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Overview

RL Reading Group – Prep Session 1

 Recap of last session
 Policy optimization and its benefit
 Vanilla algorithms
 Vanilla policy gradient
 Vanilla actor-critic

 The drawbacks of policy optimization
 Natural policy gradient
 Trust-region policy optimization (TRPO)
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Recap of last session
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 Problem of interest: optimal control of finite MDPs

 Two “good” objective functions we can maximize: 
 Discounted infinite horizon cumulative reward; no restriction on policies
 Undiscounted infinite horizon cumulative reward; policies are proper

 Classical solution techniques: DP
 Important structure: monotonicity and contraction of DP operators
 Result: 

 Bellman equation has a unique solution that can be asymptotically reached by 
iteratively applying Bellman operator (value iteration)

 Policy iteration (PI) generalizes value iteration, with the same guarantee



4 / 23

Recap of last session

RL Reading Group – Prep Session 1

 Drawbacks of DP
 Curse of dimensionality
 Requires stochastic model in the explicit form

 If we have large state & action spaces: approximate DP

 PLUS, if we only have simulation / real experiences: RL
 DP only “exploits”; RL needs to trade off exploration & exploitation

 Value function becomes action-value function
 Deterministic policies become stochastic policies

 Basic idea of RL algorithms: “Generalized PI”, iterates between policy evaluation and policy 
improvement
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Recap of last session
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 On-policy vs. Off-policy algorithms
 On-policy: the policy that samples the training data is the same as the policy to be 

evaluated / improved
 Off-policy: the opposite; generalizes the on-policy algorithms

 Value function based RL algorithms
 Monte Carlo: use the idea of MC integration to estimate action value functions
 Temporal Difference

 MC with bootstrapping: use the old estimate to generate new ones; Ex. SARSA
 Off-policy generalization: 

 One step off-policy: Q learning; Otherwise, importance sampling
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Recap of last session
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 From tabular cases to function approximation
 Almost everything tabular has good infinite sample guarantee (converges to optimum)
 Finite sample performance is not well understood (regret)
 Value function methods with function approximation is problematic

 The “deadly triad”: function approximation, off-policy, bootstrapping
 How to choose loss function for the function approximation (Ex. DNN)? No labels! 
 Result: need to have something to “stabilize” these algorithm

 (Policy optimization; Actor-critic)
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The difficulty of RL

RL Reading Group – Prep Session 1

 A naive, personal view: 
 The objective is not a classical statistical quantity; hard to convert into a stat problem (will 

see)
 It’s an active learning problem

 We (through a black box) choose the training data
 Therefore, training data is not IID

 It’s also an online learning problem: we often care about online performance
 See Sec 4.2 of [1]

[1] Szepesvári, Csaba. "Algorithms for reinforcement learning." Synthesis lectures on artificial intelligence and machine learning 4, no. 1 (2010): 1-103.
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Policy optimization
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 Our task is to generate a stationary (stochastic) policy 𝜋 for the agent
𝑎௧ ∼ 𝜋ሺ⋅ |𝑠௧ሻ

 Consider the value function approach: 
 In DP, only exploitation, the policy can simply be greedy w.r.t. the value function
 In RL, we only have an inaccurate estimate of the value function; the policy is often 

“approximately” greedy
 𝜖 greedy, Boltzmann exploration, UCB type exploration, ...

 Tuning these exploration strategies is not trivial

 They are hard to “converge” to stochastic policies
 In adversarial settings like games, the optimal strategy is often stochastic
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Policy optimization
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 Consider policy optimization: directly parameterizing the policy itself

 With finite action space 𝐴, a popular choice is the softmax parameterization

𝜋ఏ 𝑎 𝑠 ൌ
expሺ𝜙ሺ𝑠, 𝑎, 𝜃ሻሻ

∑ expሺ𝜙ሺ𝑠, 𝑎ᇱ, 𝜃ሻሻ௔ᇲ

𝜙ሺ𝑠, 𝑎, 𝜃ሻ is the output of a function parameterized by 𝜃 (Ex. DNN)

 This is very expressive: can approach a greedy policy or remain siginificantly random

 If action space is continuous, the policy take the form of a Gaussian mixture model, with means 
and covariances represented by 𝜙ሺ𝑠, 𝑎, 𝜃ሻ

 We focus, as last time, on finite MDPs
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On-policy (state-action) distribution 𝑑గሺ𝑠, 𝑎ሻ
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 This is a bad name: it actually has nothing to do with the “on-policy” concept for RL algorithms

