction on a complete metric space has a unique fixed point

 Therefore, define the Bellman equations as 𝑣 𝑇 𝑣 and 𝑣 𝑇𝑣, they have unique solutions

12 / 25

Discounted problems

RL Reading Group – Prep Session 1

 Consider maximizing the 𝛾-discounted cumulative reward, with discount factor 𝛾 ∈ 0,1

 Assume the reward function 𝑅 is bounded; therefore, monotone and contractive

The results: (Chap. 2, [1])

 Bellman equations 𝑣 𝑇 𝑣 and 𝑣 𝑇𝑣 have unique solutions, which are 𝑉 and 𝑉 respectively

 The optimal cost in non-stationary policies can be attained to within an arbitrary accuracy with a
stationary policy

It suffices to consider only the stationary policies

 𝑉 and 𝑉 can be obtained by value iteration, starting from ∀𝑣 ∈ 𝐵 𝒳 :
𝑉 lim

→
𝑇 𝑣

𝑉 lim
→

𝑇 𝑣

The convergence is geometric

[1] Bertsekas, Dimitri P. Abstract dynamic programming. Athena Scientific, 2018.

“Continuing” in RL terms

13 / 25

Policy iteration

RL Reading Group – Prep Session 1

 In the above problem, 𝑉 can also be obtained from policy iteration:

 Start with any policy 𝜋

 In the 𝑘 iteration, first do the policy evaluation step that solves 𝑉 from the linear equation
𝑉 𝑇 𝑉

 Then do the policy improvement step that computes a new policy 𝜋 (argmax instead of max in
the Bellman operator)

𝜋 𝑠 arg max
∈

 𝐸 𝑅 𝑠, 𝑎, 𝑠 𝛾𝑉 𝑠′

 The value function 𝑉 converges to 𝑉 as 𝑘 → ∞

 Value iteration can be seen as a “one step approximation” of policy iteration

 RL is largely inspired by this idea of iteratively moving 𝑉 and 𝜋 closer, called Generalized Policy
Iteration (GPI); it often works, but not always...

[1] Sutton, Richard S., and Andrew G. Barto. Reinforcement learning: An introduction. MIT press, 2018.

[1]

14 / 25

Undiscounted problems

RL Reading Group – Prep Session 1

 Consider maximizing the undiscounted cumulative reward, with discount factor 𝛾 1

 Monotonicity still holds, but only contractive for some policies (semi-contractive)

 Make a restriction: assume one state is the termination state 𝑜 that
𝑃 𝑎 1 ∀𝑎 ∈ 𝐴 𝑜

Any self transition loop at 𝑜 gives zero reward.

 𝜋 is proper if
max

∈
 𝑃 𝑠 𝑜 𝑠 𝑠, 𝜋 1

That is, starting with any state, there is a positive probability to reach termination in 𝑆 steps;

In other words, termination is reached in finite time with probability 1

 In this restricted “SSP” problem, theoretical tools from last page are available

“Episodic” in RL terms

15 / 25

From DP to Approximate DP

RL Reading Group – Prep Session 1

 The problem of DP: “curse of dimensionality”

The number of states grows exponentially with the amount of describing variables

Consider the state as a vector in ℝ , each element is binary; 𝑆 2

The same is true for discretizing continuous state space

 Three main ideas in Approximate DP:

 Use function approximation for policy and value function

The approximator can be global and parametric (DNN) or local (aggregation, kernels, ...)

 Asynchronous policy iteration

 Sample path based methods (simulation)

Motivated by the fact that there are often LOTs of “null states”

16 / 25

The advantages of simulation

RL Reading Group – Prep Session 1

 The simulation method when combining other two ideas has the following advantages:

 Avoid exhaustive sweeps of the state space by focusing on the simulated sample path

Many states cannot be visited

Many states have low visitation frequency, therefore possibly less important; in simulation
it is updated less often (the idea of asynchronous update)

 Simplify the DP backup (the evaluation of DP operators) by sampling

This is essentially the idea of Monte Carlo integration, which simplifies the E step

 Require less model knowledge than exact DP

In complicated systems it is hard to explicitly formulate transition dynamics, but it is
possible to construct simulators (video games, robots, ...)

