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Abstract— We consider a communication network with
fixed routing that can accommodate multiple service classes,
differing in bandwidth requirements, demand pattern, call
duration, and routing. The network charges a fee per call
which can depend on the current congestion level, and which
affects user’s demand. Building on the single-node results of
Paschalidis and Tsitsiklis, 2000, we consider both problems
of revenue and welfare maximization and show that static
pricing is asymptotically optimal in a regime of many, rel-
atively small, users. In particular, the performance of an
optimal (dynamic) pricing strategy is closely matched by a
suitably chosen class-dependent static price, which does not
depend on instantaneous congestion. This result holds even
when we incorporate demand substitution effects into the
demand model. More specifically, we model the situation
where price increases for a class of service might lead users
to use another class as an imperfect substitute. For both
revenue and welfare maximization objectives we character-
ize the structure of the asymptotically optimal static prices,
expressing them as a function of a parsimonious number
of parameters. We employ a simulation-based approach to
tune those parameters and to efficiently compute an effec-
tive policy away from the limiting regime. Our approach
can handle large, realistic, instances of the problem.

Keywords— pricing, Internet economics, loss networks,
revenue management, welfare maximization, Markov deci-
sion processes.

I. Introduction

New application requirements and developments in In-
ternet protocols are leading the way towards an “enhanced”
next-generation Internet. This new medium will surpass
the current “best effort only” capability and evolve into
a multiservice network able to accommodate differentiated
classes of service to support various types of applications
and business requirements. In this new environment pric-
ing of network services is becoming increasingly important:
(i) it allows providers to recover their operating expenses
and fund future capacity expansions, (ii) it can lead to
more efficient use of the network resources by providing
sufficient incentives to users, and (iii) enables the creation
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of a healthy market environment, where new network ser-
vices can be (profitably) introduced and sustained.

In this paper, we consider a communication network with
fixed routing that accommodates multiple service classes,
differing in bandwidth requirements, demand pattern, call
duration, and routing. Links in the network have given
finite capacities and the total resource requirement of all
calls using a link cannot exceed the link’s capacity. The
network charges a fee per call which can depend on the
current congestion level, and which affects user’s demand
for calls. We propose pricing strategies that aim at two
distinct objectives: either maximizing the revenue of the
network operator or maximizing the social welfare of users.

Pricing in communication networks has received a lot of
attention in the literature. MacKie-Mason and Varian [1]
proposed a “smart market” where individual packets bid
for transport while the network only serves packets with
bids above a certain (congestion-dependent) cutoff amount.
Kelly et al. [2], [3] consider charges that increase with either
realized flow rate or with the “share” of the network con-
sumed by a traffic stream. Several researchers have looked
at packet-based pricing schemes as an incentive for more ef-
ficient flow control (see e.g., Gibbens and Kelly [4], La and
Anantharam [5], Kunniyur and Srikant [6]). Equilibrium
properties of bandwidth and buffer allocation schemes are
analyzed by Low [7].

The network model we consider in this paper is more
appropriate for real-time traffic that requires strict Quality
of Service (QoS) guarantees. Such guarantees can often
be translated into a preset resource amount that has to
be allocated to a call at all links in its route through the
network. If the resource is bandwidth this resource amount
can be some sort of an effective bandwidth (see e.g., Kelly [8]
for a survey of effective bandwidth characterizations and
Paschalidis [9] for similar notions in the multiclass case). In
this setting, Kelly [10] and Courcoubetis et al. [11] propose
the pricing of real-time traffic with QoS requirements, in
terms of its effective bandwidth.

The revenue maximization perspective we take is influ-
enced by similar work in the revenue management of airline
reservations (see, e.g., Gallego and van Ryzin [12]). Tech-
nically, the problem we consider is different; it considers a
long-term average vs. a finite horizon setup.

Our work is closer to Paschalidis and Tsitsiklis [13] that
considered pricing of multiple services sharing a single re-
source. In fact, we generalize the main result of [13] in



2 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 10, NO. 3, JUNE 2002

several directions:

• A Network Setting. The network model we consider is
what Kelly [14] calls a loss network with fixed routing
(see also Ross [15]). We show that in a limiting regime
of “many small users,” laws of large numbers take effect
and a simple static pricing scheme is asymptotically opti-
mal. That is, under stationarity assumptions, prices can
be class-dependent but remain fixed; it is not necessary to
employ a dynamic scheme according to which prices de-
pend on the congestion level. If demand is nonstationary
and characterized by time-of-day effects, which is widely
agreed to be the case, the proposed pricing scheme leads
to time-of-day pricing. The “many small users” regime we
consider is appropriate for large networks such as the In-
ternet where (backbone) capacities are large and individual
sessions occupy a small fraction of those capacities.
• Rate of convergence. We characterize the rate at which a
static pricing policy converges to the optimal in the regime
of many small users. This allows us to obtain bounds on
the suboptimality gap of static pricing away from the lim-
iting regime. We provide examples where such bounds are
useful in quickly assessing efficiency gains achieved by ap-
propriately scaling the system.
• Demand substitution effects. We extend the basic de-
mand model of [13] to cover the case where users might de-
cide to use another class as an imperfect substitute, when
they perceive their desired class to be expensive. For this
model as well, we show that static pricing is asymptotically
optimal in the regime of many small users. To that end, we
rely on asymptotic results for blocking probabilities from
[14]. Our modeling of demand substitution effects is in
fact similar to the single-link model of Courcoubetis and
Reiman [16]; our work can be seen as a generalizing theirs
in a network setting.

A static pricing scheme, such as the one we propose,
has obvious implementation advantages: charges are pre-
dictable by users, evolve in a slower time-scale than con-
gestion phenomena, and no elaborate real-time mechanism
is needed to communicate prices to the users. Moreover, as
we will see, prices can be computed in large scale systems,
which is not the case with the optimal dynamic pricing
scheme. To that end, from our asymptotic optimality re-
sults we first identify an insightful, asymptotically optimal,
structure of static prices under both revenue and welfare
maximization objectives. According to this structure prices
depend on a parsimonious number of parameters. We then
employ a simulation-based optimization technique to tune
those parameters. We report results from a number of nu-
merical experiments, including, a large scale one, indicating
that this approach yields near-optimal policies.
The network model we propose is general enough to ac-

commodate several situations of practical interest. It can
be seen as modeling the pricing of bandwidth by a network
provider who offers a menu of services to users. Users can in
fact also be smaller “retail” providers, in which case calls
can be seen as virtual circuits leased from the backbone
provider. The model can also be seen as pricing the use of
Web or other servers by an application service provider: a
“call” is associated with a transaction that requires coop-

eration from a series of servers, thus, it ties up a fraction
of their capacities until it is completed.
The remainder of this paper is organized as follows. In

Section II we introduce the basic model and formulate both
problems of revenue and welfare maximization. We con-
sider the optimal dynamic policy and some of its proper-
ties in Section III. A static pricing policy is introduced in
Section IV. In Section VI we prove the asymptotic opti-
mality of static prices in the regime of many small users.
The proof is based on an upper bound on optimal perfor-
mance we develop in Section V and allows us to obtain
performance guarantees on the suboptimality gap of static
pricing policies. Section VII contains the treatment of a
more general demand model that incorporates demand sub-
stitution effects. Section VIII discusses the computation of
static policies in large scale networks. Numerical results are
presented in Section IX and conclusions are in Section X.

II. The Network Model

In this section we will introduce the model of the mul-
tiservice network we wish to study. We consider a net-
work with L links. The capacity of each link j is Cj
units of bandwidth for j = 1, . . . , L. We will write C =
(C1, . . . , CL). On a notational remark, we will be denoting
all vectors using boldface and assume that they are column
vectors unless otherwise explicitly specified. For economy
of space, we will be writing x = (x1, . . . , xm) to identify
the elements of a vector x ∈ Rm. The network provides
M classes of service. Each service class is distinguished
by its demand pattern, bandwidth requirement, call du-
ration, and routing through the network. Classes have a
fixed route through the network. In particular, class i re-
quires rji units of bandwidth from link j, for i = 1, . . . ,M
and j = 1, . . . , L. The routing matrix will be denoted by
R = {rji}, i.e., an L ×M matrix with the (j, i) element
being equal to rji. The route of class i is characterized
by the sequence of links ji1 , ji2 , . . . , jil it traverses; we will
denote it by

Ri =
{

(ji1 , ji2 , . . . , jil) | 1 ≤ ji1 , . . . , jil ≤ L,

rjik > 0, k = 1, . . . , l
}

, i = 1, . . . ,M.