 It depends on the objective function of the problem: 
 For maximizing infinite horizon average reward, 𝑑గሺ𝑠ሻ with 𝑎 marginalized is the stationary 

distribution of the MC induced by 𝜋 (with technical conditions)
 As we said, average reward problems are harder to deal with, so we consider two easier 

problems

 For maximizing cumulative 𝛾-discounted reward (the “continuing task”), it is defined as [1]

𝑑గ 𝑠, 𝑎 ൌ 1 െ 𝛾 𝜋ሺ𝑎|𝑠ሻ ෍ 𝛾௧𝑃ሺ𝑠௧ ൌ 𝑠|𝜋, 𝜌଴ሻ
ஶ

௧ୀ଴

Such a limit always exists; as 𝛾 → 1, the marginal 𝑑గሺ𝑠ሻ “approaches” the stationary 
distribution of the MC induced by 𝜋

[1] Kakade, Sham, and John Langford. "Approximately optimal approximate reinforcement learning." In ICML, vol. 2, pp. 267-274. 2002.
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On-policy (state-action) distribution 𝑑గሺ𝑠, 𝑎ሻ
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 It also works similarly as stationary distribution: [1]
Remember that 𝑅ሺ𝑠, 𝑎, 𝑠ᇱሻ is the reward function; 𝑅 𝑠, 𝑎 can be seen as a random variable 
bounded by 𝑅

𝑉గ ൌ 𝐸ఛ|గ,ఘబ ෍ 𝛾௧𝑅ሺ𝑠௧, 𝑎௧, 𝑠௧ାଵሻ
ஶ

௧ୀ଴

ൌ
1

1 െ 𝛾 𝐸 ௦,௔ ∼ௗഏሾ𝑅ሺ𝑠, 𝑎ሻሿ

 As for maximizing the undiscounted cumulative reward among proper policies (the episodic 
task), 𝑑గሺ𝑠, 𝑎ሻ is defined in another way (see Page 199, [2] for a rough definition); the idea is the 
same

 Consider the difference of expected value 𝑉గ and 𝑉గᇲ, normally it depends on two part: the 
change in policy 𝜋ᇱ െ 𝜋 and the change in (marginal) on-policy (state) distribution 𝑑గᇲ ⋅ െ 𝑑గ ⋅ ; 
however, the derivative 𝛻ఏ𝑉గഇ only depends on 𝛻ఏ𝜋ఏ and not on 𝛻ఏ𝑑గഇ

[1] Kakade, Sham, and John Langford. "Approximately optimal approximate reinforcement learning." In ICML, vol. 2, pp. 267-274. 2002.
[2] Sutton, Richard S., and Andrew G. Barto. Reinforcement learning: An introduction. MIT press, 2018.
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Policy gradient theorem
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 Policy gradient theorem for continuing tasks: 

𝛻ఏ𝑉గഇ ൌ ෍ 𝑑గഇሺ𝑠ሻ
௦∈ௌ

෍ 𝑄గഇ 𝑠, 𝑎 𝛻ఏ𝜋ఏሺ𝑎|𝑠ሻ
௔∈஺

 The proof is simple but doesn’t fit in one slide, see Page 325, [1]; Need to modify a bit to 
incorporate discount factor, since it totally ignores the existence of limit issue... 

 For episodic case it is the same, with 𝑑గഇሺ𝑠ሻ defined in another way

 The idea to use the gradient: similar to SGD, write it as the expectation over sample path and 
use the rollout sample paths to do sample-based gradient ascent

𝛻ఏ𝑉గഇ ൌ ෍ 𝑑గഇሺ𝑠ሻ
௦∈ௌ

෍ 𝜋ఏሺ𝑎|𝑠ሻ𝑄గഇ 𝑠, 𝑎
𝛻ఏ𝜋ఏሺ𝑎|𝑠ሻ

𝜋ఏሺ𝑎|𝑠ሻ
௔∈஺

ൌ 𝐸 ௦,௔ ∼ௗഏ 𝑄గഇ 𝑠, 𝑎 𝛻ఏlog 𝜋ఏ 𝑎 𝑠

[1] Sutton, Richard S., and Andrew G. Barto. Reinforcement learning: An introduction. MIT press, 2018.
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Vanilla policy gradient for episodic tasks

RL Reading Group – Prep Session 1

 Consider the episodic tasks, as the gradient estimate is unbiased. Continuing tasks are similar, 
but updates will be biased. 

