Tagged: memory

Reopening Our Critical Period as Adults

February 28th, 2014 in Article, News 0 comments

Ever wonder why children can learn certain things, such as languages, faster than adults? There is a time in every human’s life called the critical period, and it takes place during the most intense period of development, childhood.  During this time a child’s brain has high neuroplasticity, almost like a sponge. Many new pathways are formed as the child experiences new things. It has always been believed that when our critical period ends it never comes back but recent study has been done with the drug Valproate that increased neural plasticity in adults and may have reopened this critical period.

Valproate is a drug most commonly used for bipolar disorder and epilepsy. It is also known to inhibit an enzyme called histone- deacetylase, or HDAC. HDAC is an enzyme in the brain that slows down neural plasticity. Inhibition of this enzyme by Valproate allows the reopening of pathways in the brain, increasing neuroplasticity, thus reopening the critical period.

More

Tagged , , , , ,

Are Men More Forgetful Than Women?

February 3rd, 2014 in Article, News 1 comment

memory-problems

If you have ever noticed that men tend to forget things quite often, especially compared to women, you are not alone.  A research team led by Professor Jostein Holmen in Norway conducted a large, longitudinal population health study called Hunt3 to reach the conclusion that men are more forgetful than women, regardless of their age.  This is one of the largest health studies ever performed, with answers from over 48,000 people leading to their conclusions.

The participants were asked at the beginning of the study if they had problems remembering things, if they had problems remembering dates and names, if they had a memory of what they did one year ago, and if they could remember details about specific conversations.

More

Tagged , , , ,

Scientists Discover Gene Needed for ‘Memory Extinction’

October 11th, 2013 in Article, News 0 comments

ILLUSTRATION: CHRISTINE DANILOFF/MIT

Painful memories: a thing of the past?

What if you were able to erase all of your painful memories by simply taking a pill? While this might sound like something out of a sci-fi film, a recent study conducted by a group of researchers at MIT suggests that it may be possible in the future.

The researchers say that they’ve identified a gene known as Tet1 that appears to be important in the process of “memory extinction.” Memory extinction is the natural process of older memories being overridden by newer experiences. In this process, conditioned responses to stimuli can change: what once elicited a fearful response doesn’t always need to if the danger has ceased.

In the study, researchers compared normal mice to mice without the Tet1 gene. The researchers conditioned all of the mice to fear a particular cage where they received a mild shock. Once the memory was formed, the researchers then put the mice in the cage but did not shock them. After a while, mice with the Tet1 gene lost their fear of the cage as new memories replaced the old ones. However, mice lacking the Tet1 gene remained fearful.

More

Tagged ,

Don’t Panic! – Mice Aren’t Actually the Smartest

April 2nd, 2013 in Article, News 0 comments

 

“Man had always assumed that he was more intelligent than dolphins because he had achieved so much — the wheel, New York, wars and so on — whilst all the dolphins had ever done was muck about in the water having a good time. But conversely, the dolphins had always believed that they were far more intelligent than man — for precisely the same reasons….In fact there was only one species on the planet more intelligent than dolphins, and they spent a lot of their time in behavioural research laboratories running round inside wheels and conducting frighteningly elegant and subtle experiments on man. The fact that once again man completely misinterpreted this relationship was entirely according to these creatures’ plans.” – Douglas Adams, The Hitchhiker’s Guide to the Galaxy

As tempting as it may be to believe the science fiction version of the intelligence rankings, real-life science has spoken and suggests (much to my displeasure) that humans may actually be the highest on the intelligence scale.

