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Abstract— We tackle the problem of tracking the human
lower body as an initial step toward an automatic motion
assessment system for clinical mobility evaluation, using a multi-
modal system that combines Inertial Measurement Unit (IMU)
data, RGB images, and point cloud depth measurements. This
system applies the factor graph representation to an optimization
problem that provides 3-D skeleton joint estimations. In this
paper, we focus on improving the temporal consistency of the
estimated human trajectories to greatly extend the range of
operability of the depth sensor. More specifically, we introduce
a new factor graph factor based on Koopman theory that
embeds the nonlinear dynamics of several lower-limb movement
activities. This factor performs a two-step process: first, a custom
activity recognition module based on spatial temporal graph
convolutional networks recognizes the walking activity; then, a
Koopman pose prediction of the subsequent skeleton is used
as an a priori estimation to drive the optimization problem
toward more consistent results. We tested the performance of
this module a dataset composed of multiple clinical lower-limb
mobility tests, and we show that our approach reduces outliers
on the skeleton form by almost 1 m, while preserving natural
walking trajectories at depths up to more than 10 m.

I. INTRODUCTION

It is undeniable that the process of aging comes with an
increasing frailty and loss of mobility. However, although
frail adults constitute the sickest, fastest growing, and most
expensive segment of the US population [1], the US healthcare
system still does not offer solutions to promptly detect the
onset of frailty and act accordingly. Instead, it passively
reacts to accidents that occur as a consequence of functional
decline, which entail expensive and time-consuming hospital-
based interventions. In this light, home-based therapies that
monitor the motor skills of the patient on a continuous daily
basis could allow therapists to make timely diagnoses of
mobility decline, which would result in an increase of the
patient’s quality of life. For this purpose, we propose an
improved low-cost multi-modal system for human motion
tracking, aimed at facilitating mobility assessment in the
home through various every-day activities. We build upon a
preliminary version of the system [2]; such system uses a
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factor graph formulation to combine inertial measurements
from four Inertial Measurement Units (IMUs, attached to the
lower limbs of the user) with RGB and depth images from an
depth camera, to provide 3-D human movement estimations.
In this paper, we expand the factor graph formulation with a
novel factor that combines deep learning and Koopman theory
to first predict the walking activity being performed, and then
compute a prediction of the user motion to bias the factor
graph optimization toward a stronger temporal consistency.

Related work. Our work on human pose estimation is
derived from a fusion between recent techniques used for
robotic localization, namely Visual-Inertial Odomoetry (VIO),
and data-driven machine learning models. VIO techniques
use a fusion of inertial measurements with visual information.
There is also research in the literature on the use of
IMUs, kinematic models and vision techniques for human
pose prediction. For instance, the authors in [3] used IMU
data and a kinematic model to track the upper limbs in
neurorehabilitation exercises; the work from [4] showed
that fusing IMU and vision data outperforms IMU-only
approaches; and multiple studies, such as [5] and [6], have
developed 3-D pose estimation algorithms with IMU, LiDAR
and multiple-camera data.

With the recent rise of deep neural networks, there has also
been an increasing interest in tracking the human pose and
recognizing human activities from a deep learning perspective.
For example, a common open-source library used for pose
estimation is OpenPose [7], a Convolutional Neural Network
(CNN)-based system for 2-D multi-human pose estimation
from RGB images. The authors of [8] proposed recurrent-
based CNNs to track the human body with spatial and
temporal information on video sequences; the authors of
[9], [10] and [11] suggested methods to infer the 3-D human
joint positions from multiple 2-D images; and the research
from [12] uses the Koopman operator to constrain the training
of a deep autoencoder on silhouette images, whose feature
space is then used for gait recognition. More directly related
to the problem of human activity recognition, state-of-the-art
results are based on Graph Neural Networks (GCNs), which
treat the human skeleton joints as graph nodes, and their
connections (bones) as graph edges. For instance, the authors
in [13] proposed a module to select the most informative
frames in a skeleton sequence and fuse it with a GCN module;
the authors in [14] presented a GCN architecture that fuses
information both from nodes and skeleton edges; and the
authors in [15] introduced the spatial temporal GCN, which
applies graph convolutions on the spatial domain and regular
convolutions on the temporal domain.
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Paper contributions. Our system explores the capabilities
of Koopman theory in the field of human pose estimation.
We show that Koopman-based predictions of the human pose
placed within the factor graph optimization loop condition the
skeleton estimations towards more consistent gait estimations.
This allows the system to obtain more realistic motion
estimates even in the presence of significant noise (e.g., far
from the camera), thus overcoming a main limitation in [2].
We analyze the performance of our system on a dataset of
clinically-relevant lower limb mobility tests.

