Lecture 10: Outline

- Farkas’ lemma.
- Application: Asset Pricing in an arbitrage-free environment.
- Cones and extreme rays.
- Unboundness conditions.
- Resolution Theorem.
Farkas’ lemma

Theorem

(Farkas’ lemma) Exactly one of the following two alternatives hold:

- \(\exists x \geq 0 \text{ s.t. } Ax = b \).
- \(\exists p \text{ s.t. } p'A \geq 0' \text{ and } p'b < 0 \).

Corollary

Assume that any \(p \) satisfying \(p'A_i \geq 0 \), also satisfies \(p'b \geq 0 \). Then \(b \) can be written as a nonnegative lin. combination of \(A_1, \ldots, A_n \).

Theorem

Suppose \(Ax \leq b \) has at least one feasible solution. Let \(d \) scalar. Then the following are equivalent:

- \(\forall \text{ feasible sols. of } Ax \leq b \text{ we have } c'x \leq d \).
- \(\exists p \geq 0 \text{ s.t. } p'A = c' \text{ and } p'b \leq d \).

Cones

Definition

A set \(C \subset \mathbb{R}^n \) is a **cone** if \(\lambda x \in C \forall \lambda \geq 0 \text{ and } \forall x \in C \).

Definition

Polyhedral cone: \(\{x \in \mathbb{R}^n \mid Ax \geq 0\} \). If \(0 \) is an extreme point we have a **pointed polyhedral cone**.

Theorem

Let polyhedral cone \(C \subset \mathbb{R}^n \) s.t. \(C = \{x \mid a'_i x \geq 0\} \). Then the following are equivalent:

- \(0 \) is an extreme point of \(C \).
- \(C \) does not contain a line.
- \(\exists n \text{ lin. ind. vectors in } a'_1, \ldots, a'_m \).
Recession cones and extreme rays

Let nonempty polyhedron \(P = \{ x \mid Ax \geq b \} \).

Definition

Recession cone at \(y \in P \):

\[
\{ d \mid A(y + \lambda d) \geq b \ \forall \lambda \geq 0 \} \Rightarrow \{ d \mid Ad \geq 0 \}
\]

\(d \) in recession cone are called **rays** of polyhedron.

Extreme rays of polyhedral cone \(C \): \(x \in C \) s.t. \(n - 1 \) lin. ind. constraints are active at \(x \).

Extreme rays of recession cone of \(P \) are called **extreme rays of** \(P \).

Unboundness Conditions

Theorem

Consider \(\min c'x \) over pointed \(C = \{ x \mid a_i'x \geq 0 \} \). Cost = \(-\infty \) iff \(\exists \) extreme ray \(d \) with \(c'd < 0 \).

Theorem

Consider \(\min c'x \) over \(Ax \geq b \). Assume at least one extreme point exists. Cost = \(-\infty \) iff \(\exists \) extreme ray \(d \) with \(c'd < 0 \).
Resolution Theorem

Theorem

Let \(P = \{ x \in \mathbb{R}^n \mid Ax \geq b \} \neq \emptyset \) with at least one extreme point. Let \(x^1, \ldots, x^k \) be the extreme points and \(w^1, \ldots, w^r \) a complete set of rays. Then

\[
Q \triangleq \left\{ \sum_{i=1}^{k} \lambda_i x^i + \sum_{j=1}^{r} \theta_j w^j \mid \lambda_i \geq 0, \theta_j \geq 0, \sum_{i=1}^{k} \lambda_i = 1 \right\} = P
\]

Converse is also true: Every set of the form of \(Q \) (finitely generated) is a polyhedron.