More

Tagged , , , , , , , , , ,

Monitoring Brain Activity During Studying to Predict Test Performance

October 2nd, 2012 in Article, News 0 comments


A research team led by Laura Matzen at Sandia National Laboratories in Albuqurque, NM has demonstrated that it is possible to predict how well people will remember information by monitoring their brain activity while studying. Matzen’s team monitored test volunteers with electroencephalography (EEG) sensors to make accurate predictions. Why bother making a prediction if the result will show how well someone remembered the information anyways? Matzen brought up this example, ”if you had someone learning new material and you were recording the EEG, you might be able to tell them, ‘You’re going to forget this, you should study this again,’ or tell them, ‘OK, you got it and go on to the next thing.”  Essentially providing a real-time performance metric, the applications of which many students would appreciate. More

Tagged , , , , ,

Scratching that "Cognitive Itch"

October 10th, 2011 in Arts + Media 1 comment


What comes to mind when you think of Friday? Friends. A night off from work. Movies. Fun. Rebecca Black? Yikes. I don’t mean to remind you of such a low point in the history of American pop-culture but there is, in fact, a small amount of useful information to be extracted from the phenomenon that is Rebecca Black. Why did her music spread like an epidemic through the minds of millions of teens and adults worldwide? This event can be loosely related to what the Germans like to call an öhrwurm.

The term öhrwurm literally translates in English to “earworm”, and can be described as that inescapable occurrence of getting a song stuck in your head for an hour, a day, or even months at a time. The term is misleading in that the repetition of music does not occur in the ear but within the brain. For an experience that is so familiar to most people there is still much unknown as to how and why one contracts this stuck song syndrome. More

Tagged , , , , , ,

New Class of Cognitive Enhancers to Transform Mankind

April 1st, 2011 in News 2 comments


Scientists at the Bewundgen University in Germany discovered that a diet rich in petrolatum, a substance of hydrocarbons, can greatly improve performance on a wide variety of cognitive tasks.

The research, led by neuroscientist Dr. Hans Schweinstucken, followed three groups of human subjects for over a year. The first group was instructed to eat regularly, but to also consume 500 grams of petrolatum per day, in the morning after breakfast. The second group was given an energy-deficient supplement of sugar substitutes; and the third were not given anything at all. All groups were tested periodically on tasks of memory, abstract thinking, cognitive speed, and general agility. To their surprise, the researchers found that regular consumption of petrolatum improved subjects’ recall, memory retrieval and abstract thinking while reducing overall agility, motivation and ability to make decisions. In contrast, the group eating sugar substitutes performed significantly worse over time on tests of memory and abstract thinking, with 50% of the subjects hitting an all-time low of 25% correct responses on recall (vs. their performance prior to the experiment).

Dr. Schweinstucken speculates that the first group’s reduced motivation and agility may have something to do with their major weight gain, which by itself remains a mysterious side-effect. As for the mechanisms of action, Dr. Schweinstucken proposes that petrolatum acts via inhibitory GABAergic interneurons in neocortex, the brain part thought to be important in higher cognition, antagonizing GABA action and thereby reducing overall levels of inhibition in the brain. However, he warns that at higher doses than 500 grams per day, petrolatum may actually have a detrimental effect on cognition because it may saturate GABA receptors and the corresponding neurons, causing massive seizures; he is currently conducting experiments to test this hypothesis.

Meanwhile, for all you folks who have exams to study for, I recommend a trip to your local CVS, where petrolatum is sold over-the-counter as “Vaseline,” or petroleum jelly.

Further reading:
Schweinstucken et al. Petrolatum improves cognitive performance in humans. J Psycho Chemo Physio Med. 2011, April 1.


Tagged , , , , , ,

A Peek at Parkinson’s: What’s New for the Old?

March 8th, 2011 in Article, News 0 comments


With the Pancakes for Parkinson’s event at Boston University nearing, on April 2nd, I thought it would be a good time to check up on the latest in Parkinson’s research.

Firstly, Parkinson’s Disease (PD) is a motor disorder that affects dopaminergic neurons of the brain, which are necessary in the coordination of movement. Onset is usually around age 60, starting with symptoms including tremor, stiffness, slowness of movement, and poor balance and coordination. While current treatments can help alleviate the symptoms in patients, none provide a cure.