The remainder of the paper is organized as follows: Sec. II
presents the preliminary concepts required to understand
Sec. III, which describes the implementation of our proposed
Koopman factor. Sec. IV presents the conducted experiments
and the discussion of the results, and finally Sec. V summa-
rizes the conclusions and introduces potential future work.

II. PRELIMINARIES

We begin by providing a brief overview of the optimization
framework for human walking estimations presented in [2].
Then, we introduce the two new elements that constitute the
core of this paper: the Koopman operator and the spatial-
temporal graph neural network for walking activity selection.

A. Human kinematic model

We model the human kinematics with a directed tree,
H = (V,E). Each node i ∈ V represents a joint of the
articulated human model, and is associated to 3-D trajectories
ni
k ∈ R3 expressed in an inertial reference frame, where k is a

discrete time index associated to a keyframe time tk. Likewise,
(i, j) ∈ E represents a link connecting joints i and j, and
is associated to a time-invariant length lij ∈ R, and a time-
dependent extrinsic rotation Rij

k ∈ SO(3), which represents
the transformation from the inertial frame to a frame rigidly
affixed to the link. By convention, the z-axis of each rotation
is placed along its corresponding link pointing from parent
node i to child node j. Given the 3-D coordinates of the root
node n0

k, this parameterization enables reconstructing the full
human skeleton with the following kinematic relation:

nj
k = ni

k + lijRij
k e3, (1)

where e3 = [0 0 1]
⊤ corresponds to the standard z Cartesian

coordinate basis. Our human skeleton tree is composed of 7
joints (feet, knees, hips, and sternum) and 6 links, with the
sternum acting as the root node.

We define the state of our human skeleton at time tk by
concatenating the root node position n0

k with all the link
rotations Rij

k to form state Rk. Likewise, we concatenate all
link lengths lij to form the set of parameters L.

B. Factor graphs

Unrolling equation (1) for all joints and links across a
sliding window of K keyframes, we obtain a graph structure.
This motivates representing our gait estimation problem using
the factor graph formulation. A factor graph [16] G = (S, F )
is a bipartite graph which represents a complex multivariate
probabilistic model as a multiplication of simpler models

(factors). Each factor fk ∈ F for k ∈ K depends on a small
subset of the system variables (states) sk ∈ S and encodes
the likelihood of sk given certain external measurements
zk ∈ Z, fk(sk; zk). The joint probability P (S|Z) of all the
states S = {sk} given all the measurements Z = {zk} can
then be expressed as

P (S|Z) ∝
∏
k∈K

fk(sk; zk). (2)

The maximum likelihood estimation (MLE) of S is ob-
tained by minimizing the negative log-likelihood of P (S|Z).
Assuming that factors fk follow zero-mean Gaussian distri-
butions, one can express the MLE of (2) as the least-squares
solution of an optimization problem depending on residuals
rk(sk) ∈ Rn [17],

S∗ = argmin− lnP (S|Z) = argmin−
∑
k∈K

∥rk∥2Σk
, (3)

where Σk corresponds to the noise covariance of the measure-
ment zk associated to the factor fk. The residuals rk express
the difference between the measurement zk and the (possibly
nonlinear) measurement function hk(sk). This representation
of the factor graph optimization problem intuitively defines
Σ−1

k as the weight associated to each residual rk. With this
insight, we can use factors that are based on machine learning
algorithms, treating their weights (covariance matrices) as
design parameters.

The optimization problem (3) is generally solved using
gradient descent or quasi-Newton methods; this requires
computing the gradients of the residuals, which requires
finding expressions for the Jacobian algorithms with respect
to the optimization variables.