 In each epoch, rollout 𝜋ఏ for sevaral episodes, store state-action samples and the cumulative 
reward of each sample path in the buffer, until the buffer is full

 Between epochs, for each step in the buffer, 
 Calculate an estimate 𝑄෠గഇ 𝑠, 𝑎 using Monte Carlo estimation
 Calculate the gradient estimate 𝛻ఏ𝑉గഇ ൌ 𝑄෠గഇ 𝑠, 𝑎 𝛻ఏlog 𝜋ఏሺ𝑎|𝑠ሻ
 Gradient ascent one step, with a some learning rate

 We follow the procedure in [1], but [2] also gives an easy to follow derivation with code

[1] Sutton, Richard S., and Andrew G. Barto. Reinforcement learning: An introduction. MIT press, 2018.
[2] https://spinningup.openai.com/en/latest/
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Baseline and Vanilla actor-critic
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 Consider the policy gradient form

𝛻ఏ𝑉గഇ ൌ ෍ 𝑑గഇሺ𝑠ሻ
௦∈ௌ

෍ 𝑄గഇ 𝑠, 𝑎 𝛻ఏ𝜋ఏሺ𝑎|𝑠ሻ
௔∈஺

 Notice that if replace 𝑄గഇ 𝑠, 𝑎 with a function of 𝑠 only, the RHS is 0; Ex. 𝑉గഇሺ𝑠ሻ

 The policy gradient can be written as
𝛻ఏ𝑉గഇ ൌ 𝐸 ௦,௔ ∼ௗഏ ሺ𝑄గഇ 𝑠, 𝑎 െ 𝑉గഇሺ𝑠ሻሻ𝛻ఏlog 𝜋ఏ 𝑎 𝑠

 It doesn’t change the expectation, but can dramatically decrease variance

 Define advantage function as
𝐴గഇ 𝑠, 𝑎 ൌ 𝑄గഇ 𝑠, 𝑎 െ 𝑉గഇሺ𝑠ሻ

 If 𝑄గഇ 𝑠, 𝑎 and 𝑉గഇሺ𝑠ሻ are learned using TD methods with function approximation, we call the 
algorithm actor-critic: actor for parameterized policy, critic for parameterized value function

[1] provides an 𝑇𝐷ሺ𝜆ሻ type algorithm 
to estimate 𝐴గഇ 𝑠, 𝑎 efficiently

[1] Schulman, John, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. "High-dimensional continuous control using generalized advantage estimation." arXiv preprint 
arXiv:1506.02438 (2015).
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The drawbacks of policy gradient
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 Policy optimization methods are intrisically on-policy, which means when starting with a bad 
policy, it is hard to improve

 Example
Three actions; equal prob. 
The first passage time from the left most
state to the right most state is 3ሺ2௡ െ 𝑛 െ 1ሻ
Should rollout an extremely long sample path before policy improvement

 One possible solution
Exploration start: make 𝜌଴ more uniform

 Still largely unsolved; Sample complexity is a lot worse than value function based methods
For simple benchmark tasks like Atari games, a few million samples is considered “efficient”

[1] Kakade, Sham, and John Langford. "Approximately optimal approximate reinforcement learning." In ICML, vol. 2, pp. 267-274. 2002.

[1]
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Natural policy gradient
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 The vanilla policy gradient looks good, but has the following two early noticed problems: 
 Conceptually, the gradient is non-covariant, which doesn’t make sense

An affine change of coordinates leads to a different effective gradient direction
 Practically, training is often slow

The gradient direction is the steepest w.r.t. 𝐿ଶ norm, but not necessarily the correct 
“natural” norm we care about

 From the optimization point of view, this is the same motivation that generalizes gradient ascent 
to Newton’s method: it is covariant, and steepest w.r.t. the correct (Hessian) norm

 Similarly, we want to find a matrix to weight the gradient direction to make it covariant and 
(hopefully) faster

[1] Kakade, Sham M. "A natural policy gradient." In Advances in neural information processing systems, pp. 1531-1538. 2002.
[2] Bagnell, J. Andrew, and Jeff Schneider. "Covariant policy search." (2003).
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Natural policy gradient
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 From now on, I keep the discussion very vague as I don’t understand it well... The paper itself is 
also kinda “high-level”... 