17 / 25

Reinforcement Learning

RL Reading Group – Prep Session 1

 Approximate DP becomes RL when the model knowledge is further weakened; the boundary is
vague

 Need to trade-off exploration vs exploitation: the policy 𝜋 needs to be stochastic

 We do not know (in terms of probability) the next state when taking an action, therefore value
functions 𝑉 𝑠 become action-value functions 𝑄 𝑠, 𝑎

 In continuing problems,

𝑄 𝑠 , 𝑎 𝐸 | , , 𝛾 𝑅 𝑠 , 𝑎 , 𝑠 |𝑎 𝑎

The optimal action-value function is its supremum

 In episodic problems it is the same (omitting the “proper” restriction for now)

18 / 25

An incomplete overview of (Deep) RL algorithms

RL Reading Group – Prep Session 1

[1]

[1] https://spinningup.openai.com/en/latest/spinningup/rl_intro.html

We briefly cover classical
methods in this part

This is the content of
next time

19 / 25

Monte Carlo Estimation

RL Reading Group – Prep Session 1

 Consider the simplest problem: finite, discounted problem with bounded reward, and there is a
termination state that can be reached in finite time w.p.1 from any state with any policy

 Monte Carlo estimation is an algorithm that finds 𝑄 𝑠, 𝑎 for a policy 𝜋

 The idea is a direct implementation of the definition

𝑄 𝑠 , 𝑎 𝐸 | , , 𝛾 𝑅 𝑠 , 𝑎 , 𝑠 |𝑎 𝑎

 In each episode, we rollout 𝜋 till termination

 Use the sample path to generate a stochastic approximation of the component inside the
bracket, for all state action pairs encountered along this sample path; store it in the buffer

 Between episodes, use the content of the buffer to evaluate the E step and generate an
estimate 𝑄 ; it provably converges to 𝑄 , no stepsizes

20 / 25

Monte Carlo Control

RL Reading Group – Prep Session 1

 We want to optimize 𝜋 while estimating 𝑄 , hopefully they converge to 𝜋∗ and 𝑄

 Between episodes, with a newly estimated 𝑄 , the best policy would be greedy w.r.t. 𝑄

 This is a bad idea since it does not explore...

 Two possible solutions:

 Exploration start: make the initial state distribution 𝜌 s 0, ∀𝑠 ∈ 𝑆

Works but no theoretical guarantee...

 Make 𝜋 approximately greedy: greedy with a large probability; explore with a small
probability

Examples: 𝜖-greedy, Boltzmann exploration, ...

For 𝜖-greedy, it provably converges to the best 𝜖-greedy policy, but not the optimal in
general

21 / 25

On policy vs. Off policy

RL Reading Group – Prep Session 1

 An important concept in RL that is vaguely defined as follows:

 When we rollout 𝜋 and learn from the sample path, our algorithm is “on policy” when we
estimate 𝑄 and generate control; it is “off policy” when we estimate 𝑄 (corresponding to
another policy) and generate control

 𝜋′ is often chosen as the optimal policy 𝜋∗

 The general scheme of Off Policy Monte Carlo: importance sampling

Check Sec. 5.5 & 5.7 in [1], or Monte Carlo statistics

 Qualitatively, off policy methods nowadays has better sample complexity but less stable
(converges in tabular case but may diverge with function approximation)

[1] Sutton, Richard S., and Andrew G. Barto. Reinforcement learning: An introduction. MIT press, 2018.