C. Visual-inertial 3-D human pose estimations

We previously presented a visual-inertial system for recon-
structing 3-D human poses [2]; this system applies the factor
graph formulation described in Sec. II-B to the kinematic
model from Sec. II-A to estimate the 3-D coordinates of the
root node n0

k, the extrinsic rotations Rij
k , and the intrinsic link

lengths lij , over a sliding window to approximate the 3-D
skeleton movement. This is achieved by fusing information
from four IMUs strapped on the two legs (two shanks and
two thighs) with synchronized images and depth point clouds
captured by an RGB-D camera. RGB images provide 2-D
pixel coordinates of the human skeleton joints, while the point
cloud provides their depth component. These measurement
sources are encoded in four different types of factors over their
corresponding subset of state variables: 1) The IMU factor,
which computes the estimated rotation change of the links
between adjacent keyframes by applying preintegration theory
[18] on the angular velocities; 2) the Image factor, which
computes the reprojection error between the xy coordinates
of the predicted joints under perspective projection [19] and
the pixel coordinates measured by OpenPose; 3) the Depth
factor, which computes the depth error on the estimated joints;
and 4) the Contact factor, which uses a logistic regressor on
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IMU data to predict feet contacts and thus avoid estimating
unrealistic skids (sliding of the feet).

This preliminary work was implemented using the GTSAM
library for factor graph optimization [20], and it showed
the potential of visual-inertial filtering and factor graphs
applied to 3-D human pose estimation. However, the current
technology for time-of-flight cameras leads to noise variances
that increase with the distance from the sensor; this fact
considerably affected the depth range of operability of the
system in [2], highly decreasing its performance beyond
distances further than 7m away from the camera.

D. Koopman theory

The time evolution of the 3-D skeleton joint coordinates
estimated in Sec. II-C during a certain walking activity can
also be regarded as an autonomous nonlinear dynamical
system,

xk+1 = f(xk), (4)

where x ∈ R21 (7 joints with 3 coordinates each), and f is
the nonlinear evolution operator. This description enables the
exploration of additional techniques for nonlinear systems to
predict more accurate joint states. For this purpose, here we
introduce a general overview of the discrete-time Koopman
operator. We refer the interested reader to [21] for a more
in-depth development.

Let x be an n-dimensional state variable on a manifold
M ⊆ Rn, whose discrete-time evolution is defined by (4),
and where f : M 7→ M is the (nonlinear) evolution operator.
Moreover, let us define an observable function ψ that belongs
to the set of functions mapping elements of M to R, F =
{f : M 7→ R}. Then, the Koopman operator K is defined as
an operator acting on ψ such that

(Kψ)(x) = (ψ ◦ f)(x) = ψ(xk+1). (5)

Equation (5) describes a new dynamical system in F ,
where K determines the evolution dynamics of the observable
function ψ, contrary to f which acts directly on M (◦ is
the composition operator). Additionally, this definition of the
Koopman operator holds two interesting properties. On the
one hand, since F is infinite dimensional, then also K must
be infinite dimensional, thus rendering this exact definition
impractical for real-life applications. On the other hand, F
is a vector-valued space and the composition operator is
linear on this space, and hence the Koopman operator is also
linear, even if the initial dynamics governing f are nonlinear.
The data-driven Extended Dynamic Mode Decomposition
(EDMD) [21] method approximates the infinite-dimensional
Koompan operator K by a finite-dimensional operator K (a
matrix), which in turn yields a linear approximate represen-
tation of the initial system.

EDMD requires a training dataset D with M consecutive
pairs of system states, D = {(xi, f(xi)}M−1

i=0 . Additionally,
let us define a finite set of P observable functions that form
the column vector-valued function Ψ : M 7→ RP (which are
typically chosen by the designer, see Sec. III-C),

Ψ(x) = [ψ1(x), ψ2(x), . . . , ψP (x)]
⊤
. (6)

By combining equations (5) and (6) we arrive at the
following expression, which is linear in Ψ:

Ψ(xk+1) ≈ KΨ(xk). (7)

The approximate Koopman matrix K can be computed
from (7) in closed form using all data points in D by solving
its corresponding least-squares problem [21].