 The discussion relies on another (very interesting) view of policy optimization: 
Our selection of policy parameter 𝜃 induces a distribution of sample path 𝑝ሺ𝜏|𝜃ሻ; the objective 
funciton is essentially the form of an expectation over 𝑝ሺ𝜏|𝜃ሻ

𝑉గഇ ൌ 𝐸ఛ∼௣ሺ⋅|ఏሻሾ𝑇𝑜𝑡𝑎𝑙_𝑅ሺ𝜏ሻሿ
regardless of the specific objective we choose (discounted / undiscounted / average)
By changing 𝜃, we move the distribution 𝑝 𝜏 𝜃 on the “distribution manifold” 

Example: we have three possible sample paths; the distribution of sample
paths can be parameterized by two parameters, therefore the the distribution
manifold is “dim 2” embedded in ℝଷ (axes showing log probability; this is just a
log coordinate transform of the probability simplex in ℝଷ)

[1] Kakade, Sham M. "A natural policy gradient." In Advances in neural information processing systems, pp. 1531-1538. 2002.
[2] Bagnell, J. Andrew, and Jeff Schneider. "Covariant policy search." (2003).

[2]
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Natural policy gradient
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 If 𝜃 ∈ ℝ௡, then the distribution manifold is “dim n” inside the space with dimension as the size of 
all possible sample paths. (A “dim n” subset of the high dimensional probability simplex)

 We want to establish Riemannian structure on this manifold. “Equivalently”, we want to define a 
Matrix-weighted inner product on its tangent space: ൏ 𝑢, 𝑣 ൐ ൌ 𝑢்𝐺𝑣. 

 If we have an 𝐺, then the steepest ascent direction can be obtained from a duality argument [2]
𝛿𝜃 ∝ 𝐺ିଵ𝛻ఏ𝑉గഇ

 How to choose 𝐺? There are plenty of possible choices that make the gradient covariant

 In this algorithm, they propose the Fisher information matrix

𝐺௜௝ ൌ 𝐸௣ 𝜏 𝜃
𝜕log 𝑝 𝜏 𝜃

𝜕𝜃௜

𝜕log 𝑝 𝜏 𝜃
𝜕𝜃௝

[1] Kakade, Sham M. "A natural policy gradient." In Advances in neural information processing systems, pp. 1531-1538. 2002.
[2] Bagnell, J. Andrew, and Jeff Schneider. "Covariant policy search." (2003).
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Natural policy gradient
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 Motivation of this choice: 
 [1, 3] Chentsov (or Cencov) characterization theorem: “the Fisher information metric is the 

only metric that is invariant under a family of probablistically meaningful mappings termed 
congruent embeddings by a Markov morphism” (???)

 [3] Fisher information is the Hessian of KL divergence; and KL divergence is the objective 
of another optimization problem (MLE) on the same distribution manifold

The MLE problem is defined as: we have 𝜏௜ ௜ୀଵ
ே ∼ 𝑝ሺ𝜏|𝜃∗ሻ, IID, we want to maximize

𝑙 𝜃 ൌ ෍ log 𝑝ሺ𝜏௜|𝜃ሻ
ே

௜ୀଵ

It is the same as minimizing 𝐷௄௅ሺ𝑝ௗ௔௧௔ሺ⋅ሻ||𝑝ሺ⋅ |𝜃ሻሻ as 𝑁 → ∞
The MLE problem is useful to us in the sense that we want the on-policy distribution of 
our new policy to be close to that of the old one (not so large information loss)

[1] Lebanon, Guy. "Axiomatic geometry of conditional models." IEEE Transactions on Information Theory 51, no. 4 (2005): 1283-1294.
[2] Kakade, Sham M. "A natural policy gradient." In Advances in neural information processing systems, pp. 1531-1538. 2002.
[3] Bagnell, J. Andrew, and Jeff Schneider. "Covariant policy search." (2003).
[4] Amari, Shun-Ichi. "Natural gradient works efficiently in learning." Neural computation 10, no. 2 (1998): 251-276.
[5] Peters, Jan, Katharina Mulling, and Yasemin Altun. "Relative entropy policy search." In Twenty-Fourth AAAI Conference on Artificial Intelligence. 2010.
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Natural policy gradient
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 [2, 4] Consider the MLE problem defined just now
Batch MLE has very good statistical property: it is consistent and asymptotically efficient 
(variance converges to the Cramer-Rao lower bound)
Consider the online optimization problem: each time we are give one sample path 𝜏௜, we 
use it to make a gradient step and discard it (SGD)

(Thm 2, [4]) It is shown that online MLE using steepest ascent weighted by Fisher 
information matrix and 1/n stepsize is asympotically efficient (asymptotically achieves the 
same performance as batch MLE)

