Problem 4
Cisco’s 12000 series routers are produced in three factories F_1, F_2 and F_3 and shipped from the factories to two distribution centers D_1 and D_2. Let c_{ij} the transportation cost (in $/router) from factory F_i to distribution center D_j, for $i = 1, 2, 3$ and $j = 1, 2$. Let also p_i, $i = 1, 2, 3$, the production cost (in $/router) at factory F_i. We have

$$C = (c_{ij}) = \begin{bmatrix} 10 & 100 \\ 80 & 120 \\ 60 & 50 \end{bmatrix}, \quad p = (p_1, p_2, p_3) = (1100, 1400, 1250).$$

The monthly capacity at each factory i is denoted by u_i and the demand at distribution center j is denoted by d_j, for $i = 1, 2, 3$ and $j = 1, 2$. We have

$$u = (u_1, u_2, u_3) = (800, 1170, 1000), \quad d = (d_1, d_2) = (1500, 1200).$$

Production should not exceed capacity at each factory and demand must be met at each distribution center.

(a) Formulate as a linear programming problem the problem of devising a monthly production and transportation plan that minimizes the total production and transportation cost. You want to decide the number of routers produced at factory F_i and shipped to distribution center D_j for $i = 1, 2, 3$ and $j = 1, 2$. Use CPLEX or any other LP solver to solve the problem and obtain sensitivity information.

(b) If the demand at D_1 increases by 100 routers, how is the optimal production and transportation cost affected?
(c) What is the impact on the total cost if we insist on producing one router at factory F_3 and shipping it to distribution center D_1?

(d) Suppose the capacity at F_1 increases to 1600. What is the impact on the optimal cost? If you cannot find the cost exactly calculate bounds on the impact in the cost. Justify your answer.

(e) Suppose that the transportation cost from F_1 to D_1 increases by $30. What is the impact on the optimal cost? What is the new optimal production and transportation plan?