Remark 1 (Predicting xk+1): The system state xk+1 can
be predicted using the approximate Koopman operator by
using the identity map as one of the vector-valued observable
functions [22], namely

Ψ(x) = [x⊤, ψ1(x), ψ2(x), . . . , ψP (x)]
⊤. (8)

The approximate prediction x̂k+1 is then extracted with

x̂k+1 = K[n]Ψ(xk) ≈ xk+1, (9)

where K[n] corresponds to the first n rows of the Koopman
matrix K. Note that the extended Ψ(x) needs to be defined
prior to computing K.

E. Spatial Temporal Graph Convolutional Network

Sec. II-D considers a way to create a model of human
movement as an autonomous dynamical system. This model
might be reasonable when a single activity is considered
(e.g., walking). However, real-life data is likely to comprise
a sequence of multiple activities, such as standing up →
standing → walking. In this case, we posit that it is more
natural to model the full sequence as the evolution of a hybrid
dynamical system with three underlying and fundamentally
different models. We therefore propose to use a classifier
that can distinguish between activities to select the right
model. In addition, the graph-like structure of the human
skeleton and the correlations between the motions suggest
utilizing an architecture that can capture this organization. For
this purpose, we use a Spatial Temporal Graph Convolutional
Network [15] architecture (ST-GCN), which we review below.

An ST-GCN is a neural network that receives both the joint
coordinates from a sequence of keyframes and information on
the graph structure, and performs a series of spatio-temporal
(ST) convolutions to extract features both in the spatial domain
and the temporal domain. Each ST layer implements one
convolution of each type.

Spatial Convolution: This convolution exploits the natural
intra-skeleton connections (edges) between the joints on a
single keyframe, and is defined as

fout(vi) =
∑

vj∈B(vi)

1

Zij
fin(vj)w(li(vj)). (10)

fin and fout are the input and output features for a given
node, respectively, vi is the center node where the convolution
is computed, B(vi) corresponds to the set of 1-distance
spatial neighbors of node vi, and w is the learnable weight
variable. While this expression resembles the standard 2-D
image convolution, the main difference lies on the partitioning
strategy used to divide the neighbors into subsets, governed
by the mapping function li. In particular, li(vj) maps each
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vj ∈ B(vi) to one of 3 different subsets: the center joint vi,
the centripetal group (neighbors closer to the centroid of the
skeleton than vi), or the centrifugal group (neighbors further
from the center than vi). Then, Zij becomes a scaling factor
that accounts for unbalanced neighbor contributions to each
group.

The spatial convolution from equation (10) can be imple-
mented in tensor form [23] for each frame t in T as

Fout,t =

3∑
j=1

Λ
− 1

2
jt (Ajt ⊙M)Λ

− 1
2

jt Fin,tWj . (11)

Fin,t and Fout,t are slices on the temporal dimension
of the input and output tensors, of shape [N,T,Cin] and
[N,T,Cout] respectively (N corresponds to the number of
joints, T denotes the temporal dimension, C is the number of
channels), and Wj represents the weight tensor for group j,
of shape [Cin, Cout]. The structure of the graph connectivity
is encoded by the N ×N matrices Ajt, which represent the
adjacency matrices of all one-hop neighbors on each subset;
Λjt, which are diagonal matrices whose diagonal elements are
Λii
jt =

∑N−1
m=0 A

im
jt + α (with α≪ 1 to avoid singularities);

and Mj , which are mask matrices that learn the importance of
each edge connection (⊙ denotes the element-wise product).

Temporal Convolution: The temporal convolution is ap-
plied on the output tensor of the spatial convolution phase.
It exploits the inter-frame connections of the same joint
between adjacent keyframes by performing a standard 1-D
convolution on the dimension T of Fout. Hence, in this
case the temporal neighbors of node vit are defined as
B(vit) = {viq| − Γ/2 ≤ q − t ≤ Γ/2}, where Γ is the tem-
poral kernel size.