We will write j ∈ Ri if link j is any link in the sequence
(ji1 , ji2 , . . . , jil). To exclude trivial cases, we will be as-
suming that Ri 6= ∅ for each class i. For all other links j
that are not in route Ri it is understood that rji = 0.
We assume that calls of class i = 1, . . . ,M arrive ac-

cording to a Poisson process and stay in the system for a
time interval which is exponentially distributed with rate
µi. Let µ = (µ1, . . . , µM ). The network charges a fee ui
per call of class i, which can depend on the current con-
gestion level and which affects user’s demand for calls. We
will assume that the arrival rate of class i calls is a known
function of ui, which will be referred to as demand func-
tion and denoted by λi(ui). We will write u = (u1, . . . , uM )
and λ(u) = (λ1(u1), . . . , λM (uM )). We will be making the
following assumption for demand functions.
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Assumption A
For every i = 1, . . . ,M , λi(ui) ≥ 0, and there exists a price

ui,max beyond which λi(ui) becomes zero. Furthermore,

the function λi(ui) is continuous and strictly decreasing in

the range ui ∈ [0, ui,max].

Hence, the demand is at its peak when prices are zero. We
will use λ0 = (λ0,1, . . . , λ0,M ) , λ(0) to denote the peak
demand vector, where 0 is the vector of all zeroes.

Let ni(t) be the number of class i calls that are in
progress at time t. We will make the convention that
ni(t) is a right-continuous function of time. We will de-
note by n(t) = (n1(t), . . . , nM (t)) the state of the system
at time t. An incoming class i call is accepted if all the links
along its route have enough available bandwidth, that is, if
R(n(t) + ei) ≤ C, where ei is the ith unit vector, namely,
a vector with all its components zero except the ith com-
ponent which is equal to one. If this latter condition is
violated, an incoming call is rejected and lost for the sys-
tem. Let S = {n | Rn ≤ C} denote the state space for the
system, i.e., the set of states at which capacity constraints
are satisfied.

A pricing policy is a rule that determines the pricing
vector u(t) = (u1(t), . . . , uM (t)) at any time t as a function
of the state n(t). Under the assumptions put in place, for
any given pricing policy the system evolves as a continuous-
time Markov chain with state n(t) ∈ S. As in [13] we
are interested in pricing policies for two distinct objectives:
revenue maximization and social welfare maximization.

A. The Revenue Maximization Problem

Let us fix a pricing policy u(t). Assuming that there
is enough bandwidth to accept a class i call, the in-
stantaneous expected revenue rate from those calls is
λi(ui(t))ui(t), since class i arrivals are Poisson with rate
λi(ui(t)). If there is not sufficient bandwidth to accept class
i calls we can, without loss of generality, set ui(t) = ui,max

and bring the instantaneous expected revenue rate to zero.
Thus, the total expected long-term average revenue is

J = lim
T→∞

1

T

M
∑

i=1

E

[

∫ T

0

λi(ui(t))ui(t)dt

]

= lim
T→∞

1

T
E

[

∫ T

0

λ(u(t))′u(t)dt

]

. (1)

B. The Welfare Maximization Problem

To formulate the welfare maximization problem, we will
interpret the demand model as follows. Potential calls of
class i are generated according to a Poisson process with
constant rate λ0,i, which is the peak arrival rate of class
i introduced earlier. A potential class i call, if it goes
through, results in a user utility of Ui, where Ui is a non-
negative random variable taking values in [0, ui,max]. Let
fi(ui) be the continuous probability density function of Ui.
We assume that a potential class i call decides to join the
system if and only if the utility it will extract, Ui, exceeds
the prevailing price ui. This implies that class i calls are

realized according to a randomly modulated Poisson pro-
cess with rate λi(ui(t)) = λ0,iP[Ui ≥ ui(t)]. Furthermore,
the expected utility, conditioned on the fact that a call has
been established, is equal to E[Ui | Ui ≥ ui] under a cur-
rent price of ui. Hence, the expected long-term average
rate at which utility is generated is given by

lim
T→∞

1

T

M
∑

i=1

E

[

∫ T

0

λi(ui(t))E[Ui | Ui ≥ ui(t)]dt

]

. (2)

This is an objective of exactly the same form as in the
case of revenue maximization, except that the instan-
taneous revenue rate λi(ui)ui of class i is replaced by
λi(ui)E[Ui | Ui ≥ ui(t)]. Thus, the two problems can be
treated using the same set of tools. According to the utility
assumptions put in place we have:

λi(ui) = λ0,i

∫ ui,max

ui

fi(v)dv, (3)

and

λi(ui)E[Ui | Ui ≥ ui] = λ0,i

∫ ui,max

ui

vfi(v)dv. (4)

III. Optimal Dynamic Policy

We will start the analysis by considering optimal (dy-
namic) pricing policies. Under both objectives of revenue
and welfare maximization the problem can be formulated
using stochastic dynamic programming (DP). We first con-
sider revenue maximization.

The state of the system n(t) evolves as a continuous-time
Markov chain and its total transition rate out of any state
is bounded by

ν =

M
∑

i=1

(

λ0,i + µimax
j∈Ri

⌈

Cj
rji

⌉)

.

The Markov chain can be uniformized, leading to a Bellman
equation of the form

J∗ + h(n) = max
u∈U

[

∑

i/∈C(n)

λi(ui)ui

+
∑

i/∈C(n)

λi(ui)

ν
h(n+ ei) +

M
∑

i=1

niµi
ν

h(n− ei)

+

(

1−
∑

i/∈C(n)

λi(ui)

ν
−

M
∑

i=1

niµi
ν

)

h(n)

]

, (5)

where U = {u | 0 ≤ ui ≤ ui,max,∀i} is the set of possible
price vectors and C(n) = {i | R(n + ei) £ C} is the set
of classes whose calls cannot be admitted in state n. Here,
J∗ and h(n) denote the optimal expected revenue rate and
the so called relative reward in state n (see Bertsekas [17]).
This DP formulation is in fact almost identical to the one in
[13], the only difference being the definition of C(n) which
has been extended to the network setting. It has been ar-
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gued there that the standard infinite-horizon average-cost
dynamic programming theory applies (see [17]), thus, there
exists a stationary policy which is optimal. We will use
u∗(n) to denote an optimal policy to explicitly indicate its
dependence on the state of the system. Such a policy can
be found by solving Bellman’s equation using standard DP
algorithms. However, Bellman’s “curse of dimensionality”
prohibits us from solving realistic instances of the prob-
lem. Consequently, we are interested in exploring simpler,
yet not too far from the optimal, alternatives. Before we
proceed with this agenda we state some properties of the
optimal policy. These properties are simple extensions of
the results in [13] for the single-link system, thus, we omit
the proofs.

Theorem 1 1. (Monotonicity of h(n)) For all i and all
n such that R(n+ei) ≤ C, we have h(n) ≥ h(n+ei), where
ei denotes the ith unit vector.
2. (The infinite bandwidth case) If there are no capac-
ity constraints on all links in the network (i.e., Cj = ∞,
∀j), the optimal revenue is given by

J∞ = max
u∈U

M
∑

i=1

λi(ui)ui,

and the optimal price vector is some constant u∞ that does
not depend on the state n. Furthermore, we have J∗ ≤ J∞.
3. There exists an optimal policy u∗ such that for every
state n, we have u∗(n) ≥ u∞.

The case of welfare maximization, can be treated simi-
larly. Bellman’s equation remains the same, except that the
reward rate λ(u)′u is replaced by

∑

i λi(ui)E[Ui | Ui ≥ ui].
As in Theorem 1 (1), the relative rewards h(n) are again
monotonically non-increasing in n. If the bandwidth is infi-
nite, welfare is maximized by admitting every user, and the
optimal price u∞ is equal to zero. For a finite capacity net-
work, the optimal prices are non-negative, which provides
a trivial extension of Theorem 1 (3).