Second off, the mission of the Michael J. Fox Foundation for Parkinson’s Research and other support groups is to find better treatments for those suffering from the disease. With the Baby Boomer generation entering late adulthood and old age, more research needs to be done to better understand the disease and help those with it find relief. Consider stopping by the GSU Alley for some pancakes to show your support for the Foundation and its cause next month!

Ranging from studying food intake to using technology, many approaches have been used in PD research. More

Tagged , , , , , , , , , , ,

Memory 101: Understanding How We Remember

February 9th, 2011 in Article 4 comments

Bookmark and Share

Do you ever wonder how you are able to remember the name of your third-grade teacher, or the skills you use to ride a bike, or even lines from your favorite movie?  Well, if you haven’t then you should, because it takes the workings of many regions of our brain to combine all the different aspects of one memory into a cohesive unit.

The first step in this complex process deals with our perceptions and senses.  Think about the last time you visited the beach.  Recall the sound of the wind and birds, the sight of the sun and ocean, the smell of the salt water and the feeling of the hot sand and shells underfoot.  Your brain merges all of these different perceptions together, crafting them into the “memory” that we are able to recall.

All of these separate sensations travel to the part of our brain called the hippocampus.  Along with the frontal cortex, the hippocampus plays a huge part in our memory system.  These two regions decide what is worth remembering and then store this information throughout the brain.

Perception starts the processes leading up to encoding and storage, which takes place through our brains’ synapses (or the gaps between neurons).  Through these synapses, neurons are able to electrically and chemically transmit information between themselves.  When an electric pulse is fired across the gap, it triggers the release of chemical messengers called neurotransmitters.

Here is a clear view of communication between neurons through the releasing of neurotransmitters over the synapse.

From there, the spread of information begins.  The neurotransmitters diffuse to neighboring cells and attach to them, forming thousands of links.  All of these cells process and organize the information as a network.  Similar areas of information are connected and are constantly being reorganized as our brain processes more and more.

Changes are reinforced with use.  So let’s say you are learning to play a sport.  The more you practice, the stronger the rewiring and connections will become, thus allowing the brain to do less work as the initiation of pulses becomes easier with repetitive firing.  This is how you get better at a certain task and are able to perform at a higher level without making as many mistakes.  But again, because our brain never stops the process of input and output, practice needs to be constant in order to promote strong information retention.

Knowing all of this, it probably comes as no surprise that the most basic function for ensuring proper memory encoding is to pay specific attention to what you are doing.  We are exposed to thousands of things in very short amounts of time, so the majority of it is ignored.  If we pay more attention to select, specific bits of information, we’ll have a higher potential to remember certain things (try it out for yourself in lecture).

Since the actual process has been discussed, we’ll go into greater detail about the types of memory we have and how they differ.  There are three basic memory types that act as a filter systems for what we find important.  This is based on what we need to know and for how long we need to know it.

The first is sensory memory, which is basically ultra-short-term memory.  It is based off of input from the five senses and usually lasts a few seconds or so.  An example would be looking at a car that passes by and remembering what color it was based on that split second intake.  The effect is vaguely lingering, and is forgotten almost instantly.

Short-term memory is the next category.  People sometimes refer to it as “the brain’s Post-it note”.  It has the ability to retain around seven items of information for about less than a minute.  Some examples would include telephone numbers or even a sentence that you quickly glance over (such as this one).  You have to remember what is being said at the beginning to understand the context.  Likewise, numbers are usually better remembered, and have longer staying power in the brain, when split up (800-493-2751 instead of 8004932751 for instance).

Repetition and conscious effort to retain information leads to the transformation of short-term memory into long-term memory.  By rehearsing information without interference or disturbances, one is better able to remember things and ingrain them into his/her brain.  This is a gradual process, but it proves why studying is important!  Unlike the other two memory categories, long-term memory has the ability to retain unlimited amounts of information for a seemingly indefinite amount of time.