Lastly, the output of the final ST layer is sent to a fully
connected (FC) layer, which predicts the activity label.

III. THE KOOPMAN FACTOR

In this paper, our goal is to build a new factor graph
factor that, given a set of estimated joint coordinates
xk = [n0

k, . . . ,n
6
k]

⊤ at time tk, it 1) identifies its correspond-
ing walking activity ak, and 2) predicts a prior new set of
joints at tk+1 by selecting a Koopman matrix Kak

associated
to activity ak. This factor is added to the original factor
graph from Sec. II-C, and the schematic of its components
and architecture is shown in Fig. 1.

A. Normalization of input variables

The two trainable modules receive the 3-D skeleton joint
coordinates as inputs. The map between the system variables
{Rk,L} and a joint nj

k is defined as

nj
k = n0

k +
∑

(p,q)∈Ej

lpqRpq
k e3, (12)

where (p, q) runs across all links Ej in the kinematic chain
from the root node n0 to the child node nj .

To make the system invariant to translation and scaling,
the input skeletons to both systems are previously centered
around their right foot (to preserve as much skeleton variance

ST layer

FC layer

ST-GCN

Factors

Fig. 1: The schematic of the Koopman factor on a two-
state window. The state at Sk is used to compute the joint
coordinates xk, which are sent to the activity selector. The
selected Koopman matrix predicts the next joint states, which
in turn are used to compute the residual of the factor.

information as possible [24]) and scaled down to be within
the range [0, 1]. We denote this centering and normalization
operation as N , and it is applied to each individual joint nj :

n̄j
k = N (nj

k) =

(
nj
k − n

(3)
k

)
− cmin

cmax − cmin
. (13)

n
(3)
k are the coordinates of the 3rd joint, which corresponds

to the right foot, and are used for centering the skeleton.
cmin and cmax are scalars that refer to the minimum and
maximum coordinate values over the whole training dataset.
These values are stored in memory for the normalization
of other datasets. Note that the vector xk can be built by
concatenating all seven nj

k.

B. ST-GCN for per-frame walking activity selection

Given a temporal sequence of skeleton joint coordinates,
we seek to build a classifier that determines the walking
activity type for each individual keyframe k. For this study
we divided the walking activities into five different labels a:
walking, standing, sitting, standing up, and sitting down, such
that a ∈ [0, . . . , 4]. These categories fully encompass all the
activities performed by the participants across all trajectories
studied in Sec. IV.

Many of the GCN-based activity recognition studies in
the literature focus on predicting a single activity label from
a complete video sequence. In these cases, the temporal
dimension usually comprises the entirety of each trajectory.
However, our specific application demands per-frame labeling.
This fact highly constrains the temporal dimension size T ,
and thus requires splitting each full sequence into multiple
independent subset trajectories of a much smaller T size.
This restriction also has a direct impact on the selection of
both the temporal kernel size Γ and the number of ST layers.
Regarding the spatial convolution, the raw data from the
joint trajectories is used to pre-compute the tensors Aj and
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Λj taking into account the link connections in the skeleton
structure.

C. Koopman observable functions

One core element in the construction of the Koopman
matrix is the choice of the basis functions to form the vector
of observables Ψ. Many different strategies can be followed,
which highly depend on the application in hand. However,
there is a lack of literature on the application of Koopman
theory to human gait estimations due to its novelty. For
this reason, we empirically selected the univariate Fourier
basis [25] due to its simplicity and good performance, and
encourage future research to study the impact the choice of
basis functions has on the quality of the gait estimations.

Let x ∈ Rd. Its univariate nth-order Fourier basis is defined
as the set of functions such that

ψn(x) = cos(πc⊤nx), (14)

where cn = [c0, . . . , cd−1]
⊤ is a coefficient vector of size

d, and cj ∈ [0, . . . , n] for cj ∈ c. This implies that for the
d-dimensional variable x, its Fourier basis is composed of
(n + 1)d basis functions, a number that suffers from the
curse of dimensionality. Since in our application x ∈ R21,
this representation becomes initially impractical. In this
exploratory study, we decouple the three dimensions xyz
of the joint coordinates and feed them to K independently,
which allows reducing the feature dimension from 21 to 7.
This heuristic approach yielded mean test errors of less than
3 cm per frame. Empirically, for this application we selected
n = 1, and applying Remark 1 it renders Koopman matrices
K ∈ R135×135.