22 / 25

Temporal Difference

RL Reading Group – Prep Session 1

 Monte Carlo methods are intuitive, but they only update between episodes

 In other words, they do not “bootstrap”, i.e. generate 𝑄 estimates based on older estimate

 TD learning is a method that bootstraps; the idea is to “cut-off” Monte Carlo rollouts and replace
the remainder with the current 𝑄 estimate

 The “cut-off” length is a hyperparameter in TD algorithms

Denote one-step cut-off algorithm as TD(0); denote no cut-off as TD(1), i.e. Monte Carlo

On this spectrum is TD(𝜆) where 𝜆 ∈ 0,1 ; See Chap. 12 in [1]

 Empirical evaluation shows that a modest bootstrapping has the best performance

[1] Sutton, Richard S., and Andrew G. Barto. Reinforcement learning: An introduction. MIT press, 2018.

23 / 25

One step On-policy TD control: SARSA

RL Reading Group – Prep Session 1

 Start with any action-value estimate 𝑄

 After each step, with the current policy 𝜋, observe the state-action-state 𝑠 , 𝑎 , 𝑠 sample;
receive the reward 𝑟 , and sample the next action 𝑎 using 𝜋

 Use this SARSA sample 𝑠 , 𝑎 , 𝑟 , 𝑠 , 𝑎 to update 𝑄
𝑄 𝑠 , 𝑎 ← 𝑄 𝑠 , 𝑎 𝛼 𝑟 𝛾𝑄 𝑠 , 𝑎 𝑄 𝑠 , 𝑎

where 𝛼 is the step size

 Update 𝜋 to be approximately greedy
𝜋 ← aprox_greedy 𝑄

 Convergence to optimal policy is guaranteed w.p.1 by the following two conditions:

 GLIE (Greedy in the Limit with Infinite Exploration) policy: every action is chosen infinitely
often at states that are visited infinitely often; the policy has a greedy policy as its limit

 Robbins-Monro step sizes: ∑ 𝑎 ∞, ∑ 𝑎 ∞

24 / 25

One step Off-policy TD control: Q learning

RL Reading Group – Prep Session 1

 Start with any action-value estimate 𝑄, exploratory rollout policy 𝜋

 After each step, observe the state-action-state 𝑠 , 𝑎 , 𝑠 sample; receive the reward 𝑟

 Update 𝑄
𝑄 𝑠 , 𝑎 ← 𝑄 𝑠 , 𝑎 𝛼 𝑟 𝛾 max

∈
𝑄 𝑠 , 𝑎 𝑄 𝑠 , 𝑎

where 𝛼 is the step size

 Although we sample with 𝜋, we estimate the optimal action-value function directly

 Convergence to optimal 𝑄 is guaranteed w.p.1 by the following two conditions:

 All admissible state-action pairs are updated infinitely often

 Robbins-Monro step sizes

 A possible paper for discussion: Q learning with UCB exploration achieves near-optimal regret

[1] Jin, Chi, Zeyuan Allen-Zhu, Sebastien Bubeck, and Michael I. Jordan. "Is q-learning provably efficient?." In Advances in Neural Information Processing Systems, pp. 4863-4873. 2018.

25 / 25

Q learning with function approximation: The “deadly triad”

RL Reading Group – Prep Session 1

 The trend of Q learning with DNN action value approximation started several years ago and
initated the field of “Deep RL”; the technique itself dates back to the 90’s

 The “deadly triad” is a concept formulated by Sutton & Barto that illustrate the difficulty of “Deep
Q learning” algorithms:

 Whenever an RL algorithm has all the following three components, it is problematic:

Function approximation, Bootstrapping, Off-Policy training

 Moreover, the loss function for the DNN component is not clear: the popular heuristic “Bellman
loss” is potentially also problematic... See Chap. 11 in [1]

 This triad is so “deadly” that people gradually shifted their attention to policy optimization
methods in the past few years. A lot needs to be done...

[1] Sutton, Richard S., and Andrew G. Barto. Reinforcement learning: An introduction. MIT press, 2018.