IV. A Static Pricing Policy

Possibly the simplest pricing policy is a static policy, de-
fined as the policy under which prices are fixed to some
vector u independent of the state of the system. Accord-
ing to this policy the system evolves as a continuous-time
Markov chain which has a unique stationary distribution.
In particular, the steady-state distribution has a product
form and under a static pricing policy u is given by (see
Kelly [14] and Ross [15])

πn(u) = P[n(t) = n | u(t) = u]

=
1

G(u)

M
∏

i=1

(ρi(ui))
ni

ni!
, n ∈ S, (6)

where G(u) is a normalizing constant given by

G(u) =
∑

n∈S

M
∏

i=1

(ρi(ui))
ni

ni!
,

and ρi(ui) = λi(ui)/µi is the load offered by class i.

According to the static pricing policy the prices stay
fixed which results in a constant arrival rate λ(u) inde-
pendent of the state of the system. As a result we can
not eliminate demand by raising prices when available re-
sources are not sufficient to accept a call. Thus, deviating
from our earlier convention, we will be blocking calls that
arrive to find no sufficient resources. Consequently, the
blocking probability has to be taken into account when cal-
culating revenue. The blocking probability of class i calls
under the static policy u is given by

Pi
loss(u) =

∑

{n | R(n+ei)­C}

πn(u). (7)

The optimal revenue by a static policy is given by

Js = max
u∈U

J(u) = max
u∈U

M
∑

i=1

λi(ui)ui
(

1−Pi
loss(u)

)

, (8)

and it can be no better than the optimal (dynamic) rev-
enue, i.e., Js ≤ J∗.

The calculation of the optimal static revenue Js and the
corresponding optimal static policy us suffers from a sim-
ilar “curse of dimensionality” as in the case of dynamic
policies. In particular, to calculate the blocking probability
one needs to compute the steady-state probabilities πn(u)
which depend on the normalizing constant G. Computing
this constant for networks with arbitrary topologies is an
NP-complete problem (see Louth [18]). Efficient schemes
exist for special topologies and the so call reduced load ap-
proximation can be used to approximate the blocking prob-
abilities in arbitrary networks [15]. Numerical difficulties,
though, exist for the reduced load approximation in large
systems. To overcome high dimensionality problems we
are interested in scalable and efficient ways of computing
“good” static policies.

For the case of welfare maximization, the same discussion
applies, with λi(ui)ui replaced by λi(ui)E[Ui | Ui ≥ ui].

V. An Upper Bound on the Optimal Performance

We will next develop an upper bound on the optimal
revenue J∗. Such a bound is useful because it can help
us bound the suboptimality gap of suboptimal policies we
consider in this paper. It will also be instrumental in es-
tablishing our asymptotic optimality results.

Let us denote by ui(λi) the inverse of the demand func-
tion λi(ui), which exists due to Assumption A. Let us
also define Fi(λi) , λiui(λi) and Fi(λi) , λiE[Ui | Ui ≥
ui(λi)], i = 1, . . . ,M , for the case of revenue and welfare
maximization, respectively. We assume that the functions
Fi are concave. This is true, for example, when the demand
function λi(ui) is linear. The following theorem provides
an upper bound on J∗.

Theorem 2 Consider the following nonlinear optimiza-
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tion problem

maximize
M
∑

i=1

Fi(λi)

subject to λi = niµi, i = 1, . . . ,M, (9)
∑

i

nirji ≤ Cj , j = 1, . . . , L,

and let Jub denote the optimal objective value. If Fi(λi) is
a concave function for all i = 1, . . . ,M , then J∗ ≤ Jub.

Proof: Consider an optimal dynamic pricing policy
u∗. Without loss of generality, we assume that the price
u∗i becomes large enough (e.g., ui,max) and the arrival rate
λi(u

∗
i ) is equal to zero, whenever the state n is such that

a class i call cannot be admitted. In the system operat-
ing under the optimal policy, we can view the arrival rate,
λi, and the number of class i customers in the system, ni,
as random variables. Let E[·] denote the expectation with
respect to the steady-state distribution under this partic-
ular policy u∗. At any time, we have

∑

i nirji ≤ Cj , ∀j,
which implies that

∑

iE[ni]rji ≤ Cj , ∀j. Furthermore,
Little’s law implies E[λi] = µiE[ni]. Thus, E[ni], E[λi],
i = 1, . . . ,M , form a feasible solution of the problem in
(9). Using the concavity of Fi and Jensen’s inequality, we
have

Jub ≥
M
∑

i=1

Fi(E[λi]) ≥
M
∑

i=1

E[Fi(λi)] = J∗,

where the last equality used the optimality of the policy
under consideration.

VI. Asymptotic Optimality of Static Pricing

We will now proceed with establishing our main results
for the model considered in Section II, namely, the asymp-
totic optimality of static pricing and the derivation of guar-
antees on the suboptimality gap away from the limiting
regime.
The limiting regime we will consider is one of “many

small users,” in the sense that link capacities become large
compared to the bandwidth of a typical call. More specifi-
cally, we start with a base system with finite demand func-
tion λ(u) and finite capacityC and then scale by increasing
both demand and capacity by a scaling factor c ≥ 1. We
will use a superscript c to denote various quantities in the
scaled system. In particular, in the scaled system the ca-
pacity is Cc = c(C1, . . . , CL) and the demand function is
given by λc(u) = c(λ1(u1), . . . , λM (uM )). Note that in the
revenue maximization problem we simply scale the given
demand function. In the welfare maximization problem it
suffices to scale the peak demand rate as λc0 = cλ0 and
keep unaltered the behaviour of the users summarized in
the utility density function fi(ui) (see Section II-B). This
results in a demand function λci (ui) = cλ0,iP[Ui ≥ ui]. The
remaining system parameters µ and R are held fixed. The
base system corresponds to the case c = 1.
In the scaled system the upper bound, J cub, is obtained by

maximizing
∑

i cλi(ui)ui in the revenue maximization case
and

∑

i cλi(ui)E[Ui | Ui ≥ ui] in the welfare maximiza-
tion case. The constraints in the upper bound calculation
become

∑

i

cλi(ui)rji
µi

≤ cCj , ∀j, (10)

which are identical to the constraints for the base system
(cf. (9)). Hence, there exists an optimal solution u∗ub =
(u∗ub,1, . . . , u

∗
ub,M ), which is independent of c, and it holds

that Jcub = cJ1
ub. In proving our asymptotic optimality

result we will first consider the blocking probabilities in
the scaled system. We will use the convention that for any
static policy u for which λi(ui) = 0, Pi

loss(u) = 0. We
will denote by O the set of classes with nonzero demand
at u∗ub, i.e., O = {i ∈ {1, . . . ,M} | λi(u

∗
ub,i) > 0}. We will

also denote by Oj , j = 1, . . . , L, the set of classes i ∈ O
that use link j, i.e., Oj = {i ∈ O | rji > 0}. We will assume
that O 6= ∅; otherwise Jub = 0 which can only happen in
the trivial cases that C = 0 or λ(ui) = 0 for all ui and i.
Recall also that we have assumed Rk 6= ∅; otherwise class
k can be eliminated from the system. All classes i /∈ O
are shut out of the system under u∗ub, do not contribute
to the revenue or the social welfare, and according to our
convention have zero blocking probability.