D. The Koopman factor

Given two consecutive gait state estimations, Sk =
{Rk,L} and Sk+1 = {Rk+1,L}, the Koopman factor
performs the following operations sequentially (Fig. 2):

1) Obtains the joint coordinates xk and xk+1 from the
factor graph estimation,

2) normalizes xk by applying equation (13),
3) computes the observable vectors Ψx(x̄k), Ψy(x̄k),

Ψz(x̄k) associated to each coordinate of x̄k,
4) predicts activity ak(x̄k) and selects Kak

,
5) predicts the coordinates of the joint states x̂k+1, and
6) computes the residual rk = x̂k+1 − xk+1 ∈ R21.

Fig. 2: The computational graph with the operations per-
formed inside the Koopman factor. N and N−1 are the
normalization map and its inverse respectively, and K̂i is our
Koopman operator applied to coordinate i of x̄k.

K̂i = K
[7]
akΨi is our Koopman map applied on coordinate

i ∈ {x, y, z}, N−1 is the inverse of equation (13), and x̄k+1

is obtained by stacking the three coordinate column vectors in
the first dimension, x̄k+1 = [

(
x̄⊤
k+1

)
x
,
(
x̄⊤
k+1

)
y
,
(
x̄⊤
k+1

)
z
]⊤.

Note that to make the centering of the skeleton consistent, the
right foot coordinates n

(3)
k are also used in N−1 to recover

x̂k+1.
Jacobians. As required by most optimization-on-manifold

solvers, explicit expressions for Jacobians of the residual with
respect to each variable are required. In the remainder of
this section, we provide expressions for the Jacobians of rk
for coordinate i of an arbitrary node nj

k with respect to a
parent link (p, q). We also drop the sub-index k for an easier
readability. By applying the chain rule, we can express the
Jacobian of rj with respect to a general variable X as

∂rji
∂X

=
∂N−1

∂K̂i

∂K̂i

∂N
∂N
∂X

+
∂n

(3)
i

∂X
− ∂(xk+1)i

∂X
. (15)

We provide the mathematical expressions for each term in
(15) below:

∂N−1

∂K̂i

= (cmax − cmin), (16a)

∂K̂i

∂N = K[7]
ak

[
I7,
[
− sin

(
πc⊤mx̄i

)
πcm

]
cm∈C

]⊤
, (16b)

∂N
∂X

=
1

cmax − cmin

(
∂xi

∂X
− ∂n

(3)
i

∂X

)
. (16c)

xi is a 7-D vector containing coordinate i for all joints, I7
corresponds to the 7-D identity matrix, and C corresponds
to the set of all frequencies cm included in Ψi. The task
to compute the Jacobians with respect to each state variable
is now reduced to providing individual expressions for the
Jacobians of each joint coordinate, analyzed below.

1) Jacobian with respect to Rk: Recall that the set of states
Rk is defined as the concatenation of all Rij

k for (i, j) ∈ E
and n0. The derivatives of a joint nj with respect to a parent
Rpq and the root joint n0 can be expressed as

∂nj

∂Rpq
= [−Rpqe2,R

pqe1,03×1] l
pq, (17a)

∂nj

∂n0
= I3. (17b)

2) Jacobian with respect to L: L refers to the concatena-
tion of all link lengths lij for (i, j) ∈ E. The derivative of
nj with respect to a parent lpq is

∂nj

∂lpq
= Rpqe3. (18)

Equations (17) and (18) should be computed for each
joint and rearranged to form three 7-D column vectors,
corresponding to each coordinate x, y and z, before plugging
them into (15).
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IV. EXPERIMENTAL STUDY
A. Dataset

The dataset used in this study comprises 65 trajectories
across 5 participants corresponding to four different stan-
dardized lower limb mobility tests, namely the 10 Meter
Walk Test (10MWT), the Functional Gait Assessment (FGA),
the Short Physical Performance Battery test (SPPB), and
the Timed Up and Go test (TUG). Each trajectory contains
ground truth data from the Qualisys motion capture system
at 200 Hz, RGB and point cloud data at 30 Hz from an Intel
RealSense D435 [26], and IMU data at 120 Hz. This dataset
was recorded under the IRB protocol Mass General Brigham
2020P003474, and the data was managed by the Robotic
Operating System (ROS) [27] middleware.