This diagram shows a more complex view of the major memory types and their subdivisions.

A  piece of information must pass from both sensory and short-term memory to successfully be encoded in long-term memory.  Failure to do so generally leads to the phenomenon known as “forgetting”, something that many of us are all too familiar with ironically enough!

To give a common example of long-term encoding and memory retrieval, consider trying to recall where you have put your keys down.  First, you must register where you are putting your keys and attention while putting them down so that you can remember later.  Accomplishing all of this helps a memory to be stored, retained, and ready for retrieval when necessary.

Forgetting may deal with distraction, or simply just failure to properly retrieve a memory.  That being said, it should be noted that there is no predisposition to having a “good” or a “bad” memories.  Most people are good at remembering certain things (numbers, procedures and mechanisms for example) better than others (names, phrases, or even entire plays) and vice versa.  It all depends on where you are able to focus your interests and your attention.

Hopefully, you will be able to remember some of this so that you can use your understanding of the complexities of the brain and memory encoding to your advantage.  After all, your brain does all the hard work for you!  Now you just need to pay attention and focus on what you find important and what you want to remember to best suit your own needs.

How Human Memory Works – Discovery Health

Types of Memory – The Human Memory

How Does Human Memory Work? – USATODAY.com

Tagged ,

Time to Mix it Up: The Student Guide to Good Study Habits

November 16th, 2010 in Uncategorized 2 comments

We’re told to find ourselves a quiet nook, to maintain a schedule, and to tackle one subject at a time. Our parents tell us that naps are a waste of time. And mass media conglomerates encourage us to fill every spare moment with a quick video clip or a two-minute game on our cell phones. But as it turns out, it is time to quit buying into what we’re told creates the optimal environment and habits to learn.

First, forget about holing up at that same seldom-visited spot over the span of time before an exam. Studies have found that students who vary where they study will remember the information better than those who stay in one place. The brain makes associations between what we study and where we study it, so the greater the number of associations, the more enriched the material, and the better entrenched the memory.

Experts advise students never to have a "go-to" study spot; changing locations can help students better learn the information.

Experts advise students never to have a "go-to" study spot; changing locations can help students better learn the information.

Next, throw the one-subject-at-a-time approach out the window. Varying the type of material studied in one session has been shown to leave a deeper impression on the brain than focusing on a single topic at a time.

For example, a recent study in the journal of Applied Cognitive Psychology featured two groups of 4th graders being taught how to calculate the dimensions of a prism. There were four existing problem sets; one subject group was given repeated examples of one type of problem, while the other was given a mix of all four types of problems. A day later the groups were given separate tests on what they had learned, and the 4th graders who had been given the mixed problem sets performed twice as well.

Last but not least, when you have some down time, take the airplane approach: turn off all your electronics and take a nap. This technological age encourages nearly constant multitasking, but multitasking deprives our brains of much-needed rest. A continuous stream of digital input-via cell phones, iPods, computer screens, and televisions- forfeits the time when our minds could better learn and remember information, even form ideas.

Don't be this guy: Overloading your brain might seem to save time, but in the end it impairs your learning abilities.

Don't be this guy: Overloading your brain might appear to save you time, but in the end it impairs your learning abilities.

A study at UC-San Francisco found that rats do not process new information and transform it into a persistent memory until they are given a break from those new experiences. Thus in order for us to process what we’ve learned and experienced during the day, we need to rest our brains.

Recent studies have shown that sleep not only consolidates what you have already studied, but it also primes the mind for further learning. So an afternoon nap between classes (as long as you set your alarm) can actually be the final element to a perfect study system.

For Reference:

Think You Know How to Study? Think Again- NPR

Digital Devices Deprive Brain of Needed Downtime- The New York Times

Forget What You Know About Good Study Habits- The New York Times

Behavior: Napping Can Prime the Brain for Learning- The New York Times

Tagged , , ,