Proposition 1 Consider either the revenue maximiza-
tion problem or the welfare maximization problem and let
u∗ub be the optimal solution to the upper bound problem
in the scaled system with parameter c. For any ε =
(ε1, . . . , εM ) > 0, consider the static policy uε given by

uε
i = u∗ub,i + εi, i = 1, . . . ,M . Let Pk,c

loss(u
ε) be the block-

ing probability of class k calls in the scaled system, under
policy uε. For every class k ∈ O and all c, we have

Pk,c
loss(u

ε) ≤
∑

j∈Rk

exp

{

inf
θ≥0

ξε
jk(c, θ)

}

, (11)

where
ξε
jk(c, θ) , c

∑

i∈Oj

Λε
ji(θ) + θrjk, (12)

and

Λε
ji(θ) ,

λi(u
ε
i )(e

θrji − 1)− θrjiλi(u
∗
ub,i)

µi
. (13)

Furthermore, for all k ∈ O and j ∈ Rk, infθ≥0 ξ
ε
jk(c, θ)→

−∞ as c→∞ and

lim
c→∞

Pk,c
loss(u

ε) = 0. (14)

Proof: Since ε > 0 and due to Assumption A,
λci (u

ε
i ) = 0 for all i /∈ O and all c. Thus, no customer ex-

ists in the system from those classes i /∈ O and according
to our convention the corresponding blocking probabilities
are zero. We will next concentrate on classes i ∈ O.
Let nci (respectively n

c
i,∞) be the random variable which

is equal to the number of active class i calls, in steady-state,
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in the scaled system, under prices uε and with capacity cC
(respectively, with infinite capacity). By defining the ar-
rival processes in these two systems on a common probabil-
ity space we can see that for all sample paths nci is smaller
than nci,∞. Using this fact, for any class k ∈ O we have

Pk,c
loss(u

ε) = P





⋃

j∈Rk

∑

i∈Oj

rjin
c
i > cCj − rjk



 (15)

≤ P





⋃

j∈Rk

∑

i∈Oj

rjin
c
i,∞ > cCj − rjk



 .

In the above, note that since k ∈ O and Rk 6= ∅, there
exists at least one j ∈ Rk and Oj contains at least class
k. Using the fact that u∗ub satisfies the constraint (10), we
obtain

P





⋃

j∈Rk

∑

i∈Oj

rjin
c
i,∞ > cCj − rjk



 (16)

≤ P





⋃

j∈Rk

∑

i∈Oj

rjin
c
i,∞ >

∑

i∈Oj

cλi(u
∗
ub,i)rji

µi
− rjk





≤
∑

j∈Rk

P





∑

i∈Oj

rjin
c
i,∞ >

∑

i∈Oj

cλi(u
∗
ub,i)rji

µi
− rjk



 ,

where the last inequality is due to the union bound.

Note next that the random variable nci,∞ is equal to the
number of customers in anM/M/∞ queue with arrival rate
cλi(u

ε
i ) and service rate µi for each server. Its moment-

generating function is

E[eθn
c
i,∞ ] = e

cλi(u
ε
i )

µi
(eθ−1),

and by independence we obtain

E
[

e
∑

i∈Oj
θrjin

c
i,∞

]

= exp







c
∑

i∈Oj

λi(u
ε
i )

µi

(

eθrji − 1
)







.

Using the Markov inequality and the above, for any j ∈ Rk

and θ ≥ 0, we obtain

P





∑

i∈Oj

rjin
c
i,∞ > c

∑

i∈Oj

λi(u
∗
ub,i)rji

µi
− rjk





≤ E
[

e
∑

i∈Oj
θrjin

c
i,∞

]

exp







−θc
∑

i∈Oj

λi(u
∗
ub,i)rji

µi
+ θrjk







= exp







c
∑

i∈Oj

Λε
ji(θ) + θrjk







= exp
{

ξε
jk(c, θ)

}

, (17)

where Λε
ji(θ) and ξε

jk(c, θ) were defined in (13) and (12),

respectively. Optimizing the right hand side of (17) over
all θ ≥ 0 to obtain the tightest bound yields

P





∑

i∈Oj

rjin
c
i,∞ > c

∑

i∈Oj

λi(u
∗
ub,i)rji

µi
− rjk





≤ exp

{

inf
θ≥0

ξε
jk(c, θ)

}

. (18)

Combining (18) with (15) and (16) yields

Pk,c
loss(u

ε) ≤
∑

j∈Rk

exp

{

inf
θ≥0

ξε
jk(c, θ)

}

,

which establishes the bound in (11).
Let us now consider what happens as c→∞. For large

c, ξε
jk(c, θ) will be dominated by c

∑

i∈Oj
Λε
ji(θ). At θ = 0,

∑

i∈Oj

Λε
ji(0) = 0,

∑

i∈Oj

∂Λε
ji(θ)

∂θ

∣

∣

∣

∣

θ=0

=
∑

i∈Oj

rji(λi(u
ε
i )− λi(u

∗
ub,i))

µi
.

From Assumption A, for every i ∈ O and any ε > 0 we have
λi(u

ε
i ) < λi(u

∗
ub,i). Furthermore, for every i ∈ Oj , rji > 0.

Therefore,
∑

i∈Oj
Λε
ji(θ) achieves its minimum over θ ≥ 0

at some θ∗j (ε) > 0 at which it holds
∑

i∈Oj
Λε
ji(θ

∗
j (ε)) < 0.

Note also that for all j ∈ Rk

inf
θ≥0

ξε
jk(c, θ) ≤



c
∑

i∈Oj

Λε
ji(θ

∗
j (ε)) + θ∗j (ε)rjk



 ,

and for large enough c the right hand side of the above is
O(c

∑

i∈Oj
Λε
ji(θ

∗
j (ε))) which converges to −∞ as c → ∞.

This establishes (14).

Remarks :

1. It should be noted that for small values of c the bound
in (11) could be trivial, meaning that the right hand side
might be larger than one.
2. As c → ∞, however, the bound in (11) converges to
zero exponentially fast like exp{c

∑

i∈Oj
Λε
ji(θ

∗
j (ε))}, where

θ∗j (ε) = arg infθ≥0

∑

i∈Oj
Λε
ji(θ) and

∑

i∈Oj
Λε
ji(θ

∗
j (ε)) <

0.

We are now ready to state our asymptotic optimality
result. We have seen that Jcub is linear in c. The optimal
performance J∗,c and the optimal performance J cs achieved
by a static policy are also roughly linear in c. Thus, we
will divide such quantities by c to make comparisons. The
following theorem summarizes the result.

Theorem 3 Consider either the revenue or the welfare
maximization problem and assume that the functions Fi(λi)
are concave. Then,

lim
c→∞

1

c
Jcs = lim

c→∞

1

c
J∗,c = lim

c→∞

1

c
Jcub.
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Proof: To simplify the exposition we will provide the
proof for the revenue maximization case; welfare maximiza-
tion can be treated similarly. For some ε > 0, let ε = εe,
where e is the vector of all ones, and consider the static
pricing policy uε = u∗ub + ε. Let J

c(uε) be the resulting
average revenue, which is no more than the optimal static
revenue Jcs . Thus,

lim
c→∞

1

c
Jcs ≥ lim

c→∞

1

c
Jc(uε) =

lim
c→∞

M
∑

i=1

λi(u
ε
i )u

ε
i (1−Pi,c

loss(u
ε)) =

M
∑

i=1

λi(u
ε
i )u

ε
i .

In the last equality above we used Proposition 1 for all
classes i ∈ O, and the fact that for all ε > 0 demand is
zero at uε for all classes i /∈ O. Since the above inequality
holds for any ε > 0, we take ε→ 0, which implies uε → u∗ub

and, by the continuity of the demand functions,

lim
c→∞

1

c
Jcs ≥

M
∑

i=1

λi(u
∗
ub,i)u

∗
ub,i = J1

ub.

On the other hand, due to the suboptimality of the static
policy and Theorem 2, Jcs ≤ J∗,c ≤ Jcub = cJ1

ub, and the
result follows.

Theorem 3 establishes that in the limit c→∞ the upper
bound of Theorem 2 is tight and the optimal solution of the
upper bound problem, which is a static policy, is asymptot-
ically optimal. Furthermore, Proposition 1 can be seen as
characterizing the rate of convergence. This characteriza-
tion allows us to determine how we should scale any given
system to provide guarantees on the suboptimality gap of
appropriately chosen static pricing policies. The following
proposition describes the result. We state the result for the
revenue maximization problem. It can be easily generalized
to the welfare maximization problem as well.

Proposition 2 Consider the revenue maximization prob-
lem and assume that the functions Fi(λi) are concave. Let
u∗ub be the optimal solution to the upper bound problem of
Theorem 2. For any ε = (ε1, . . . , εM ) > 0, consider the
static policy uε = u∗ub+ ε, and let Jc(uε) its performance.
For any given δ > 0, let (c∗, ε∗) be an optimal solution of
the following optimization problem

min c (19)

s.t.