To build a joint trajectory dataset from the recorded data,
we first applied the original system in [2] to each individual
recording, which resulted in 65 different joint trajectories,
each one comprising approximately between 150 to 600
keyframes (depending on the activity performed). These
trajectories contained skeleton keyframes up to 7m away
from the camera, to remain in the operability range of
the system. To make the systems rotation invariance, each
skeleton keyframe belonging to the training dataset was
duplicated at different rotation angles around the vertical
axis after the centering operation.

B. ST-GCN training
Considering the requirements addressed in Sec. III-B, our

ST-GCN is composed of two spatio-temporal layers with a
temporal kernel size of Γ = 7, with 128 and 256 output
channels respectively, and a fully connected layer. This
architecture sets the input tensor to be of shape [B,Cin, N, T ]
with Cin = 3 spatial coordinates (x, y and z), N = 7 joints,
and T = 13 keyframes. B corresponds to the batch dimension.
After centering each skeleton, we duplicated each keyframe
7 times while rotating the skeleton at intervals of 45◦ around
the vertical axis. Then we split it into train and test stratified
sets, resulting in 66645 and 28563 samples per set (70% and
30% of the full dataset respectively). Each class on the train
set has 13109, 4609, 3472, 3041 and 42414 samples. We
implemented our ST-GCN using the Pytorch library [28].

To validate the choice of selecting joint coordinates as
input features to our network, and since our datasets already
contain IMU information (unlike all the other cited activity
recognition references), we compared our joint-based ST-
GCN activity selector with an IMU-only ST-GCN baseline
with a similar architecture. This baseline network takes the
pre-integrated IMU velocity measurements as inputs, and the
spatial subsets were generated by comparing the root node
and its neighbors to the average speed of the four IMUs.

The joint-based ST-GCN output 99.97% test accuracy,
while the IMU-only baseline stayed at 92%. Additionally,
many of its misclassification errors happened between the
standing and sitting classes. This makes sense intuitively, as
in both cases the IMU angular velocities are very close to
zero. We leave for future work more thorough studies on the
use of IMU-only data for activity recognition.
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Fig. 3: Comparison between the Koopman predictions with
their corresponding GTSAM estimations for one test sample
of each one of the five selected walking activities. In gray,
the GTSAM skeleton at tk; in red, the GTSAM estimation
at tk+1; in blue, the Koopman prediction at tk+1.

C. Koopman training

To construct the Koopman training dataset, all joint
trajectories were segregated in pairs of consecutive keyframes
{xk,yk}. Contrary to the dataset used to train the ST-GCN,
both keyframes were centered around the same right foot
coordinates of xk to match the computational graph from
Fig. 2. Then, both skeletons of each pair were duplicated
23 times and rotated at intervals of 15◦ around their vertical
axes. Finally, the pairs were assigned an activity label ak
corresponding to xk. This allows training one Koopman
matrix Kak

for each activity independently but following
the same procedure. The five Koopman matrices were trained
following equation (7) and stored in memory. Fig. 3 shows
five frame comparisons belonging to the test sets between
the Koopman predictions and their corresponding GTSAM
estimations.

D. Experimental analysis

We analyzed the performance of our newly proposed factor
by comparing its results with a naive vision-only approach
(consisting of image and depth data), with the GTSAM
baseline system from [2], and with their corresponding ground
truth trajectories.

