Lecture 21: Outline

- Integer Programming (IP) terminology.
- IP formulations.
- Comparing IP formulations.
Integer Programming terminology

\[
\begin{align*}
\text{min} & \quad c'x + d'y & \quad \text{(Mixed IP)} \\
\text{s.t.} & \quad Ax + By = b \\
& \quad x, y \geq 0 \\
& \quad x: \text{integer}
\end{align*}
\]

Assume entries of matrices and vectors are integers.

- If no continuous variable (y) then \text{IP}.
- If all variables zero-one then \text{ZOIP}.

Modeling Techniques

- Binary choice.
- Forcing constraints.
- Disjunctive constraints.
- Restrictive range of values.
- Piecewise linear cost functions.
Comparing formulations

Consider an IP problem and formulations A and B for that problem.

Let \mathcal{P}_A and \mathcal{P}_B denote the feasible sets of the LP relaxations of A and B, respectively.

Definition

We say A is at least as strong as B if $\mathcal{P}_A \subset \mathcal{P}_B$.