M
∑

i=1

λi(u
ε
i )u

ε
i



1−
∑

j∈Ri

exp

{

inf
θ≥0

ξε
ji(c, θ)

}





≥

∑M
i=1 λi(u

∗
ub,i)u

∗
ub,i

(1 + δ)

ε ≥ 0,

where ξε
ji(c, θ) is defined in (12). Then, the performance of

the static policy uε∗ in the c∗-scaled system satisfies

J∗,c
∗

− Jc
∗

(uε∗)

Jc∗(uε∗)
≤ δ. (20)

Proof: Fix some ε = (ε1, . . . , εM ) > 0 and consider
the static pricing policy uε resulting in average revenue
equal to Jc(uε). Due to the suboptimality of the static
policy, Theorem 2, and Proposition 1, J c(uε) satisfies

M
∑

i=1

λi(u
∗
ub,i)u

∗
ub,i = J1

ub =
1

c
Jcub ≥

1

c
Jc(uε) =

M
∑

i=1

λi(u
ε
i )u

ε
i (1−Pi,c

loss(u
ε)) ≥

M
∑

i=1

λi(u
ε
i )u

ε
i



1−
∑

j∈Ri

exp

{

inf
θ≥0

ξε
ji(c, θ)

}



 . (21)

Using the same argument as in the proof of Theorem 3, we
can first take c → ∞ in the above and bring the blocking
probabilities to zero. If we then take ε → 0 we conclude
that the right hand side of (21) converges to its left hand
side and the inequality is satisfied with equality. Thus, for
any δ > 0, we can find a scaling factor c and a static policy

uε, such that
Jcub−J

c(uε)
Jc(uε) ≤ δ, by solving the optimization

problem in (19). More specifically, if (c∗, ε∗) is an optimal
solution of (19) we have

Jc
∗

ub − Jc
∗

(uε∗)

Jc∗(uε∗)
≤ δ,

and the desired result follows since J c
∗

ub ≥ J∗,c
∗

.

A. Structure of the Asymptotically Optimal Static Pricing
Policy

As we have seen the optimal solution of the upper bound
problem of Theorem 2 provides a static pricing policy which
is asymptotically optimal in the regime of many small users
we considered. We will next characterize its structure. To
that end, we will view the upper bound problem (9) as one
involving optimization with respect to ui, rather than λi.
We will also write ni in the form λi(ui)/µi. We start with
the revenue maximization problem.

A.1 Revenue Maximization

The upper bound problem becomes

max
∑

i

λi(ui)ui (22)

s.t.
∑

i

λi(ui)rji
µi

≤ Cj , ∀j.

Let q = (q1, . . . , qL) ≥ 0 be the Lagrange multiplier
vector, where qj is associated with the capacity constraint
on link j. Writing the problem in (22) as a minimization
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problem, its Lagrangean function becomes

L(u,q) = −
M
∑

i=1

λi(ui)ui +
L
∑

j=1

qj

(

M
∑

i=1

λi(ui)rji
µi

− Cj

)

.

Assuming an interior solution ui ∈ (0, ui,max), ui should
minimize



−λi(ui)ui +
∑

j

qjλi(ui)
rji
µi



 . (23)

Therefore, from the first order optimality condition we ob-
tain

ui = −
λi(ui)

dλi(ui)/dui
+

L
∑

j=1

qj
rji
µi

, ∀i. (24)

This structure is insightful. The first term is the reciprocal
of the demand elasticity, prescribing that we should charge
more to classes with more inelastic demand. The second
term is a usage-based charge. Notice, that by complemen-
tary slackness conditions qj = 0, if the corresponding con-
straint is not active, which can be interpreted as link j not
being congested. On the other hand, if link j is congested
(i.e., the corresponding constraint is satisfied with equal-
ity at the optimal solution), we charge each class a price
qj > 0 per unit of volume on link j. Here, we define as vol-
ume the quantity rji/µi, which is the bandwidth occupied
times the expected holding time. Thus, the second term in
(24) includes a charge for volume on congested links along
the route Ri of class i.

This pricing structure is appealing from an implemen-
tation point of view. Large (backbone) networks might
typically accommodate many service classes (number of
offered services times number of origin-destination pairs),
but consist of a relatively small number of links. Later
on we will use this pricing structure and optimize over the
shadow prices q to obtain near-optimal performance even
away from the limiting regime.

A.2 Welfare Maximization

The case of welfare maximization can be treated simi-
larly. Using (4) an interior solution ui ∈ (0, ui,max) should
minimize



−λ0,i

∫ ui,max

ui

vfi(v)dv +
∑

j

qjλi(ui)
rji
µi



 ,

which is analogous to the condition in (23) for the revenue
maximization case. Therefore, from the first order opti-
mality condition we obtain

λ0,i ui fi(ui) +
∑

j

qj
rji
µi

dλi(ui)

dui
= 0,

which, by using (3), becomes

ui =

L
∑

j=1

qj
rji
µi

, ∀i. (25)

As in revenue maximization, qj = 0 for non-active con-
straints, thus, the pricing structure in (25) prescribes a
usage-based charge for volume on all congested links along
the route Ri of class i.

VII. Demand Substitution Effects

In this section we will extend the model we have consid-
ered so far to incorporate demand substitution effects. In
particular, the model introduced in Section II assumes that
the demand of each class λi(ui) is function of the price for
that class only. We are interested in considering the sit-
uation where users might decide to use another class of
service as a (non-perfect) substitute of their desired class if
the latter one ends up being very expensive. Our main re-
sults so far extend to this situation as well. We will present
a model that accounts for such substitution effects in Sub-
section VII-A. Following the development of the previous
sections, we will develop an upper bound on the optimal
performance in Subsection VII-B, establish the asymptotic
optimality of static pricing in Subsection VII-C, and con-
clude this Section by characterizing the structure of the
asymptotically optimal static policy in Subsection VII-D.

A. The Model

The model is in fact identical to the one introduced in
Section II, with the exception that demand for each class
i, i = 1, . . . ,M , is not only a function of ui, but of the
whole price vector u, i.e., λ(u) = (λ1(u), . . . , λM (u)). We
will maintain the rest of the notation that was introduced
in Section II. We will denote the offered load on link j by

ρj(u) ,
M
∑

i=1

rjiλi(u)

µiCj
, j = 1, . . . , L.

We will be making the following assumption.

Assumption B
1. If λi(u) > 0, then

∂λi(u)
∂ui

< 0, for i = 1, . . . ,M ;

2.
∂λi(u)
∂uk

≥ 0, for k 6= i, k = 1, . . . ,M ;

3. if λi(u) > 0, then
∑M

k=1
∂λk(u)
∂ui

< 0, for i = 1, . . . ,M ;

4. limu→∞ λi(u) = 0, for i = 1, . . . ,M , where u → ∞
means mini ui →∞.

Assumption B-1 indicates that demand for any class is a
strictly decreasing function of its own price. Assumption B-
2 indicates that substitution among classes can take place,
in the sense that the increase of the price for a class can in-
crease the demand for other classes. Assumption B-3 states
that only a fraction of demand lost for a class appears as
demand for other classes (due to substitution). Assump-
tion B-4 expresses the condition that as all prices increase,
the demand will eventually decrease to zero for all classes.
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As an example, the following linear demand functions
satisfy Assumption B:

λ1(u) = λ1,0 − λ1,1u1 + λ1,2u2,
λ2(u) = λ2,0 + λ2,1u1 − λ2,2u2,

(26)

for u ∈ U = {u | λ1(u) ≥ 0, λ2(u) ≥ 0}, where λ1,0, λ2,0 >
0, λ1,1 > λ2,1 > 0, λ2,2 > λ1,2 > 0.
Substitution effects can also be incorporated to our wel-

fare maximization model of Section II-B. The model re-
mains identical to the one introduced there with the ex-
ception that the user utility Ui of class i is a random vari-
able depending on the whole price vector u. In particular,
we will assume that it has a probability density function,
denoted by fi(ui | uj , j = 1, . . . ,M, j 6= i), conditional on
the prices of all other classes. Potential calls decide to join
the network if and only if the utility they extract exceeds
the prevailing price. Thus, the actual arrival rate of class
i calls under price u is

λi(u) = λ0,iP[Ui ≥ ui | uj , j = 1, . . . ,M, j 6= i],

where λ0,i is the peak class i demand (corresponding to
zero prices in the revenue maximization model). A class i
call joining the system extracts an expected utility equal
to E[Ui | Ui ≥ ui; uj , j = 1, . . . ,M, j 6= i], thus, social
welfare for class i users is accumulated at a rate of

λi(u)E[Ui | Ui ≥ ui; uj , j = 1, . . . ,M, j 6= i].