To study the similarities between the estimated skeleton
and its ground truth, we first centered the skeletons from
each keyframe of every source around their centroid; then,
we computed the Euclidean distance error with respect to the
ground truth for all joints across all keyframes in the dataset.
This approach allows removing the trajectory estimation bias
while focusing solely on the skeleton form. Fig. 4 shows
a boxplot comparison of all the Euclidean errors across all
keyframes of all trajectories between the vision-only approach,
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Fig. 4: Boxplot comparison of the Euclidean errors of all
joints across all trajectories with respect to their ground truth
counterparts.

the baseline system, and the modified factor graph. While
both factor graphs highly improve the naive vision-only
approach (they reduce the outliers by almost 1m), there
is no considerable difference between the quality of the
skeletons from both systems. This was to be expected, since
the Koopman matrices were trained purely with the baseline
estimations.

However, the main contribution of the Koopman factor lies
on the trajectory estimations at far distances. Figs. 5a and 5b
show the evolution of the depth coordinate of the skeleton
centroid for a few selected trajectories across multiple tests
and participants. The vision-only trajectories start getting
distorted around 3m, which is the range limit recommended
by the manufacturer. While the baseline system was able to
highly improve the skeleton estimated forms, it still struggles
to track the walking kinematics of the skeleton. Fig. 5c shows
the same trajectories estimated by the new system with the
Koopman factor. Its results highly contrast with the previous
two approaches, with much smoother trajectories and no
sudden jumps on the estimated depths. Paired with the results
from Fig. 4, they suggest that the new estimated skeleton
trajectories preserve much better the nature of human walking,
which largely amplifies the range of operation of the system
to more than 10 m.

A more visual representation of this behavior can be seen
in Fig. 6, which compares the results of the system with and
without the Koopman factor on three consecutive keyframes.
While the depth joint coordinates of the original system’s
estimations fluctuate in an unnatural manner, the Koopman
factor allows preserving the natural flow of the human walking
away from the camera.

V. CONCLUSIONS AND FUTURE WORK
In this paper, we studied the viability of Koopman theory

applied to the field of human pose recognition, targeted at
the application of clinical assessment of lower limb mobility.

The novelty of our approach lies on the use of Koopman
predictions of consecutive human skeleton keyframes within
the optimization loop of a factor graph problem to influence
the optimized skeleton estimations toward temporal consis-
tency. More specifically, we implemented a new factor graph
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Fig. 5: Comparison of same sample trajectories of the skeleton
centroid estimated by (a) a vision-only approach, (b) the
baseline factor graph system, and (c) the modified factor
graph with the Koopman factor.

factor that acts in parallel to the main IMU, image, depth,
and contact factors of the original factor graph. This new
factor is applied on each individual keyframe of the trajectory,
and runs a two-step process. First, a trained spatial temporal
graph convolutional network detects the walking activity the
participant is performing among the selected set of standing,
sitting, standing up, sitting down, and walking. Then, this
prediction is used to select a Koopman operator trained on the
specified activity, and computes a measurement-free a priori
skeleton estimation of the skeleton in the following keyframe.
This estimation is based on a data-driven learnt representation
of the inherent dynamics of each one of the five selected
walking activities, and thus complements the information
provided by the external measurements. Additionally, we
validated the selection of the joint coordinates as features for
the activity recognition system over an IMU-only alternative.

We studied the performance of the proposed Koopman
factor by running our system against custom datasets com-
posed of standard clinical tests for lower limb mobility
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Fig. 6: Three consecutive keyframes (with increasing opacity)
corresponding to the side view of a skeleton walking. On the
left, the estimations obtained using the original factor graph
system. On the right, the same keyframes estimated with the
new Koopman factor.

assessment. Not only was the modified factor graph able to
preserve the quality of the estimated skeletons observed in the
original system, but it also showed a substantial improvement
in filtering out the noise introduced by the depth sensor,
extending the depth range of operation of the system to more
than 10 m away from the camera.

In future work, we plan to study more rigorous alternatives
on the Koopman observables and frequencies selection, which
should enable even better predictions without having to
increase the Koopman dimensionality. Additionally, we plan
to analyze the effect of the Koopman factor in those images
where the human view is partially or completely blocked.
Finally, embedding the human walking dynamics into a
Koopman representation could allow reducing the number
of required IMUs. This fact would be of major importance
toward building a clinical user-friendly system for automatic
mobility assessment in the home.
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