By Victoria Gomez

New Study Shows Lack of Sleep Leads to Permanent Brain Damage

March 24th, 2014 in News, Pop Culture 1 comment

We all know that sleep is one of the best ways to restore our body. For example, when we become sick, we just lie in bed and sleep all day; or after a long day bustling between class, the gym, meetings, and extracurricular activities, our body yearns to fall into a deep slumber to restore itself to its peak state. Recently, it was published that the reason sleep is so restorative is because while we sleep, cerebrospinal fluid flows more efficiently through the brain, essentially “clearing” the brain of any metabolic waste products that build up during the day (for more on this, refer to the December 9th blog post). However, just as we all understand that great feeling of satisfaction that comes after the so rarely obtained 8-9 hour sleep cycle (yes, young college-aged adults should ideally be getting 8-9 hours of sleep a night), we also can all relate to the groggy, confused, cognitively impaired state that comes after the all-night cramming and three hours of sleep, and before the double espresso from Starbucks. Until recently, this chronic state of unrest considered normal by college students, shift workers, and truck drivers, wasn’t thought to have any long lasting damage; it was considered common knowledge that catching up on sleep during weekends or vacations made up for the hours of sleep lost during finals week. However, a new study published on March 18th in the Journal of Neuroscience refutes this; the study, out of University of Pennsylvania’s Perelman School of Medicine, shows that chronic sleep loss may be much more destructive than previously thought, leading to permanent cell damage and neuronal death.

More

Tagged , , , , , ,

A Thanksgiving Feast…with a Side of Neuroscience

November 18th, 2013 in Article, Opinion 0 comments

It’s just about that time of year again – in just over a week’s time we’ll be sitting down to a huge feast consisting of turkey, stuffing, and mashed potatoes; we’ll be watching the Macy’s Parade soon to be followed by two football games; and we’ll be giving thanks for our reunion with our grandparents, uncles, aunts, cousins, brothers, sisters, parents, and more. Thanksgiving definitely holds a special place in my heart – however, up until recently, it always used to provide just a little bit of stress. That is because, at least in my family, somewhere between polishing off the last roll and preparing for pecan pie one relative or another always asks me, “so what are you studying in school again?” And when I answer “Neuroscience!” I typically get one of two responses: the confused look, followed by “Neuroscience? What is neuroscience?” (typically from the older crowd in the room), or the rolling of the eyes, followed by “What are you going to do with a degree in neuroscience?” (typically from the former engineers and business majors). I love neuroscience, and I know I’ve found my passion studying it here at BU, but those questions always seem to bring with them a certain pressure that I always felt I cracked beneath. However, I recently discovered the perfect way to address both of these questions, and I’m here to let you in on the secret so you can impress your relatives at the thanksgiving dinner table as well. This year, when Grandma or Uncle Tony ask me “why neuroscience?” my answer will be simple – because neuroscience is changing, and will continue to change, the world and how we approach it. Turkey...with a side of neuroscience!

I can already imagine the taken aback look crossing my relative’s faces, and the comment that I’m perhaps being a little dramatic – neuroscience is changing the world? Not only will my answer definitely get their attention, but I’m confident that my answer is correct, and proving my point to my disbelieving family will only make Thanksgiving that much more fun. Neuroscience is the science of understanding the nervous system (that is the system that essentially allows for all of our functioning) on a basic scientific level, and then applying that knowledge to do a bunch of things, from eradicating the diseases that plague the system (Alzheimer’s, Parkinson’s), to applying the knowledge in the classroom so that students of all ages can learn to their full potential. If you take a step back and view the whole picture, it’s not surprising that neuroscience will change the world in our lifetime; as opposed to some other fields, neuroscience is constantly acquiring completely new information about systems that not too long ago used to be a complete mystery – this knowledge is overflowing and already being applied to the real world to make beneficial changes. I will quickly outline two fascinating new outlets of neuroscience that are changing the world right before our very eyes, so that you have solid proof to further widen the eyes of your relatives this holiday season.

More

Tagged , ,

Traumatic Brain Injuries: Helpless to Hopeful

October 10th, 2013 in Uncategorized 0 comments


Helmets are a good thing!Traumatic brain injuries, often referred to as TBI, have  gained major traction in the field of neuroscience over the past couple years, and for obvious reasons. The name itself suggests that something has gone horrible awry with our BRAIN – you know, the mass of cells inside our skulls responsible for telling our heart to pump and our muscles to contract, the organ that controls all of our cognitive abilities and complex processing, that space between our ears that has been associated with creating the somewhat vague concept of our mind? It’s not surprising that neuroscientists have deemed it important to begin researching ways to at least partially remedy the potentially devastating effects of an injury to our most central organ.

Previous TBI research hasn’t exactly led to the most uplifting results. While research has advanced enough for us to be able to visualize TBIs and generally understand the symptomology of TBI, the field has lagged in suggesting potential therapies for patients with this condition. The broad view has always been that patients with TBI improve up to a certain point, and then they plateau, staying at a consistently impaired state – until now.

More

Tagged , ,