Our objective remains to maximize the expected long-term
average welfare rate, for which an expression can be written
along the lines of (2).
Let us define the expected instantaneous rewards by

Vi(u) , ui and Vi(u) = E[Ui | Ui ≥ ui; uj , j =
1, . . . ,M, j 6= i] for the case of revenue and welfare maxi-
mization, respectively. We assume that λ(u) satisfies As-
sumption B in the welfare maximization case as well. Con-
sequently, λi(u) is non-decreasing in uj for some j 6= i,
which implies that P[Ui ≥ ui | uj , j = 1, . . . ,M, j 6= i]
is non-decreasing in uj . We will be making the following
assumption for the expected rewards.

Assumption C
For all i = 1, . . . ,M and u ∈ {u | λi(u) > 0}, Vi(u) is a

non-decreasing function of uj for all j 6= i.

This assumption is trivially satisfied for the case of revenue
maximization where Vi(u) = ui. For the case of welfare
maximization it can be interpreted as follows. Each class i
has a strong core constituency and can not be dominated by
class j (j 6= i) customers who choose to use it as substitute
when uj increases. These “true” class i customers perceive
that they are extracting a higher utility when the price
of other services, uj (for j 6= i), becomes relatively more
expensive. Thus, Vi(u) is non-decreasing in uj for j 6= i.
It also turns out Vi(u) is non-decreasing in ui. The next
lemma establishes the result.

Lemma 1 For all i = 1, . . . ,M and u ∈ {u | λi(u) > 0},
Vi(u) is a non-decreasing function of ui.

Proof: The result is trivially true for the revenue max-
imization case where Vi(u) = ui. For welfare maximization
we have

Vi(u) = E[Ui | Ui ≥ ui; uj , j = 1, . . . ,M, j 6= i]

=

∫∞

ui
vfi(v | uj ,∀j 6= i) dv

∫∞

ui
fi(v | uj ,∀j 6= i) dv

.

Taking the partial derivative we obtain

∂Vi(u)

∂ui
=

fi(ui | uj ,∀j 6= i)
∫∞

ui
(v − ui)fi(v | uj ,∀j 6= i) dv

(P[Ui ≥ ui|uj ,∀j 6= i])2
,

which is clearly non-negative.

This lemma can be seen as expressing the fact that when
ui increases class i customers with relatively low utility for
the service choose not to use it, thus, the ones that remain
have higher utilities and drive Vi(u) up.

B. An Upper Bound

We will follow the development of Section V. Assuming
that the demand function is invertible, we can express the
prices as a function of the arrival rates λ; we will write
ui(λ) for the class i price. Define Fi(λ) , λiui(λ) and
Fi(λ) , λiE[Ui | Ui ≥ ui(λ); uj(λ), j = 1, . . . ,M, j 6= i]
for the case of revenue and welfare maximization, respec-
tively. Assume that Fi(λ) are concave functions of λ for
all i. This is true, for example, for the demand functions
in (26). The following result is analogous to Theorem 2.
The proof is almost identical and is therefore omitted.

Theorem 4 Consider the following nonlinear optimiza-
tion problem

maximize

M
∑

i=1

Fi(λ)

subject to λi = niµi, i = 1, . . . ,M, (27)
∑

i

nirji ≤ Cj , j = 1, . . . , L,

and let Jub denote the optimal objective value. If Fi(λ) is a
concave function of λ for all i = 1, . . . ,M , then J∗ ≤ Jub.

C. Asymptotic Optimality of Static Pricing

We consider the same limiting regime of “many small
users” of Section VI. We scale both demand and capac-
ity by a scaling factor c ≥ 1, while all other quantities are
held fixed. Again, a superscript c will denote quantities of
interest in the c-scaled system. The demand function be-
comes λc(u) = (cλ1(u), . . . , cλM (u)), the capacity of link
j becomes cCj , and the offered load on link j remains un-
changed, i.e., ρcj(u) = ρj(u), j = 1, . . . , L. The normalized
revenue or welfare maximization problem under a static
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pricing policy u can be formulated as:

max
u∈Uc

1

c

M
∑

i=1

Vi(u)λ
c
i (u)

(

1−Pi,c
loss (u)

)

=

max
u∈U

M
∑

i=1

Vi(u)λi(u)
(

1−Pi,c
loss (u)

)

, (28)

where Uc = U = {u | ui ≥ 0, λi(u) ≥ 0, i = 1, . . . ,M} is
the feasible set for u.
We use following asymptotic results for loss probabilities

from [14]. As c → ∞, under the static policy u, the loss
probability of each class converges to

Pi,∞
loss(u) = 1−

L
∏

j=1

(1−Bj(u))
rji , i = 1, . . . ,M, (29)

where Bj(u) ∈ [0, 1), j = 1, . . . , L, satisfy following condi-
tions

ρ̂j(u) ,
M
∑

i=1

rjiλ
c
i (u)

µi cCj

L
∏

l=1

(1−Bl(u))
rli =

M
∑

i=1

rjiλi(u)

µiCj

L
∏

l=1

(1−Bl(u))
rli

{

= 1, if Bj(u) > 0,
≤ 1, if Bj(u) = 0.

(30)

Following Kelly [14], we will call ρ̂j(u) the reduced load on
link j. We can interpret these asymptotic results as fol-
lows. Calls are blocked independently at each link j in
their route. In particular, class i demand is thinned by a

factor of (1−Bj(u))
rji at link j and

∏L
j=1(1−Bj(u))

rji =

1−Pi,∞
loss(u) can be seen as the proportion of accepted class

i calls. This results into a satisfied demand for class i equal

to λci (u)
∏L
j=1(1 − Bj(u))

rji . We will use Kelly’s [14] ter-

minology and say that link j is overloaded if Bj(u) > 0
(which implies ρ̂j = 1); if Bj(u) = 0 we will say that it
is underloaded (ρ̂j < 1) or critically loaded (ρ̂j = 1). We
should note that although the conditions in (30) lead to
unique values for the reduced loads ρ̂j(u) and the loss prob-

abilities Pi,∞
loss(u), the parameters Bj(u) might not have a

unique value. In fact, the values of Bj(u) are unique if
the routing matrix R has rank L; otherwise, there exits a
unique vector (B1(u), . . . , BL(u)) with maximal support,
i.e., a vector that solves (30) and maximizes the dimension
of the set B(u) , {j | Bj(u) > 0}. The following Lemma
states an observation that would be useful later on.

Lemma 2 The offered loads ρj(u) satisfy ρj(u) ≤ 1 for
all links j = 1, . . . , L if and only if Bj(u) = 0 for all links
j = 1, . . . , L.