The argument from this: Fisher information is a very good Riemannian metric for another 
useful optimization problem (MLE) on the same distribution manifold, therefore it 
incorporates some geometric structure that can be useful in policy optimization

[1] Lebanon, Guy. "Axiomatic geometry of conditional models." IEEE Transactions on Information Theory 51, no. 4 (2005): 1283-1294.
[2] Kakade, Sham M. "A natural policy gradient." In Advances in neural information processing systems, pp. 1531-1538. 2002.
[3] Bagnell, J. Andrew, and Jeff Schneider. "Covariant policy search." (2003).
[4] Amari, Shun-Ichi. "Natural gradient works efficiently in learning." Neural computation 10, no. 2 (1998): 251-276.
[5] Peters, Jan, Katharina Mulling, and Yasemin Altun. "Relative entropy policy search." In Twenty-Fourth AAAI Conference on Artificial Intelligence. 2010.
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Natural policy gradient
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 [1] as the first paper on natural policy gradient shows the idea, but the formulation has problem..
Possibly by luck, the authors used the correct form in the empirical evaluation part, and the 
performance is very strong

 [2] is very readable and corrects the problem in [1]’s formulation

 The resulting Fisher information matrix gives a truly covariant gradient, but its definition doesn’t 
have reward function in it; therefore it is for sure not optimal!

 The above discussion highlights one difficulty in RL: the objective function is hard to be 
incorporated into a statistical framework

One recent idea in RL is following this line: maximum entropy RL, or soft actor-critic
They use a heuristic method to cast the value function into a statistical quantity; then policy 
optimization becomes inference in a graphical model; empirical performance is strong [3]

[1] Kakade, Sham M. "A natural policy gradient." In Advances in neural information processing systems, pp. 1531-1538. 2002.
[2] Bagnell, J. Andrew, and Jeff Schneider. "Covariant policy search." (2003).
[3] Levine, Sergey. "Reinforcement learning and control as probabilistic inference: Tutorial and review." arXiv preprint arXiv:1805.00909 (2018).
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How to choose stepsizes? 

RL Reading Group – Prep Session 1

 This is when the MLE problem becomes useful
Large stepsizes means that we are not “protected” by policy gradient theorem: the change in 
value function is determined by not only the change of policy, but the change of on-policy 
distribution

 A natural idea is: we can pick the largest stepsize that still keeps the change of on-policy 
distribution reasonable (relative entropy policy search)

 This leads to the following constrained optimization problem
max

௱ఏ
  𝐸 ௦,௔ ∼ௗഏഇሺ௦ሻగഇశ೩ഇሺ௔|௦ሻ 𝑅 𝑠, 𝑎

s. t     𝐸௦∼ௗഏഇሺ௦ሻሾ𝐷௄௅ 𝜋ఏ 𝜋ఏା௱ఏ ൑ 𝜖

where 𝑑గഇሺ𝑠ሻ, the on-policy distribution of the old policy, is used as an approximation of 
𝑑గഇା୼ఏ 𝑠 , the on-policy distribution of the new policy. In practice, it is replaced by the 
empirical distribution; it would be beneficial to use another “distance” here, like Wasserstein

[1] Peters, Jan, Katharina Mulling, and Yasemin Altun. "Relative entropy policy search." In Twenty-Fourth AAAI Conference on Artificial Intelligence. 2010.
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Trust Region Policy Optimization
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 Take a first order approximation of the objective function, take a second order approximation of 
the constraint; the problem becomes

max
୼ఏ

   Δ𝜃்𝛻ఏ𝑉గഇ

s. t     
1
2 Δ𝜃்𝐺Δ𝜃 ൑ 𝜖

where 𝛻ఏ𝑉గഇ is the policy gradient, 𝐺 is the Fisher information matrix

 The analytical solution is

Δ𝜃 ൌ
2𝜖

𝛻ఏ𝑉గഇ

்𝐺ିଵ𝛻ఏ𝑉గഇ

𝐺ିଵ𝛻ఏ𝑉గഇ

 This is exactly the natural policy gradient direction, with a certain stepsize

 In practice it is solved by conjugate gradient, since we don’t want to invert 𝐺 directly

[1] Schulman, John, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. "Trust region policy optimization." In International conference on machine learning, pp. 1889-1897. 2015.
[2] https://spinningup.openai.com/en/latest/algorithms/trpo.html


