Lecture 8: Outline

1. General form of the dual.
2. Weak duality.
3. Strong duality.
5. Relations between primal and dual.
Constructing the Dual

Consider the LP with optimal solution x^*

$$\textbf{Primal} \quad \min \; c'x$$
$$\text{s.t.} \quad Ax = b$$
$$\quad x \geq 0$$

Relax the constraint by introducing the vector of Lagrange multipliers (or dual variables) p

$$g(p) = \min \; c'x + p'(b - Ax)$$
$$\text{s.t.} \quad x \geq 0$$

Note: $g(p) \leq c'x^*$. Get the tightest lower bound

$$\textbf{Dual} \quad \max g(p) \Leftrightarrow \max p'b$$
$$\text{s.t.} \; p'A \leq c'$$

General form of the dual

$$\textbf{Primal} \quad \min \; c'x$$
$$\text{a}_i'x \geq b_i; \quad i \in M_1$$
$$\text{a}_i'x \leq b_i; \quad i \in M_2$$
$$\text{a}_i'x = b_i; \quad i \in M_3$$
$$x_j \geq 0; \quad j \in N_1$$
$$x_j \leq 0; \quad j \in N_2$$
$$x_j \leq 0; \quad j \in N_3$$

$$\textbf{Dual} \quad \max \; p'b$$
$$p_i \geq 0; \quad i \in M_1$$
$$p_i \leq 0; \quad i \in M_2$$
$$p_i \leq 0; \quad i \in M_3$$

$$\text{p}'A_j \leq c_j; \quad j \in N_1$$
$$\text{p}'A_j \geq c_j; \quad j \in N_2$$
$$\text{p}'A_j = c_j; \quad j \in N_3$$

<table>
<thead>
<tr>
<th>Primal</th>
<th>min</th>
<th>max</th>
<th>dual</th>
</tr>
</thead>
<tbody>
<tr>
<td>constraints</td>
<td>$\geq b_i$</td>
<td>≥ 0</td>
<td>variables</td>
</tr>
<tr>
<td></td>
<td>$\leq b_i$</td>
<td>≤ 0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$= b_i$</td>
<td>$= 0$</td>
<td></td>
</tr>
<tr>
<td>variables</td>
<td>≥ 0</td>
<td>$\leq c_j$</td>
<td>constraints</td>
</tr>
<tr>
<td></td>
<td>≤ 0</td>
<td>$\geq c_j$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>≤ 0</td>
<td>$= c_j$</td>
<td></td>
</tr>
</tbody>
</table>
Properties

Theorem
The dual of the dual is the primal.

Theorem
(Weak Duality) If \(x \) is primal feasible and \(p \) is dual feasible then \(p'b \leq c'x \).

Corollary
If \(x \) is primal feasible, \(p \) is dual feasible, and \(p'b = c'x \), then \(x \) is optimal in the primal and \(p \) is optimal in the dual.

Theorem
(Strong Duality) If LP has optimal solution, then so does the dual, and the optimal costs are equal.

Relations between primal and dual

<table>
<thead>
<tr>
<th>Finite opt.</th>
<th>Unbounded</th>
<th>Infeasible</th>
</tr>
</thead>
<tbody>
<tr>
<td>Finite opt.</td>
<td>✓</td>
<td>x</td>
</tr>
<tr>
<td>Unbounded</td>
<td>x</td>
<td>✓</td>
</tr>
<tr>
<td>Infeasible</td>
<td>x</td>
<td>✓</td>
</tr>
</tbody>
</table>