Proof: We will first argue that if ρj(u) ≤ 1, for all
j, then Bj(u) = 0 for all j. Otherwise, suppose there is
a link j with Bj(u) > 0. Due to (30) there is at least
one i for which rjiλi(u) > 0. Moreover, (30) also implies
that ρ̂j(u) < ρj(u) and ρ̂j(u) = 1. This contradicts the

initial assumption ρj(u) ≤ 1. For the converse, note that
if all links are either underloaded or critically loaded, i.e.,
Bj(u) = 0 for all j, then ρj(u) = ρ̂j(u) ≤ 1, for all j.
Another interesting observation is that due to (29),

Bj(u) = 0, for all j, implies that Pi,∞
loss(u) = 0, for all

i = 1, . . . ,M .
We next define the normalized reward of class i with

respect to link j, for all links j with rji > 0, as follows

V̂i,j(u) ,
Vi(u)

rji/µi
, (31)

thus,

Vi(u)λi(u) = V̂i,j(u) ·
rjiλi(u)

µi
= V̂i,j(u)λ̂i,j(u),

where λ̂i,j(u) , rjiλi(u)
µi

is the normalized demand of class

i for link j. We can interpret V̂i,j(u) as reward per vol-
ume on link j, where volume has the same interpretation
as in Section VI-A, that is, resource utilization times the
expected holding time. For a given static pricing policy u,
the normalized rewards at link j are fixed and define an
ordering among classes traversing link j. In particular, for
any classes i and k traversing link j (i.e., rji, rjk > 0), we

will say that i is more valuable than k if V̂i,j(u) > V̂k,j(u).
If calls occupy the same resource amount at all links in
their route (i.e., for all i, rji = ri for all j ∈ Ri and rji = 0
for all j /∈ Ri), then the priority ordering of classes is the

same on all links and V̂i,j(u) =
Vi(u)
ri/µi

define a unique pri-

ority ordering for the whole network. In this case, we will

use the notation V̂i(u) , Vi(u)
ri/µi

. The following proposition

is key in establishing our asymptotic optimality result.

Proposition 3 Consider either the case of revenue or
welfare maximization and assume that for any class i =
1, . . . ,M and all links j = 1, . . . , L

rji =

{

ri, j ∈ Ri,
0, otherwise.

(32)

If us,∞ solves the limiting case of problem (28), i.e.,

max
u∈U

lim
c→∞

1

c

M
∑

i=1

Vi(u)λ
c
i (u)

(

1−Pi,c
loss (u)

)

=

max
u∈U

M
∑

i=1

Vi(u)λi(u)

L
∏

j=1

(1−Bj(u))
rji , (33)

then

ρj(us,∞) =
∑

i|j∈Ri

λi(us,∞)ri
µiCj

≤ 1, j = 1, . . . , L. (34)

Proof: 1 The following discussion is about the lim-

1The present proof is a revised version of the proof that appeared
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iting case c → ∞. Let u be a static pricing policy such
that on some links, the offered load is greater than 1. The
average reward is

∑

i

Vi(u)λi(u)
∏

l

(1−Bl(u))
rli , (35)

where Bl(u), l = 1, . . . , L, satisfy (cf. (30))

∑

i

rji
µi

λi(u)
∏

l

(1−Bl(u))
rli ≤ Cj , j = 1, . . . , L. (36)

Consider the following linear programming (LP) problem
with decision variables λ = (λ1, . . . , λM )

max
∑

i

Vi(u)λi (37)

s.t.
∑

i

rji
µi

λi ≤ Cj , j = 1, . . . , L,

0 ≤ λi ≤ λi(u), i = 1, . . . ,M.

Let λ̃i(u) = λi(u)
∏

l(1 − Bl(u))
rli for i = 1, . . . ,M .

Clearly, 0 ≤ λ̃i(u) ≤ λi(u), which when combined with

(36) implies that λ̃(u) = (λ̃1(u), . . . , λ̃M (u)) is a feasi-
ble solution of (37). Due to (35), the objective value
∑

i Vi(u)λ̃i(u) is equal to the average reward of static pol-
icy u.
Let λ̂(u) = (λ̂1(u), . . . , λ̂M (u)) denote an optimal solu-

tion of (37). Consider next the network under the static
policy u but introduce a random admission control mech-
anism. More specifically, if λi(u) > 0 then class i calls are

accepted with a probability equal to λ̂i(u)/λi(u). Other-

wise, i.e., if λi(u) = 0, λ̂i(u) = 0 as well, and no admis-
sion control is applied. Thus, admitted class i calls arrive
according to a Poisson process of rate λ̂i(u), since their
requests follow a Poisson process of rate λi(u).
We will call System SA the original one (without ad-

mission control), and System SB the new system (with
admission control). Note that in System SB we have

ρBj (u) =
∑

i

rjiλ̂i(u)

µiCj
≤ 1, ∀j,

due to the feasibility conditions in (37). Thus, Lemma 2
implies that the blocking probabilities are equal to zero
for all classes. The optimal value of problem (37) is sim-
ply the average reward in System SB , thus, it is not less
than the average reward in our original System SA, which
corresponds to the feasible solution λ̃(u).

Note that if λ̂i(u) = λi(u) for all i, then we can remove
admission control. System SB becomes identical to Sys-
tem SA, which implies that the offered loads satisfy ρj(u) ≤
1 for all links j. Since we assumed that some links face an

in print which contained an error. In this new proof we do not use the
notion of normalized reward defined earlier. Moreover, the assump-
tion on resource requirements in Eq. (32) is no longer necessary. We
maintain it in order to keep the statement of the Proposition identical
with the one that appeared in print.

offered load higher than 1 under static policy u, there ex-
ists a class i with λ̂i(u) < λi(u). Let us now construct
a new policy u′ as follows. Keep u′j = uj for j 6= i, but
increase the price ui to a certain u′i > ui such that under

this new price vector u′ we have λi(u
′) = λ̂i(u) < λi(u).

Such a policy u′ exists due to Assumption B-1. Moreover,
Assumption B-2 implies that λj(u

′) ≥ λj(u) for j 6= i.
Replace now u with u′ in the optimization problem

(37). It can be seen that λ̂(u) is a feasible solution to
the new problem. Due to Assumption C and Lemma 1,
∑M

i=1 Vi(u
′)λ̂i(u) is no less than

∑M
i=1 Vi(u)λ̂i(u), which is

the average reward of System SB .
Let λ∗(u′) be an optimal solution of the new optimiza-

tion problem (37) corresponding to the new price vector
u′. A new System SC under policy u

′ and with admission
control can be constructed similarly to System SB . The
average reward in System SC is no less than System SB ,
therefore, no less than the original System SA.
Again we check if we can remove the admission control

in System SC . If not, we repeat the above procedure until
we find a static policy such that the offered loads are no
greater than 1 on all links. Throughout, the average reward
does not decrease. Assumptions B-3 and B-4 guarantee the
existence of such a static policy.
To summarize, we started from an arbitrary price vector

u under which some links have offered loads greater than
one and constructed a price vector with higher average re-
ward and offered loads no greater than 1 on all links j. We
conclude that the optimal limiting static policy us,∞ must
satisfy ρj(us,∞) ≤ 1 for all links j.
Due to Lemma 2, the result of Proposition 3 implies that

at the optimal static prices in the limiting regime, us,∞, all
links in the network are underloaded or critically loaded,
and all classes experience zero blocking probabilities. The
following theorem is an immediate consequence of these
observations and Proposition 3.

Theorem 5 Consider either the case of revenue or welfare
maximization and assume that for any class i = 1, . . . ,M
and all links j = 1, . . . , L

rji =

{

ri, j ∈ Ri,
0, otherwise.

The optimal static policy in the limiting regime, us,∞,
solves the following optimization problem:

maximize

M
∑

i=1

Vi(u)λi(u) (38)

subject to
M
∑

i=1

λi(u)rji
µi

≤ Cj , j = 1, . . . , L.

The optimization problem in (38) is in fact the same as
the upper bound problem in (27) (with the exception that
decision variables are the prices instead of the arrival rates).
Thus, in the limiting regime (c → ∞), the optimal static
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policy achieves the upper bound and it is asymptotically
optimal.

D. Structure of the Asymptotically Optimal Static Pricing
Policy

As in Section VI-A, where we considered the original
model of Section II, we will next characterize the structure
of asymptotically optimal prices for the modified model of
Section VII-A.
Let us first focus on the revenue maximization case. Con-

sider the problem in (38) and rewrite it as a minimization
problem. Let q = (q1, . . . , qL) ≥ 0 be the Lagrange multi-
plier vector, where qj is associated with the capacity con-
straint on link j. The Lagrangean function becomes

L(u,q) = −
M
∑

i=1

λi(u)ui +

L
∑

j=1

qj

(

M
∑

i=1

λi(u)rji
µi

− Cj

)

.

(39)
Assuming an interior solution, u should satisfy

∇λ(u)u = −λ(u) +
L
∑

j=1

qj

M
∑

i=1

rji
µi
∇λi(u), (40)

where ∇λ(u) is the gradient of the vector function λ(u),

i.e., an M ×M matrix with (i, j) element equal to
∂λj(u)
∂ui

.
Welfare maximization can be treated similarly. One can

write down the optimality conditions for the problem in
(38) and solve them analytically for relatively simple forms
of the utility density functions fi(·). The structure of those
conditions is rather complex, so one would have to resort
to numerical solution methods for the general case.

VIII. Large Scale Problems

In this section we discuss how the pricing policies we
have considered so far can be computed and applied to
large scale systems.
Large networks consist of numerous classes (equal to

the number of offered services times the origin-destination
pairs) and many links with large capacities. As a result,
the state space S = {n | Rn ≤ C} becomes enormous and
it is intractable to compute the optimal (dynamic) policy.
One could potentially leverage recent approximate dynamic
programming techniques to compute an approximately op-
timal dynamic policy. This direction has been successfully
explored in [13] and can be generalized in the network set-
ting. The sheer dimensionality of the network problem
though, makes the computational effort more challenging.
In this paper we are focusing on static pricing policies be-

cause they are simpler and have significant implementation
advantages over dynamic ones; we have outline those in the
Introduction. As we commented in Section IV, computing
the optimal static policy exactly is also computationally
intractable. Instead we will experiment with the following
two approaches to compute effective static pricing policies:

1. Policy from the Upper Bound. As we have seen the
optimal solution of the upper bound problem in (9) forms
a static pricing policy for our original model of Section II.

For the system with demand substitution effects of Sec-
tion VII-A a static policy is formed by the optimal solution
of the upper bound problem in (27). In both cases, we have
seen that in the limiting regime of many small users these
policies are asymptotically optimal. Furthermore, they are
quite easy to obtain; their computation amounts to solving
a nonlinear programming problem with O(L) linear con-
straints and O(M) decision variables; for which effective
algorithms exist.
2. Using the structure of asymptotically optimal
static policy. A concern with the static policy from the
upper bound is that it might not perform as well away
from the limiting regime. Some earlier experience with the
single node problem in [13] indicates that the structure of
the asymptotically optimal static policy is effective away
from the limiting regime but the values of the various pa-
rameters might not be appropriate away from the limit.
More specifically, note that the structure of the policies in
Sections VI-A and VII-D depends on the selection of a set
of shadow prices (Lagrange multipliers) for the resources
at all congested links of the network. To improve upon
the policy obtained from the upper bound we seek to opti-
mize the performance objective (revenue or social welfare)
over those shadow prices. To that end, we will employ a
simulation-based method.
In particular, we adopt the structure of the policies of Sec-
tions VI-A and VII-D and view them as functions of the
Lagrange multipliers qj , j = 1, . . . , L. During the course
of a simulation of the system we obtain “gradient informa-
tion” which is used to optimize over qj ’s. To this end, we
will apply a technique developed by Marbach and Tsitsiklis
[19]. Under some technical assumptions, the convergence of
the algorithm to a stationary point (i.e., a point where the
gradient of the performance with respect to q is zero) can
be guaranteed (w.p. 1). Alternatively, we could optimize
over prices directly, but the dual approach of optimizing
over the Lagrange multipliers qj is more preferable in large
networks since, typically, the number of classes is much
larger than the number of links.

IX. Numerical Results

In this section we tackle, numerically, some illustrative
network pricing problems using the ideas discussed in the
previous sections. We will present revenue maximization
problems. The qualitative conclusions would not be much
different in welfare maximization. We start with a network
that conforms to the model of Section II.

A. Networks without Substitution Effects

Our first example, depicted in Figure 1, is a large (back-
bone) network. It consists of 9 nodes, 13 links, and provides
59 classes of services, the parameters of which are omitted
in the interest of space. 2

Table I compares the upper bound Jub (cf. Thm. 2) with
the two policies proposed in Section VIII. We use J(u∗ub)
and Jsim to denote the performance of the policy obtained

2Service parameters and link capacities are available online at
http://ionia.bu.edu/
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Fig. 1. A 9-node, 13-link network with 59 service classes.

from the upper bound problem and the simulation-based
optimization approach, respectively. We observe that Jsim

is quite close to the optimal. Note that the percentage gap
in Table I is an upper bound on the suboptimality gap.

Jub J(u∗ub) Jsim
Jub−Jsim

Jub
× 100%

12597.6 12117.4 12209.6 3.08%

Table I

Comparing the various policies for the network of Figure 1.

It is perhaps of interest to use Proposition 2 to compute
by how much we should scale the network to achieve a given
suboptimality gap. Using the notation introduced there, a
suboptimality gap of δ = 0.1 is guaranteed by scaling the
network by c = 3.30 and using policy uε with ε = 0.59e,
where e is the vector of all ones. Similarly, δ = 0.05 is
achieved with c = 10.74 and ε = 0.38e. Finally, δ = 0.01
is achieved with c = 218.07 and ε = 0.12e. Note that for
simplicity of the calculations involved we only considered
ε = εe in the optimization problem (19). The results can be
improved by considering arbitrary ε. Clearly, these guaran-
tees come from (crude) bounds on the blocking probability
and are not meant to be very tight. Our optimized policy
(u∗sim), for example, would be much closer to optimal in
each of those scaled systems. Nevertheless, Proposition 2
provides a simple way to quickly assess efficiency gains by
scaling the system.

B. Networks with Substitution Effects

0

2

3

1

4

21

34

Fig. 2. A 5-node, 4-link network with 12 service classes.

We next consider the network in Figure 2, and incorpo-
rate demand substitution effects. The network provides 12
classes of service 3; classes 1 and 7, and 2 and 8, can be used
as substitutes of each other. Table II compares the upper
bound Jub (cf. Thm. 4) with the two policies proposed in
Section VIII.
As in the previous example, we conclude that the opti-

mized version (via the simulation-based optimization ap-

3Again, see http://ionia.bu.edu/ for service parameters and link
capacities.

Jub J(u∗ub) Jsim
Jub−Jsim

Jub
× 100%

814.84 765.61 783.85 3.8%

Table II

Comparing the various policies for the network of Figure 2.

proach) of our asymptotically optimal static pricing policy
is reasonably close to the optimal.

X. Conclusions

We considered a loss network model and studied the
problem of pricing the use of the available resources under
both revenue and welfare maximization objectives. Our re-
sults generalize [13] in several directions. We established
that static pricing is asymptotically optimal in a regime of
many small users. To that end, we showed that in this limit
the blocking probabilities under an appropriate static pric-
ing policy converge to zero exponentially fast. We charac-
terized this exponential rate of convergence, which allowed
us to obtain simple estimates on the size of the network
in which static pricing is within a given distance from the
optimal.
We also considered an extension of our original demand

model that incorporates demand substitution effects among
various classes. Using a different set of techniques, we es-
tablished that our main asymptotic optimality result of
static pricing holds for that model as well.
For both demand models and under both objectives, we

characterized the structure of asymptotically optimal static
prices and used this structure to obtain near-optimal poli-
cies away from the limiting regime. To that end, we em-
ployed a simulation-based optimization method that opti-
mizes policy parameters by obtaining gradient information
throughout the course of a simulation of the system. Our
approach can handle large, realistic, problem sizes. Ad-
mittedly, the simulation-based algorithm needs global in-
formation on the state of the network to converge to the
optimal, which is not appealing in practice. It is of inter-
est to develop asynchronous and distributed optimization
algorithms, as for example is done in Low and Lapsley [20]
for a different (flow control) problem.
In practice, where demand is nonstationary but slowly

varying, the policies we proposed lead to time-of-day pric-
ing. There is substantial accumulated experience with such
policies in the telecommunications industry, which facili-
tates their actual implementation. A practical implemen-
tation would also need to be coupled with a demand estima-
tion mechanism (in fact, only demand elasticity informa-
tion is needed). The proposed simulation-based optimiza-
tion approach can be driven by the actual operation of the
network, instead of a simulation. In this setting, a demand
estimation mechanism can be naturally be incorporated.
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